DECISION-THEORETIC VARIANCE ESTIMATION

that depends only on U is U/(n + 1). Considering
estimators of the form U¥(V/U), and using tech-
niques analogous to those of Stein (1964), Pal and
Sinha (1989) showed that the choice

[ 1 1 v
<m0 1 (1Y)

produces an estimator that dominates U/(n + 1).
For the same loss function, and using techniques
analogous to those of Brewster and Zidek (1974),
we can find a smooth estimator of A™* (MacGibbon
and Shorrock, 1989). Because of the scale invariance
of the problem, the distribution of V/U is independent
of A and this appears to be the only place in the
argument where invariance plays a role.

Comment

Andrew L. Rukhin

Maatta and Casella start their interesting paper
with an analogy between the estimation of a multivar-
iate normal mean and that of a normal variance.
Indeed, in both of these problems a surprising inad-
missibility phenomenon of a traditional and intui-
tively reasonable estimator has been discovered.
However, each of these problems has distinctive fea-
tures, and I would like to start by discussing two of
them and then to comment on the asymptotic variance
estimator and the variational form of Bayes esti-
mators. -

1. THE PROBLEM OF ESTIMATING A
MULTIVARIATE NORMAL MEAN IS EASIER
IN A SENSE

Let X have multivariate normal distribution

Ni(u, 02I) and let S? be a statistic which is independ- -

ent of X and such that S%/0® has a chi-squared distri-
bution with v degrees of freedom. This setting arises
in a classical linear model where X represents the
least squares estimator, and S?, the residual sum of
squares.

If u is to be estimated under, say, quadratic loss,
then one can demonstrate the inadmissibility of X for
k = 3 using Stein’s by now popular technique of
integrating by parts. Indeed, if 6(X, S) is a smooth
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estimator, then one can obtain an unbiased estimator
D;(X, S) of the risk difference

Alp, 0) = [E[| X = u]” — E[8(X, S) = pl*]o,
ie.,
ED«S(X9 S) = A(#’ 6)-

It is also possible to choose & so that D; = 0, and
hence this estimator, 8, improves on X.

In the problem of variance estimation, one can
derive unbiased estimates of the risk difference for
quadratic loss for the best equivariant estimator
S2%/(v + 2). However, there is no alternative estimator
for which this estimate is nonnegative. Conditioning
on || X||/S or representing the noncentral t-distri-
bution, that of this statistic, as a Poisson mixture of
central ¢-distributions is crucial for the inadmissibility
proof. Notice that to estimate the risk difference
Strawderman (1974) had used the so-called Baranchik
lemma, which implies the nonnegativity of the ex-
pected value of a product of one monotone and one
which changes signs.

2. RELATIVE RISK REDUCTIONS OF VARIANCE
ESTIMATORS ARE SMALLER THAN FOR MEAN
ESTIMATORS

It is known that in our setup for the crude James-
Stein estimator
w—sz]

X, S)=[1' ”+ DI XI?

£
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the relative risk reduction A(u, ¢)/E|| X — u||2 tends
to 1 as k > o when p = 0, i.e., percentage risk
reduction achieved by this estimator approaches
100%. As pointed out by Maatta and Casella in the
end of Section 2, the univariate (k = 1) problem of
estimating a normal variance for quadratic loss does
not yield a substantial risk reduction. In the multivar-
iate case this situation changes.
Let

¥(X, S)
= S%(y + 2)7[1 — @(S[[| X || + S?V2)]

be a scale-equivariant estimator of o¢% For the
Brewster-Zidek estimator

P) = Ppz(v) = v’ — V)2 + k + 2)7!

1 —1
. I:f tv+1(1 _ t2)(k—2)/2 dt]

and for the original Stein estimator

() =9Y,(v) =max[0,1— (v +2)(v+k+2)"v72).

1

A study of the risks of these estimators has been
done by Rukhin and Ananda (1989). They showed
that for any dimension k the quadratic risk of the
Brewster-Zidek estimator at u = 0 coincides with that
of S%/(v + 2). This is a surprising fact since the
generalized prior density which gives rise to the
Brewster-Zidek procedure has the maximum at u = 0.
Thus the traditional interpretation of prior distri-
bution as a weight function reflecting the relative
importance of different parametric values does not
hold for improper priors.

Incidentally, for this reason the minimaxity of the
Brewster-Zidek estimator cannot be deduced directly
from Strawderman’s theorem (1974). However, its
slight modification can deliver the fact that the
Brewster-Zidek procedure is better than S2/(v + 2).

It can be shown that the result quoted above holds
for any smooth unimodal loss W (y/s2), i.e., the cor-

responding risk of the Brewster-Zidek estimator at:

u = 0 coincides with that of the best equivariant
estimator (which is proportional to S2%).

. It is also demonstrated in Rukhin and Ananda
(1989) that the Brewster-Zidek estimator provides
increasingly larger percentage reductions in average
loss (PRIAL in terminology of Lin and Perlman, 1985)
as k increases. For instance, if v = 10 the relative risk
improvement is 10.7% for k = 9 and 13.4% for k = 15.
However, the norm of the vector u where this maxi-
mum occurs, rescaled by o2 is also increasing (at a
rate of k'/2). Since the specification of the origin (or
the point toward which shrinkage occurs) is needed
for an efficient use of improved estimators (cf. Berger,

1982), the Brewster-Zidek estimator is not very easily
implemented in practice for large k.

One can criticize the use of the quadratic loss func-
tion in variance estimation because it more heavily
penalizes overestimation. For this reason entropy loss

Wkt)=t—1—1logt

is often suggested. For this loss function the best
equivariant estimator is the classical unbiased esti-
mator S%/». It is also inadmissible. Numerical results
in Rukhin and Ananda (1989) show that its inadmis-
sibility is even more pronounced than for quadratic
loss, i.e., the relative risk improvement for the corre-
sponding Brewster-Zidek estimator is larger.

3. ASYMPTOTICALLY THE PROBLEM OF
ESTIMATING THE VARIANCE REDUCES TO
THAT OF ESTIMATING A POSITIVE NORMAL

MEAN

To explain the behavior of the risk of the Brewster—
Zidek estimator, let us look at the version of variance
estimation problem for a smooth unimodal loss func-
tion W(y/o2). Assume that &k — o, y — o and

Q02 = 222)k7V?) > 212 (2).

This limiting behavior is suggested by the asymptotic
theory of generalized Bayes estimators, in particular
of the Brewster-Zidek estimator. It can be shown
that if

lull2oc™? ~ 2Y2Rp~Y2%9, 9 =0,
then

EW (cyS%/a?) — EW(coS%(1 — ¥)/a?)
EW (coS?/a?)

—E(Z -0 —-EZ+f(Z)—0)>

Here c,S? is the best equivariant estimator under
W, and the random variable Z is normal with nonneg-
ative mean # and unit variance. Thus asymptotically
the variance estimation of problem reduces to the
estimation of a positive normal mean. The Brewster-
Zidek estimator corresponds to the generalized Bayes
estimator with respect to Lebesgue measure on the
positive half-line, so that

f(z) = fez(2) = exp(—2°/2) / J: exp(—t?/2) dt.
The Stein estimator transforms into the maximum
likelihood estimator,

f(z) = f,(2) = max(—z, 0).

Both of these estimators are minimax, i.e., their risk
functions are bounded from above by 1. The risk of
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Z + fpz(Z) is a unimodal function which takes a
(minimax) value of 1 at § = 0 and § = o, and whose
minimum, .584, is attained at 6 = 1.08. The risk of the
maximum likelihood estimator has different form: it
is a monotonically increasing function which takes
value .5 at § = 0 and tends to 1 as § — oo. It is almost
paradoxical that the inadmissible maximum likelihood
estimator provides smaller minimal risk value than
the admissible generalized Bayes estimator.

A long unresolved problem posed by Herbert
Robbins is to find an explicit improvement over the
maximum likelihood estimator and to determine its
minimal risk value (which cannot exceed .5). Notice
that such an improvement cannot be a shrinkage
estimator, i.e., the function f must take both positive
and negative values. This follows from the fact that
the Stein variance estimator, as well as Z,, is locally
optimal at § = 0 in the class of shrinkage estimators
and therefore cannot be improved on within the class
(cf. Rukhin, 1987a). In view of our interpretation of
the positive mean estimation problem, it is also nat-
ural to ask for the smallest minimal risk value within
the class of all minimax estimators.

This is a fascinating problem not only because it is
so simply formulated but also because it is a version
of the asymptotic variance estimation question. In
fact, this problem arises in practice when two samples
before and after treatment are compared, and it is
known that the treatment cannot diminish the mean.
However minimal risk values considerably smaller
than .5 are very unlikely to happen for minimax
estimators.

Joshi and Rukhin (1989) consider another asymp-
totic setting involving variance estimation for an
arbitrary location-scale univariate family. In this sit-
uation, under quadratic loss the unbiased estimator is
always inadmissible, but the right multiple of it is
asymptotically admissible if and only if the kurtosis
of the underlying distribution does not exceed 2.

4. WHY BE OPTIMISTIC ABOUT THE VALUE OF
AN UNKNOWN VARIANCE?

- All known improvements over the best equivariant
estimator of variance happen to be scale-equivariant
shrinkage estimators, y, of the form (1), i.e., ¢ <
S%(v + 2)™~. In other words, one should be rather
optimistic about the value of the unknown variance,
and this is true not only for quadratic loss.

To give a heuristic motivation for shrinkage esti-
mators, let us examine the form of generalized Bayes
estimators; after all, they form a complete class for
this estimation problem. Denote by A(u, o) a smooth
prior density with respect to measure duds/s. It can
be shown (cf. Rukhin, 1987b) that the corresponding

generalized Bayes estimator 6, has the representation

(X, S)—S?/v

[ e

(2) - exp{—{I| X —p[I*+ 5%)/20%} dudo

[

- exp{—[| X—p|I*+S%)/2¢% du do,

where
62
>\ + 9 A

IA=T g Nt

It immediately follows from (2) that S%/» is a gen-
eralized Bayes estimator against the “noninformative”
prior A = 1, which of course is well known. Also it is
evident that 6, = S%/v if and only if A solves the
parabolic differential equation

D\ =0,

which is closely related to the adjoint heat equation.
Its typical solutions are of the form

o~*exp{|l ul1%/(20)}

or convolutions of these kernels with initial values
A(u, 0). Therefore, these solutions look even less like
probability densities than A = 1, and they do not admit
a good approximation by proper densities. Since such
an approximation is responsible for the admissibility
of the corresponding generalized Bayes estimator, the
inadmissibility of S?/v can be inferred from the prop-
erties of the adjoint heat operator. For the situations
when the corresponding differential operator some-
times has solutions approximable by proper densities
(see Rukhin, 1987c).
Also if

(8) A, o) = a7*A(|| el /o)

then witht = || u | /o,
DN =R\ (t) — tN(t) — RA(D)],

and integration by parts shows that

2
ff [Z\]o!~" exp{ "“"2 ; }dy do
2
= —k ff Ao~ kex, {%:—i} du do < 0,

5, (0, S) < S?/v.

ie.,
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In other terms, all Bayes estimators with respect to
priors in (3) shrink at X = 0. Observe that priors of
the form displayed in (3) lead to admissible Bayes
estimators if A has a sufficient number of moments.
In particular, in the formula of prior densities (4.10)
in Maatta and Casella, one can just as well put a = .5.

The utility of the variational representation of
Bayes estimators in (2) is not exhausted by the facts
quoted above. An easy calculation shows that if

® 2
g, o) = j; exp{—%}um'l(l + u)! du/o*

is the prior density of Brewster and Zidek, then 9 X
as a function of u is proportional to Dirac’s delta
function so that X is a fundamental solution of the
equation A = 0. This fact, which shows a special
role of Brewster-Zidek prior densities, may have sig-
nificant implications in other estimation problems.

Also, it is worth noticing that the variational form
of the Bayes risk has been used by Haff (1984) in
estimating an unknown covariance matrix. This prob-
lem is an interesting generalization of that of variance
estimation with its idiosyncratic results, and a survey
revealing, among other things, unpublished work by
Charles Stein in this area would be desirable.

One of the important applications of ideas and
techniques displayed by Maatta and Casella arises in
the theory of linear models when a covariance matrix
is represented as a combination of given matrices
with unknown weights. The estimation of these vari-
ance components has been considered from decision-
theoretical point of view in Klotz, Milton and Zacks
(1969).

Some other developments inspired by Stein’s result
can be found in Olkin and Selliah (1977) and Gelfand
and Dey (1988). Another relevant problem is the es-
timation of generalized variance (see Sinha, 1976;
Tsui, Weerahandi and Zidek, 1980).

To conclude, I would like to mention a classical
problem where a standard deviation o is to be esti-

mated and in which therefore one can expect an.

inadmissible traditional procedure. (Incidentally, ad-
missibility results for any power of ¢ are the same as
for ¢%) This is a confidence intérval estimation prob-
lem for a mean u. Even in the univariate case, the
Student confidence interval (X — aS, X + aS) prob-
ably is inadmissible under a risk function combining
the probability of coverage and the expected width of
the interval. Some inadmissibility results for other
losses are given by Brown and Sackrowitz (1984) and
in Rukhin (1988). Clearly these results are closely
related to the property of the sets {| X | < S} being
positively biased as discussed by Maatta and Casella
in Section 4. :

One ‘of the difficulties presented by this problem
and not in the earlier ones considered is that it is not

possible to restrict attention to procedures which de-
pend only on | X|. The same feature occurs in the
quantile estimation problem (Zidek, 1971) or in the
estimation of a linear function of the mean and vari-
ance (Rukhin, 1987d). In these problems, no final
results (which probably should mean admissible im-
provements) have been obtained.

ACKNOWLEDGMENTS

This work and most of the author’s research men-
tioned here were supported by National Science Foun-
dation Grant DMS-88-03259. The author is grateful
to Jim Zidek for careful reading of the original version
and many helpful remarks.

ADDITIONAL REFERENCES

BERGER, J. (1982). Selecting a minimax estimator of a multivariate
normal mean. Ann. Statist. 10 81-92.

BrowN, L. D. and SACKROWITZ, H. (1984). An alternative to
Student’s t-test for problems with indifference zones. Ann.
Statist. 12 451-469.

GELFAND, A. and DEY, D. (1988). Improved estimation of the
disturbance variance in a linear regression model. J. Econo-
metrics 39 387-395.

HAFF, L. R. (1984). Solutions of the Euler-Lagrange equations for
certain multivariate normal estimation problems. Unpublished
manuscript.

JosHI, S. R. and RUKHIN, A. L. (1989). Asymptotic estimation of
variance. Unpublished manuscript.

Krortz, J. H., MILTON, R. C. and ZAcKs, S. (1969). Mean square
efficiency of estimators of variance components. J. Amer.
Statist. Assoc. 64 1383-1402.

LiN, S. P. and PERLMAN, M. D. (1985). A Monte Carlo comparison
of four estimators of a covariance matrix. In Multivariate
Analysis VI (P. R. Krishnaiah, ed.) 411-429. North-Holland,
Amsterdam.

OLKIN, I. and SELLIAH, J. B. (1977). Estimating covariances in
a multivariate distribution. In Statistical Decision Theory and
Related Topics II (S. S. Gupta and D. S. Moore, eds.) 313-326.
Academic, New York.

RUKHIN, A. L. (1987b). Bayes estimators in log-normal regression
model. In Advances in Multivariate Statistical Analysis (A. K.
Gupta, ed.) 315-325. Kluwer, Norwell, Mass.

RUKHIN, A. L. (1987¢). Quadratic estimators of quadratic functions
of normal parameters. J. Statist. Plann. Inference 15 301-310.

RUKHIN, A. L. (1987d). Estimating a linear function of the normal
mean and variance. Sankhya Ser. A 49 72-71.

RUKHIN, A. L. (1988). Estimated loss and admissible loss esti-
mators. In Statistical Decision Theory and Related Topics IV
(S. S. Gupta and J. O. Berger, eds.) 409-420. Springer, New
York.

RUKHIN, A. L. and ANANDA, M. M. A. (1989). Risk behavior of
variance estimators in multivariate normal distributions. Tech-
nical Report, Univ. Maryland, Baltimore County.

SINHA, B. K. (1976). On improved estimators of the generalized
variance. J. Multivariate Anal. 6 617-625.

Tsui, K.-W., WEERAHANDI, S. and ZIDEK, J. V. (1980). Inadmissi-
bility of the best fully equivariant estimator of the generalized
residual variance. Ann. Statist. 8 1156-1159.

ZIDEK, J. V. (1971). Inadmissibility of a class of estimators of a
normal quantile. Ann. Math. Statist. 42 1444-1447.



