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optimal. However, subsequent experiments would not
in general be optimal either when considered in iso-
lation or when considered in the light of the infor-
mation from the preceding experiments.

In case (b) let D, denote the dispersion matrix of
the @’s in the kth experiment conditional on the data
of all the experiments. The overall design criterion is
therefore to minimize (for K experiments):

K
tr Dk.

k=1
First, imagine fixing the amount of control per block
in each experiment and consider optimization with
respect to allocation of the noncontrol treatments. It
follows that, in view of the form of the prior distribu-
tion, Theorem 7.1 applies to each experiment sepa-
rately and hence the exchangeable allocation of
noncontrol treatments is optimal in each experiment.
Let x,. denote the ‘¢’ of Theorem 7.1 in the kth
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We wish to thank the discussants for their re-
sponses. They have greatly enhanced the article by
their thoughtful comments and intriguing questions.
Some historical color has been added as well as some
new references. We shall briefly address some of the
issues which have been raised.

1. CHOICE OF CRITERIA

Several discussants, Bechhofer and Tamhane, Notz,
Spurrier and Giovagnoli and Verdinelli have raised
the question as to what is the most appropriate opti-
mality criterion to use for the problem being consid-
ered here. The alternative criteria suggested can be
readily divided into two categories. Bechhofer and
Tamhane, Notz and Spurrier suggest that usage of
criteria that select designs that maximize the confi-
dence coefficient or that in some sense minimize the
size of certain simultaneous confidence regions that
can be computed for the (t; — t,)’s. Giovagnoli and
Verdinelli considered some other criteria for point
estimates. Before looking at these alternative sugges-
tions, let us recall the optimality criteria we used.

We have followed the classical approach of Kiefer.
It is a semiparametric approach, in which we only
insist on structures for the first and the second mo-
ments of the random variables involved. As for the
first moment, we insist on a linear model, and as for
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experiment and D, (x:) the value D, takes with this
optimal design so tr D, (x;) is now its preposterior risk.
Hence the overall design problem reduces to

K
min Y trD.(X:).
X1, Xg k=1
This criterion would use less control in each experi-
ment than would be optimal in that experiment when
considered in isolation.

Note that if the experiments are performed sequen-
tially in time in either case (a) or case (b), then in
order to use all the currently available information
each experiment needs to be reanalyzed after each
subsequent experiment is performed. Observe too that,
in either case, missing blocks in some experiments are
permitted.

Finally I congratulate the authors on providing a
key reference in this important and active research
area.

the second moment we assume homoscedasticity. We
had in mind for the process of selecting a best design
the goal of estimating the (¢; — £)’s with as much
precision as possible in the sense of having small
variances for the (# — t,)’s. Two of the standard
criteria used to accomplish this goal are to select
designs that minimize Y-, var(fi - fo) or minimize
the maximal variance of the (fi — t)’s. These criteria
are called the A- and the MV-optimality criteria,
respectively, and are the criteria upon which we
concentrated. So, with only the assumption of a
homoscedastic linear model, we are able to control
the size of the second moments of the (£ — £,)’s in

-a simple yet meaningful way.

A reservation expressed by Bechhofer and Tamhane
and Giovagnoli and Verdinelli concerning usage of the
A- and MV-optimality criteria is that these criteria do
not take into account the correlations that generally
exist between the (fi — £)’s. However, we note that
the A- and MV-optimality criteria are closely related
in the sense that they will usually select the same
design or at least designs that are combinatorially
close in structure as being optimal with the MV-
optimal designs typically being simpler to identify. It
should also be noted that under a given design d, if we
let V, denote thg covariance matrix of the (£ — &o)’s,
then Y, var(f; — &) is equal to the sum of the
eigenvalues of V,. Clearly, these eigenvalues and their
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associated eigenvectors in general take into account
most features of the design including the variance and
the covariances of the (¢; — to)’s. Thus it seems that,
through the spectra of the covariance matrices V;, of
the various competing designs, the A-optimality cri-
terion does in fact indiregtly 1A;ake into account the
correlations between the (¢; — t,)’s. We now consider
the alternative criteria for selecting a best design
suggested by some of the discussants.

1.1 Rectangular Confidence Regions

The criteria of maximizing the joint confidence
coefficient (suggested by Bechhofer and Tamhane) or
of minimizing the sum of the lengths for simultaneous
confidence intervals (suggested by Spurrier) are par-
ametric approaches for selecting an optimal design.
These approaches require not only the assumptions
stated above for the A- and MV-optimality criteria,
but also require an extra assumption concerning the
form of the distribution of the random variables in-
volved. The most commonly made distributional as-
sumption in these approaches is that of normality. Of
course, one can use a parametric criterion for selecting
an optimal design if one is willing to be burdened with
the extra distributional assumption. However, we feel
that in most situations, it is better to be able to
prescribe highly efficient designs based on as few
assumptions as possible.

We also feel, along with Spurrier, that A-optimal
designs will perform fairly well with respect to simul-
taneous interval criteria, such as described above. The
reason for this being that the formula for any set of
simultaneous confidence intervals for the (¢; — &)’s
will almost certainly involve in a critical way the
standard errors of the (£, — £,)’s. Thus any design
which yields a set of simultaneous confidence intervals
having a maximal confidence coefficient or which are
optimally “narrow” in some sense will also invariably
yield small standard errors for the ({; — ¢,)’s which
are exactly or at least approximately optimal under
the A- or MV-optimality criteria. Nevertheless, it is
unfortunate that not much is known about optimal
designs for simultaneous confidence intervals. As Notz
" and Spurrier point out, the main reason is the tech-
nical difficulties which are associated with the prob-
lem. Clearly, there is a need for more research in this
area. Hochberg and Tamhane (1987) is an excellent
book in this area, which would be very useful to
researchers.

Although the A- and MV-optimality criteria select
designs that give us “the most precise” estimates of
the (t; — to)’s, these criteria do not provide a specific
means for answering such questions as to how to rank
the test treatments as compared to the control if one
has to. There is, unfortunately, no mention of such

problems anywhere in the published literature on op-
timal design theory. We wonder what Jack Kiefer
would have done. One approach to this problem, albeit
an ad hoc solution, which appeals to us involves the
gompptation of a coefficient of variation (CV) for each
t; — to. Suppose that t;’s bigger than ¢, are considered
to be better than ¢,. Then any test treatment which
corresponds to a negative CV would be out of compe-
tition. Those test treatments having a positive CV
have some merit for further consideration. Clearly the
£, — £, with the smallest positive CV is the winner.
Now, whether to replace the control with the winner
is another question that often arises. We feel that
other considerations such as overall improvement,
replacement cost, etc. should play a primary role in
answering this question and in many cases, this ques-
tion is best answered by the experimenter rather than
the statistician.

1.2 Ellipsoidal Criterion

Let us now turn to another question: Why not
consider some other criterion from optimal design
theory like D- or E-optimality? Our rationale was
simple. A-optimality and MV-optimality both possess
simple and statistically meaningful interpretations
which never made us feel the need for any other
criterion. We would welcome examination of other
criteria which are statistically meaningful in the con-
text of comparing test treatments with a control. (A
description of many popular and standard optimality
criteria is given in Hedayat (1981).) Most well-known
criteria do not meet this requirement. For example,
BIB designs are D-optimal for comparing test treat-
ments with a control and a D-optimal design mini-
mizes the volume of a confidence ellipsoid for the
(t; — to)’s. Thus the D-optimality criterion treats
all contrasts t; — t;, i # j, the same with regard to
selecting a best design and does not emphasize in any
discernible way the contrasts ¢; — t, which are for the
problem of comparing test treatments with a control
usually considered to be of primary importance.
Hence, the D-optimality criterion does not seem to be
very statistically meaningful, even though it does
“minimize” the variance-covariance matrix of the
(& — to)’s in some sense. The E-optimality criterion
also seems to suffer from a lack of a natural (in this
context) statistical interpretation, because it mini-
mizes the maximum variance of the estimators of all
normalized linear combinations of the (¢; — &)’s. It is
hard to imagine when arbitrary linear combinations
of the (t; — ¢,)’s would be of interest. Of course, if the
experimenter insists, one can still use the D- or E-
optimality criteria for selecting an optimal design.

Giovagnoli and Verdinelli propose the J-crite-
rion. This criterion selects designs that minimize
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var(}Y i, fi/v - fo) over all designs d. The contrast
v, t/v — t, is the average of the contrasts
t, — to, - -+, t, — to. But exactly what does this average
tell us? In experiments where two sets of treatments
{1, -+, u} and {u + 1, ---, u + w} are compared,
Majumdar (1986) briefly mentioned the criterion:
minimize var(3L, ti/u — Y%, t.+./w) as a possible
means of comparing the two groups of treatments,
each taken as a whole. This type of a criterion would
make sense in some agricultural experiments where
the choice is to use one or the other set of treatments.
For example, there can be situations where the user
wants to use several varieties simultaneously to guard
against the susceptibility of different varieties to dif-
ferent diseases. So, this criterion is relevant when
u — w is close to zero. Indeed, if u = w, the criterion
measures the difference in aggregate yields between
the two competing ‘packages’ of treatments. We won-
der if this explanation can be extended to situations
where u = 1 and w is somewhat larger.

We believe that in any experiment, the optimality
criterion that should be used to select a best design is
the one most pertinent to the goals of the experiment.
This criterion should have a natural and meaningful
statistical interpretation and be computationally fea-
sible. If some other approach such as those suggested
by the discussants satisfies these conditions, then one
should use it. However, in most experimental situa-
tions where test treatments are to be compared to a
control and where little prior information is available,
we recommend usage of the A- or MV-optimality
criteria for selecting a best design. The basis for our
recommendation is fivefold:

(1) A- and MV-optimality have clear and natural
statistical interpretations.

(2) Very few distributional assumptions are needed.

(3) They are in most cases computationally feasible
criteria.

(4) Except for (v, b, k), these criteria do not depend
on any additional parameters, like the simulta-
neous confidence level (see Spurrier’s com-
ments).

(5) A- and MV-optimal designs tend to be optimal
or at least highly efficient under other non-

- Bayesian criteria such as those suggested by the
discussants.

1.3 Bayesian Methods

Several of the discussants mention Bayesian meth-
ods and in Section 7 of our article we indicate some
of the known results concerning Bayesian approaches
to the problem of comparing test treatments with a
control. Situations can easily be envisioned where a
Bayesian approach might be applicable to the problem
being considered here because often times there is

information available before an experiment begins
with regard to the control or perhaps even the test
treatments. We feel that prior information should of
course be incorporated into the design of an experi-
ment. However, just how this information should be
incorporated into the experimental design is usually
not an easily answered question, i.e., it may be some-
what difficult to quantify this information in the form
of a prior density on the parameters being estimated.
We feel that any assumption made concerning a prior
distribution on the parameters must be justifiable in
terms of the information available and not be based
primarily on mathematical tractability. One place
where prior information might be particularly useful
is in the determination of sample size. If one has prior
information concerning the variability of the control
or the test treatments, then one can use this infor-
mation to optimally allocate experimental units to
treatments. For example, Spurrier says that one needs
to observe the control more often than the test treat-
ments. Although this statement is often true, there
are situations, such as when prior information indi-
cates that observations on the control are much less
variable than those on the test treatments, that may
allow the experimenter to replicate the control less
often than the test treatments and still achieve some
specified level of precision.

1.4 Robustness over Criteria

Notz has raised the question of robustness of A-
optimal designs under changes of optimality criteria.
This is a useful line of research, but one that could
prove difficult, in general. From the experimenter’s
point of view, although robustness over criteria is
important, robustness over models probably gets prec-
edence. The experimenter may go with any one single
sensible criterion, more easily than a single model. He
would rather have the choice of several main dishes
and a single dessert, than a single main dish and
several desserts. Let us direct our research efforts on
the main dishes first—let us give the experimenter
‘model robust designs. As Owen puts it in a different
context: “experimenters readily accept that effort
should be concentrated where uncertainty is the great-
est.” A start has been made in Hedayat and Majumdar
(1988), but much more work needs to be done.

2. THE ADMISSIBILITY CRITERION OF
BECHHOFER AND TAMHANE

Bechhofer and Tamhane make a very keen obser-
vation. Some designs in Table 3 of Hedayat and Ma-
jumdar (1984) are not admissible according to the
criterion of simultaneous confidence intervals. Notz,
on the other hand, claims that A-optimal BTIB de-
signs are admissible. (This result is not explicitly
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stated in Majumdar and Notz (1983), but we believe
it is true.) This apparent contradiction is the result of
the fact that Table 3 of Hedayat and Majumdar (1984)
does not give BTIB designs that are A-optimal among
all designs having parameters v, b and k&, but rather
gives designs that are A-optimal in the subset of BTIB
designs having parameters v, b and k. Notz on the
other hand is referring to BTIB designs which are A-
optimal among all designs. Hindsight tells us that a
better title for Table 3 of Hedayat and Majumdar
(1984) would have been “A catalog of designs A-best
among BTIB designs. . ..”

In Hedayat and Majumdar (1984), we gave Table 3
in the spirit of probing the merits of designs which
were optimal among a subset of all designs, in the
hope of getting approximately optimal designs for
classes where the optimal designs are as yet unknown.
We were exploring the method, but not recommending
its indiscriminate use. Even though these designs usu-
ally seemed to work very well, this was not always the
case. In fact, we gave an example in D (10, 80, 2) which
is the set of all block designs with v = 10, b = 80 and
k = 2, where it is possible to find a non-BTIB design
which is at least 24% more efficient than the A-best
BTIB design.

Let us consider one of the examples given by
- Bechhofer and Tamhane. Suppose k = 2, v = 6 and
b = 30. The Majumdar and Notz (1983) method for
finding an A-optimal design does not work for this
class since the optimal (¢, s) = (0, 18), but there does
not exist a BTIB (6, 30, 2; 0, 18). The A-best design
among the available BTIB designs, given by Hedayat
and Majumdar (1984), is

d(l) = 6d0,

which is six copies of d,, where

a=(0 00000
0 1 2 3 4 5 ¢/

Bechhofer and Tamhane observe that if one uses
d(2) = 2d, U d,,

which is two copies of d, and one of d; where d; is the
BIB design in 15 blocks of size 2 each based on the
six test treatments, then d(1) is only 93.75% efficient
with respect to d(2). (If d and e are two designs, then
the efficiency of d with respect to e can be defined as
Yo, var(t, — feo)/2§’=1 var(ty, — £10).) Moreover, be-
cause d(2) is based on only 27 blocks, we can add any
3 blocks of size 2 to it to make d(1) even more
inefficient with respect to this new design. So, which
design should we use in D (6, 30, 2)? Cheng, Majumdar,
Stufken and Ture (1988) suggest two routes to find
highly efficient designs, which were outlined in Sec-
tion 5.2. The following design is “combinatorially

close” to a BTIB design with 18 replications of the
control:

d(3) = 3d0 U d2,

where

d=(t 11122223344
*"\3 456345605 65 6/

It is easy to see that, for d = d(3),
0'_2 2 Val‘(tAd,' - gdo) = 1.968.
i=1

Bechhofer and Tamhane’s proposed design d(2) is
87.5% efficient with respect to d(3), whereas the A-
best BTIB design d(1) is 82% efficient with respect to
d(3). The minimum possible value of the A-criterion
(which cannot be attained in D(6, 30, 2)), given by
equation (5.1)(i), is 1.9487. The (approximate) effi-
ciency of a design d, with respect to an A-optimal
design, may be defined to be the ratio

6
E(d) = 672 Y var(fy — £40)/1.9487.
i=1

Using this criterion, the efficiencies of the three de-
signs are

E(d(1)) = 81%, E(d(2)) =87%, E(d(3)) = 99%.

There seems to be little doubt that d(3) is the design
to be used when v = 6, b =30 and k = 2. It is not a
BTIB design, but the slight deficiency it has with
respect to “balance” is more than made up by its use
of the “optimal” value of the number of replications
of the control. A similar analysis can be done for the
other two examples of inadmissibility cited by
Bechhofer and Tamhane.

We were disappointed to see an example where the
A value of the A-best design among BTIB designs
increases when b increases, v, k remaining fixed. In-
admissibility of some A-best BTIB designs, according
to the criterion of simultaneous confidence intervals,
is unfortunate also. These observations do not reflect
on the A- or the MV-optimality criteria because these
types of situations do not arise for designs that are
A- or MV-optimal “among all designs” with fixed
(v, b, k). The fact is that in cases such as cited by
Bechhofer and Tamhane, if a design which is A-best
among BTIB designs only does not perform very well
when compared with the (unrestricted) A-optimal de-
signs in their classes, then the same design will also
perform poorly according to the criterion of simulta-
neous confidence intervals. In these classes, we need
to look for efficient designs which are not BTIB
designs.

A lesson to be learned from these observations is
that we have to be very careful when optimizing over
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only a subset of all designs, like BTIB designs, no
matter how natural they may look for the problem at
hand. Due to the discreteness of the problem, we might
be leaving out highly efficient designs which are
slightly unbalanced. This was illustrated by the ex-
ample we saw a little earlier. These observations also
indicate a strong need to study classes of non-BTIB
designs, like GDTD’s, more carefully. GDTD’s include
BTIB designs as a special case. Therefore, the best
GDTD is more likely to be the best design, or at least
very highly efficient, among all designs. This is sup-
ported by the tables given in Jacroux (1987b). It would
also be worthwhile to study other types of unbalanced
designs. Nevertheless, we continue to believe that
examples of classes where A-best BTIB designs per-
form poorly are relatively isolated, especially when &
is not too small compared to v. Our belief is strength-
ened by the results of Stufken (1988). We hope that
more research will be done to examine this and to
clearly identify classes where BTIB designs are/are
not highly efficient.

3. OTHER ISSUES

Owen has given us an interesting account of how to
design a sequence of experiments. We agree with him
that a good consulting statistician should take advan-
tage of the sequential nature of an experiment when

suggesting a design. More research needs to be done’

in this area.

Owen’s other point, also raised by Bechhofer and
Tamhane, concerns the unequal importance of several
controls in an experiment. Because it is difficult to
arrive at a single asymmetric criterion which applies
to most experiments of this nature, these problems
perhaps are best solved on a case by case basis. The
statistician has to work closely with the experimenter
to develop a meaningful criterion. He has to be aware
that not all demands may be compatible. Clearly, the
efficient designs are going to be asymmetric in nature.
We hope that tools such as the ones provided in our
paper will be useful to such investigators.

The statements Sy, S; and S, of Giovagnoli and
Verdinelli nicely explain the role of symmetry of the
optimal BTIB designs. In practice, it is unfortunate,
however, that for a great majority of values of the
design parameters (v, b, k), the best BTIB design may

not be the best design, and, as we have noted earlier,
can sometimes even be very inefficient with respect to
the optimal design. The next natural class is that of
GDTD'’s. But, as Giovagnoli and Verdinelli note, these
designs have not been very well studied as yet. Clearly
there is a need for future research to investigate “nice”
asymmetric structures. Spurrier observes that an “op-
timal design under one criterion is generally close to
optimal under other criteria.” This is, as noted earlier,
compatible with our own experience. It would be in-
teresting to see what the nonparametric optimal de-
signs are. His three reasons for the lack of popularity
of the simultaneous confidence interval approach are
probably correct.

We thank Notz for adding the historical color.
Bechhofer and Tamhane, Notz, Giovagnoli and
Verdinelli, Spurrier and Owen have all given some
excellent suggestions for future research. As for re-
search on the two-way elimination of heterogeneity
model proposed by Bechhofer and Tamhane, we would
like to mention the article by Ting and Notz (1987a).
Here the authors have generalized the concept of
BTIB designs to two-way heterogeneity models. They
have also obtained optimal designs. Our own on going
research indicates that the theory of F-squares can be
used to construct optimal designs for the two-way
elimination of heterogeneity model. Some examples of
optimal designs given in Notz (1985), Ting and Notz
(1987a) and Hedayat and Majumdar (1988) are of this
type.

Notz inquired about exact Bayes designs using prior
knowledge on the control. Recently, some results on
this problem have been obtained by Majumdar (1988).

In conclusion, we would once again like to thank
the discussants for their stimulating comments. We
also thank the Executive Editor, Morris H. DeGroot,
for inviting such an excellent panel of discussants.
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