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Comment: Group Symmetry

Covariance Models

Michael D. Periman

Mark Schervish’s review is a well-conceived and
welcome Michelin Guide to Multivariate Analysis,
classical and current. Simultaneously comprehensive
and opinionated, it both surveys and evaluates the
major features of this complex statistical landscape.
Some of his opinions and emphasis may be arguable,
but his views on the interplay between methodology
and theory, the need for scientific relevance in statis-
tical research, and the future directions of multivariate
analysis should be considered carefully by every stu-
dent of statistics.

MULTIVARIATE ANALYSIS IN COPENHAGEN

I will attempt to supplement Schervish’s remarks
with a brief description of some elegant and significant
contributions by Danish statisticians to multivariate
theory, particularly S. A. Andersson, H. Brgns and S.
T. Jensen of the University of Copenhagen. They have
developed an algebraic approach, not yet fully pub-
lished nor in textbook form, which provides a unified
mathematical framework for studying amenable prob-
lems of classical multivariate analysis. Their approach
not only unifies much of the classical theory, but also
extends its scope to include several new types of
amenable models and testing problems. (Because they
show that in some sense there are only finitely many
types of amenable models and testing problems, their
results also define the limits of classical multivariate
theory.) Just as T. W. Anderson’s classic book lighted
the path of an entire generation of researchers, their
approach could well become the standard for future
work on multivariate statistical theory.

By “amenable problems of classical multivariate
analysis,” 1 loosely refer to statistical models and
hypothesis testing problems consisting of families of
multivariate normal distributions determined by lin-
ear constraints on the mean vector and/or covariance
matrix and that, furthermore, allow explicit likelihood
analysis, e.g. explicit (linear) maximum likelihood es-
timates, explicit likelihood ratio test statistics and
explicit expressions for their distributions. Alterna-
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tively, one could loosely refer to “multivariate prob-
lems similar to those treated in T. W. Anderson’s
classic textbook.”

These ideas are most easily illustrated by consider-
ing the three main hypothesis-testing problems for
covariance matrices treated in Chapters 9 and 10 of
Anderson:

(a) Testing independence of two or more sets of
variates in a p-variate normal population N,(u, Z),
e.g., testing

HP: 25=0 vs. H®: 2, #0,

where the covariance matrix 2 is partitioned as (Z;;)
with Z;;:p; X pj, i,j=1,2,p1 + po =p.
(b) Testing sphericity, i.e., testing

HY: 2 =06, ¢>>0 vs. H?: 3 # ¢°I,

where I, denotes the p X p identity matrix.
(c) Testing equality of two or more covariance mat-
rices, e.g., testing

V.3 =3, vs. HY: 3 # 3,

based on independent samples from the normal pop-
ulations N, (u1, Z1) and N, (s, Z2) with p; = ps.

Anderson’s treatments of each of these three “ame-
nable” problems are both clear and complete. In each
case, the maximum likelihood estimate (MLE), the
likelihood ratio test (LRT) statistic and its null dis-
tribution are explicitly derived. The reader may notice,
however, that the derivations and results have a com-
mon mathematical flavor, raising an important but
unposed question: which other hypothesis testing
problems for normal covariance matrices share this
“common flavor”? More generally, which multivariate
normal models and testing problems are amenable to
explicit analysis? Can one characterize the “amenable
problems in classical multivariate analysis,” or, at
least, describe general classes (as opposed to isolated
examples) of models and testing problems that can be
analyzed in an explicit and unified manner?

GROUP SYMMETRY COVARIANCE MODELS

These questions have been addressed in the work of
Andersson, Brgns and Jensen (unpublished) in Co-
penhagen. By using standard mathematical tools, e.g.,
linear algebra, group representations and invariant
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measures, they have obtained answers that are both
elegant and illuminating. Furthermore, the general
classes of models they obtain and study have mean-
ingful statistical interpretability. For example, as we
shall show below, the statistical models in (a), (b), and
(c) above are special cases of group symmetry covari-
ance models (= symmetry models), and the three test-
ing problems are special cases of the general problem
of testing one symmetry model against another. Other
examples of symmetry models include the intraclass
correlation model, the circular symmetry model and
the complex multivariate normal model. Each of these
has been studied individually during the past twenty
years without general recognition (outside of Den-
mark) that they are actually special cases of the group
symmetry model. Thus, although Schervish rightly
points to “an entire industry of ad hoc methods for
dealing with multivariate data,” he could also have
noted the current ad hoc state of multivariate theory
as well.

The general group symmetry covariance model was
introduced by S. A. Andersson (1975). (See also Chap-
ter 9 of Eaton, 1983.) Such a model describes sym-
metries present in the error structure of multivariate
observations, e.g., on biclogical objects, on symmetri-
cally arranged seismographs, etc. A symmetry model
may be described formally as a family S§ of covariance
matrices 2 that remain invariant under a finite group
G of orthogonal transformations. More precisely, let
Y:p X 1 denote a multivariate observation (i.e., a
random vector) with covariance matrix :p X p, a
positive definite (pd) symmetric matrix, and let G =
{g} be a finite group of p X p orthogonal matrices.
The symmetry model determined by G is the family
of covariance matrices

(1) S&={Z|Z pd, gZg’ = = for all gin G}.

The hypothesis cov(Y) € S¢& implies that the error
structure of Y satisfies a set of symmetry restrictions,
namely that cov(Y) = cov(gY) for all g in G.

EXAMPLES OF SYMMETRY MODELS
Suppose that

Y,

Y,
with Y;: ¢ X 1, where Y1, ..., Y, represent the meas-
urements obtained from k identical seismographs ar-
ranged in a circular pattern (e.g., around the base of

Mt. St. Helens). Here, p = gk. It may be reasonable
to assume (or to test) that cov(Y) = Z possesses

circular block symmetry, i.e., that

Yl Y2 . Yk

Y2 Y3 Yl
cov . = cov . = ... = COV . )

Y. Y, Yi1

or, equivalently, that cov(Y;, Y;) = cov(Yi,,, Yj4,) for
all i, j, r (mod k). This condition may be re-expressed
as

(2) cov(Y)=cov(PY), r=0,1,...,k—1,
where

0 I
00
00

O ~NO

: gk X gk

I 00 --- 0

and [ is the ¢ X ¢ identity matrix. (Note that it suffices
to verify (2) for r =1 only.) If weset G, ={[, P, ...,
p* 1} (a cyclic group of order k) then (2) is equivalent
to the condition that T € S¢,. It is easy to verify that
S¢, consists of all positive definite symmetric matrices
of the following forms:

A B B
k=3B A B a=a4,

B B’ A
A B C B’
_.|B A B C A o
k=4 c B A B’ A=A’ C=C,
B C B A

etc., where A, B, C, etc., are ¢ X ¢. Note that it is
not required that B = B’. (In the general case, it
is not required that cov(Y;, Y;) = cov(Y}, Y;).)

Some confusion appears in the literature regarding
the term “circular block symmetry.” This term fre-
quently has been used to refer instead to covariance
matrices of the forms

A B B
k=3 \B B|), A=A’', B=B/,

B A

waw
Akt U
W Ao
> o

A=A', B=B', C=C/,

etc. Here the added condition that cov(Y;, Y;) =
cov(Y;, Y;) is imposed. Such models do not occur as
S¢, for the cyclic group G, of order k but rather as
Sg, for the dihedral group G; of order 2k, hence more
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accurately should be called dihedral block symmetry
models. Here, G, ={[, P, ..., P*1,Q,QP,...,QP*},
where

Q= - : gk X gk.
I 0

Stated simply, G, is (isomorphic to) the group of all
rotations and reflections that leave a regular k-gon
invariant, while G, consists of the rotations only. The
hypothesis £ € S, (2 € Sg,) states that the error
structure of Y remains invariant under all rotations
(all rotations and reflections) of the k seismographs
among themselves.

We also mention the model of complete block
symmetry, i.e., cov(Y;) = cov(Y;) and cov(Y;, Y;) =
cov(Y,, Y,) for all i # j, [l # m. This arises as 353,
G = {Il ® I,|]II a k X k permutation matrix}
(order k!), where ® denotes the Kronecker product.
Here, 353 consists of all covariance matrices of the
form

(A B ... B)
B A .
, A=A’, B=RB'.
: A B
B .- B Aj

The hypothesis = € S¢, implies that the error struc-
ture remains invariant under all permutations of the
k seismographs.

Another important example of a group symmetry
model is the g-variate complex normal distribution,
more precisely, the 2qg-variate real normal distribution
with complex covariance structure. This statistical
model consists of all p-variate (real) normal distribu-
tions N,(u, 2) with p = 2q and 2 of the form

3) z=(g jf), A=A’, B=-B’,

-where A, B are q X q. (Note that A + iB is a complex
positive definite Hermitian matrix whenever Z in (3)
is a real positive definite symmetric matrix.) It is easily
verified that 2 has the form (3) if and only if = €
Sé,, where

Gy = {i'lp, in},

_0 _Iq
5= (0 )

From this point of view, the complex multivariate
normal distribution is a special case of the real mul-

tivariate normal distribution with a certain group
symmetry covariance structure.

Finally, it is easy to see that the covariance models
occurring in problems (a), (b) and (¢) above are also
symmetry models: A

H: 2 € 86w, HP":Z eS8,
4) HY: 2 € Séw, HM:Z € S?},;,
HSC): z e SE(C), ch): Ze Sg(a)’

oo- {5

G() = {DII|D = diag(#1, ..., 1), I ap X p
permutation matrix}, and

+I, 0 0 I,
w0 ={(7 ), T

Here, #(G(a)) = 4, #(G()) = 27-p!, #(G(c)) = 8,
where #(G) denotes the order of G. (Note that S;‘}p, =
{all p X p pd matrices} and recall that p, = p, in (c).)

where

MLE AND LRT FOR SYMMETRY MODELS

If symmetries are known to be present, then sharper
statistical inferences can be obtained, e.g. more accu-
rate estimates of 2, more powerful tests concerning =
and/or related population mean vectors. Numerous
articles dealing with particular cases (i.e., with partic-
ular groups G) have appeared in the literature. With-
out a common framework, however, such models have
arisen and have been treated on an ad hoc basis, with
the result that common structure is ignored and im-
portant problems overlooked. For example, the natu-
ral problem of testing dihedral block symmetry vs.
circular block symmetry (recall the preceding exam-
ples) has not yet been posed or studied, but is a special
case of the general testing problem

(5) Hy:Z €S vs. Hi:Z€SG,

where Gy, G, are finite groups of p X p orthogonal
matrices such that G, 2 G, (hence, Sg, C S¢,). Simi-
larly, from (4), each of the testing problems (a), (b)
and (c) mentioned above is a special case of (5).

In order to demonstrate the utility and simplicity
of this general formulation, we briefly consider MLEs
and LRTs for group symmetry models. Suppose that
S denotes the sample covariance matrix based on a
random sample of size m from N,(u, Z). Thus, mS ~
W,(Z, m), the Wishart distribution with m degrees of
freedom, m = m — 1. If m = p, so that S is positive
definite with probability one, it is straightforward to
show that under the symmetry hypothesis = € S¢,
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the MLE of 2 is given by the positive definite matrix

__ 1 ’
(6) SG = #(G) ggG gSg ’

an explicit linear function of S. Furthermore, the LRT
for (5) rejects Hy if

S
(7) 1Sl _
| S, |
for some constant ¢, 0 < ¢ < 1, where | - | denotes the

determinant. It is easily checked that the LRTs de-
rived in Anderson for problems (a), (b) and (c) are
special cases of (7): in (a), if S = (S;;) is partitioned
in the same manner as X, then

S 0
SG(a) = < 011 SZZ), Sl[pl = Sa

| Sl _ IS
[Se@| 1Sul- 182l

(cf. Anderson, page 379, equation (16)); in (b),
1
Sew) = p (tr S),, Sy, =S,

| Sup | _ |S|
| Sewy| [(1/p) tr SJ?
(cf. Anderson, page 428, equation (7)); while in (c), for

the case of equal sample sizes from the two popula-
tions,

S — l Sll + S22 0
G(c) 2 0 S + So)’

S 0
Sew = ( 0 Szz)’

| Se) | _ [ Suil - | S|
| Seey | 1%(S11 + S22) |*

(cf. Anderson, page 406, equation (8)). (The LRT for

problem (c) for the case of unequal sample sizes also
can be expressed via (7) but-requires some extra
notation.)

The reader also can easily apply (6) to obtain the
MLE for X under the symmetry models Sg, j =
1,..., 4, introduced above.

By using the standard theory of group representa-
tions, Andersson (1975) obtained the following char-
acterization of group symmetry covariance models. A
family S of p X p pd covariance matrices is a group
symmetry model if and only if there exist positive
integers t, p1, ..., D¢y 71, --., 1: and a fixed p X p
orthogonal matrix I' such that I'ST" consists of all

block diagonal covariance matrices = of the form

Z=diag(Zy, ..., 25 - 5.2 00, Z0)
—— ———r

r B r:

where Z;is p; X p;, 2§ p;r; = p, and each Z; ranges over
all p; X p; pd real covariance matrices of real, complex
or quaternion structure. (Z is of real structure if it is
a real symmetric matrix; Z is of complex structure if
it is of the form (2); see Andersson (1975) for the
definition of quaternion structure.) From this result,
Andersson, Brgns and Jensen (unpublished) have
shown that the general problem (5) of testing one
group symmetry model against another may be decom-
posed into a finite product of problems of ten basic
types (each with possible multiplicity). These ten
problems are (1, 2, 3) testing independence of sets of
variates in the real, complex and quaternion multivar-
iate normal distributions; (4, 5, 6) testing equality of
covariance matrices in the real, complex and quater-
nion cases; (7) testing for the reality of a p-dimen-
sional complex normal distribution; (8) testing that a
2p-dimensional real normal distribution has a p-di-
mensional complex structure; (9-10) the same as 7-8
with “real” and “complex” replaced by “complex” and
“quaternion.”

Problems 1-6 are relatively well-known, although
problems 7 and 8 are nonstandard and first were
treated individually by Khatri (1965) and Andersson
(1978), respectively. They obtained explicit represen-
tations of the maximal invariant statistics (under
appropriate transformation groups) as roots of deter-
minantal equations involving the sample covariance
matrix, together with their null (central) distributions.
This in turn yields the central distributions of the
LRT statistics. Recently Andersson, Brgns and Jen-
sen (1983) developed a unified approach which simul-
taneously yields these results for all ten basic prob-
lems. The first results for problems 7 and 8 concerning
noncentral distributions, which are needed for deci-
sion-theoretic results concerning the power functions
of tests (e.g., admissibility), were obtained by Anders-
son and Perlman (1984).

Lest the reader be left with the impression that
group symmetry covariance models lie exclusively
within the realm of hypothesis testing and invariance,
I also point to a Bayesian analysis of these models in
a recent paper by Consonni and Dawid (1985).

An interesting characterization of a class of covari-
ance models slightly larger than the class of symmetry
models recently has been obtained by Jensen (1988).

Finally, it should be noted that the general theory
of Andersson, Brgns and Jensen (unpublished) is not
confined to group symmetry covariance models alone,
but also treats models under which related structure
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is imposed simultaneously on the mean vectors. Such
models include both the classical multivariate linear
regression (= MANOVA) model and extensions
wherein the covariance structure is assumed to satisfy
additional symmetry conditions.

CONCLUDING REMARKS

Although my comments have been confined to clas-
sical multivariate analysis (i.e., the multivariate nor-
mal distribution and linear models), their implications
are equally relevant to the broader spectrum of mul-
tivariate analysis so capably surveyed by Mark Scher-
vish (indeed, to the entire field of statistical theory).
The recent explosion of new statistical models and
techniques (e.g., nonparametric, nonlinear, graph-
theoretical) in multivariate analysis presents an
important opportunity, in fact, an obligation, for
multivariate theorists to determine the statistically
and mathematically meaningful classes of such models.
I stress “mathematically” meaningful in order to em-
phasize that recognition of the precise mathematical
structure (e.g., the group symmetry of covariance
models) of a class of statistical models is essential for
an accurate characterization and unified analysis of
the class. Conversely, this approach might lead to the
recognition that a proposed class of models is not
formulated in a mathematically precise way, which in
turn might suggest an alternative class with more
desirable properties.

Another example of an important and successful
application of this approach is the characterization
and analysis of orthogonal analysis of variance and
variance component designs in terms of their under-
lying lattice structure. A good survey of this subject
may be found in Tjur (1984), the accompanying dis-
cussions by Bailey, Speed and Wynn, and the refer-
ences, in particular Jensen (1979). The forthcoming
paper by Andersson (1987) concerning more general
orthogonal designs of linear models presents a defin-
itive treatment of the lattice-theoretic formulation of
such schemes.

The characterizations of covariance models as group
symmetry models and of orthogonal ANOVA designs
as lattice-ordered designs demonstrate the benefits of
precise mathematical formulations of multivariate

models. Our knowledge of many other branches of
multivariate analysis, such as factor analysis, path
analysis and econometric models, will be substantially
enhanced by this approach. As Schervish points out
in Section 10.1, for example, graph theory is playing
an increasingly important role in path analysis. Such
developments are very welcome and should be pursued
vigorously.
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