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class include the UMVUE (S2/I(J — 1)) and the

(st siess
MLE(“““(I(J—D’ 7 »

KMZ use a version of Stein’s method to show that the
MLE dominates.the UMVUE. The authors go on to
show, again using Stein’s method, that any equivariant
estimator of o2 which is greater than the sum of
squares of all observations divided by IJ + 2 (i.e.,
[IJY? + 82 + SZ)/(IJ + 2)) with positive probability,
is inadmissible. This last result implies that there is
additional information about ¢2 in the overall mean
Y even though the variance of Y is a multiple of
2 + Jo2 and not of ¢2.

Estimation of ¢2, of course, involves the additional

wrinkle that the

1 S2 S2
V = a — a
oevoe a(3{%; - 75)
is negative with positive probability. KMZ use Stein’s
method to investigate dominance relations among

several estimators and show that the overall mean
can sometimes be used to construct improvements.

Rejoinder

Jon M. Maatta and George Casella

To begin, we thank all discussants for their kind
remarks and stimulating comments. This project was
started to enhance our understanding of the topic, but
also helped to improve our knowledge and perspective.
As mentioned by several discussants, the scope of our
work was limited. This work was an intentional deci-
sion, because our relatively narrow focus presented a
reasonable size task, and allowed us a fuller under-

standing of one part of this complicated subject. Many-

of the discussants had similar concerns, and we will
structure our rejoinder to respond to the major topics
mentioned.

PRACTICAL CONSIDERATIONS

Though somewhat surprising to us, much concern
was expressed over the magnitude of possible improve-
ment. A major point was that the possible improve-
ments in variance estimation seem small when
compared to those possible in the estimation of means.
This is true, but we feel that the improvement here is
still worthy of consideration.

Berger expresses concerns about this and, in his
inimitable way, anticipates some of our rejoinder.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

J. M. MAATTA AND G. CASELLA

Portnoy (1971) and others have constructed Bayes
equivariant estimators with good sampling properties.
Loh (1986) has studied the problem of estimating
o%/62 using similar methods.

In this setup, since there is only one degree of
freedom for the grand mean, the likely improvement
is small (once one has selected a good equivariant
estimator). It is possible that larger gains could occur
in higher way mixed models where several degrees of
freedom are available for the mean vector.

Presumably extensions of Brown’s and Zidek’s
methods can be applied in these models and improved
confidence intervals can be constructed as well.
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While the magnitude of improvement is small (as
demonstrated by other discussants), it does increase
in the generalized linear model case, which we do not
consider “less realistic,” but useful in practice. Very
interesting calculations are provided by both Hwang
and Rukhin, showing the limiting amount of improve-
ment possible, approximately 25% in practical cases.
Rather than interpreting these findings in the pessi-
mistic way of Professor Hwang, however, we find more
hope for future improvements (although we certainly
agree that greater improvement seems possible in the
estimation of means).

Some of our optimism is supported, and Hwang’s
pessimism negated, by the comments of George and
Strawderman. They suggest that we have not yet fully
exploited the structure of the problem. The risk (or
interval length) improvement in variance estimation
obtains when the means are close to the point to
which we are shrinking. George and Strawderman
each point out ways to shrink toward subspaces, and,
further, George suggests that we can shrink toward
multiple subspaces. Such estimators may provide sub-
stantial practical gains, since the region of improve-
ment will be expanded. Another interesting possibility

L2

Statistical Science. NINORY

Www.jstor.org



DECISION-THEORETIC VARIANCE ESTIMATION 119

pointed out by George is that of using improved vari-
ance estimators in Stein-type estimators of a mean.
Here, the lack of independence of mean and variance
estimates is challenging theoretically, and there might
be practical gains to be had. We find all of these
suggestions exciting.

All concerns over practical improvement need to be
evaluated in the light of the interesting comment of
Strawderman, on the imperfect parallel between the
mean and variance problems. Perhaps this is saying
that we are expecting too much improvement in this
one-dimensional problem, and comparisons to a mul-
tidimensional problem are somehow unfair.

LOSS FUNCTIONS

As in any decision-theory problem, the loss function
is of great concern, and in the variance estimation
problem we have great sensitivity of the solution to
the loss function. In particular, quadratic loss has
come under attack since Stein’s 1964 paper, and
Brown shows us quite convincingly that this loss is
inappropriate. We agree that a more appropriate loss
is Stein’s loss (Brown’s equation 1) and, as Rukhin
points out, greater improvements (than those under
squared error) are possible. We are also fascinated
with the (formal) reasoning of Rukhin and the (intu-
itive) reasoning of Brown that both lead to the con-
clusion that the “usual” estimator of variance is too
big. Bravo.

CONFIDENCE INTERVALS

There is less debate about loss functions in interval
(or set) estimation than in point estimation, and we
have been relatively happy with the loss functions
described by Cohen. Cohen’s table, showing the rela-
tionship between admissibility of both point and
interval estimators under various losses, is very inter-
esting. The table shows almost a complete dichot-
omy between “testing-type” losses, which use false-
coverage probability, and “estimation-type” losses,
~which use length or distance measures. This should
lead us to rethink our criteria for these estimation
problems, and to realize that testing and estimation
are very different procedures. In particular, we could
be interested in estimating confidence in the set esti-
mation problem, and a “testing-type” loss would be
inappropriate.

Even though loss functions tend to move to the
background in interval estimation problems, their
consideration is still important. The importance of
considering a criterion like false coverage is demon-
strated by Brown. (The example given by Brown is
discussed in detail by Madansky, 1962, as a response
to the work of Pratt, 1961.) The intervals of Goutis,

which are constructed starting from the minimum-
length interval, can also be constructed from the
shortest-unbiased interval.

THE ROLE OF INVARIANCE

The comments of MacGibbon and Shorrock, suggest
some interesting questions. Invariance does result in
a computational reduction so, for example, it can help
in complicated problems like estimation of covariance
matrices or generalized variances. Invariance is also
exploited by Rukhin, who shows some interesting
representations of Bayes estimators starting from in-
variant priors. He also describes a fascinating connec-
tion to the problem of estimating a positive mean, a
problem dating back at least to Katz (1961).

Yet the role of invariance seems to be only a means
to an end, giving us a defined structure within which
to work. It is unclear where a search for improved
estimators that totally ignore invariance considera-
tions would lead. Furthermore, the gains from such
estimators are not likely to be great, given the results
of Proskin (1985). Brown’s conjecture, that Proskin’s
admissibility results for point estimation can be ex-
tended to the invariant intervals of Shorrock and
Goutis, is probably correct. That is, we believe that
these intervals are admissible within the class of all
intervals. The proof is quite difficult.

CONDITIONAL INFERENCE

Checking conditional properties of improved esti-
mators is of supreme importance. Using such powerful
tools as the Stein effect, and the Brewster-Zidek
construction, constructing improved estimators is
almost too easy. Conditional concerns help to keep
these improvements “honest.”

Our conditional beliefs are somewhere between
those of Berger and Brown. We believe that negative
bias is bad (that is, overstatement of actual confi-
dence), and are in strong agreement with Brown’s
observations about the nature of the conditioning set.
More precisely, we are quite concerned with proce-
dures that allow “obvious” negatively biased condi-
tioning sets (a sentiment expressed in Casella (1988),
and labeled as “crucial” by Brown). With respect to
positive bias (understatement of confidence), we are
concerned with it, but not so much as Berger.

We are most happy with an interval estimator like
(I, v.(X, S?)) (see the discussion surrounding equa-
tion (4.15)). Such an estimator has good conditional
properties, being free from major conditional defects
(both positive and negative bias). Whether it is fre-
quency valid, as defined by Berger (1988), is of less
concern to us, since the conditional behavior is quite
good. In fact, the concept of frequency validity, which
requires the reported confidence to be below the actual
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confidence, can lead to interval estimators that are
positively biased.

We disagree with Berger about the value of the
betting interpretation of confidence intervals. The
concept of confidence (whether frequentist or Baye-
sian) can be quite elusive. When it is illustrated by
betting, in tellirig an experimenter that it would cost
$95 if wrong and $5 if right, the elusive concept of
confidence is put on a common and understandable
scale.

The estimated confidence approach discussed by
Brown, attributed to Kiefer and Robinson, and also
promoted by Berger, is very exciting. It represents a
way to report confidence that should be acceptable to
a frequentist and a conditionalist. The confidence
procedures (I,, v.(X, S2)) or (Isy, ysu(S?)) are both
examples of such procedures.

OTHER ESTIMATION PROBLEMS

As previously mentioned, the scope of the paper was
intentionally limited to review the estimation of one

normal variance. Some related problems not covered
in our review, and mentioned by several discussants
are: estimation of covariance matrices, estimation of
components of variance, and estimation of quantiles.
These topics are all important, and were only excluded
so that our review could be finished in finite time!

The variance component problem, in particular, has
had little decision theoretic treatment. The comments
of Strawderman, suggesting that practical improve-
ments may be possible, are very interesting.
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