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Comment

K. Brenda MacGibbon and Glenn E. Shorrock

Professors Madtta and Casella have written an ex-
cellent account of the theory of variance estimation
using the approach originally conceived by Stein
(1964). We especially appreciate the way in which
they follow the historical development of the problem,
and their discussion of the conditional properties of
frequentist procedures gives new insight into the na-
ture of these procedures. Moreover, their presentation
is not purely expository: the prior given in (4.12) is,
we believe, new material and is clearly a necessary
step in the further derivation of the decision theoretic
properties of these intervals.

Invariance seems to play a small role in this paper,
while the original work in the field, including that of
Stein (1964) and Brewster and Zidek (1974), gave
great importance to the invariant group structure of
the problem. It’s not clear to us whether invariance is
just a way of restricting the class of possible estimators
to a more manageable subclass or whether it is essen-
tial to the problem. Our own experience in the appli-
cation of this approach to other problems has been
mixed; in some cases invariance has been crucial, in
others not.

In the estimation of the generalized variance, the
invariant structure plays an important role. This is
perhaps due to the complicated multivariate structure
of the problem. Starting with a multivariate normal
linear model in canonical form, a minimal sufficient
statistic is (X, S), where X is a normally distributed
p X k matrix with independent columns X; ~ N (¢, 2),
S is a p X p Wishart matrix with n degrees of freedom
such that ES = nX, X and S are independent, and =
is positive definite. We seek a point estimate of the
determinant | Z | of £ with the quadratic loss function

L{P(X, 8); 2, £) = | Z|*P(X, S) — 2}~

This problem is invariant under the transforma-
tions :

X—>AX+B S—ASA’,
t>At+B I —>AZA’,

where A is any nonsingular p X p matrix and B is any
p X k matrix. Estimators that are equivariant under
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this group satisfy
Y(AX + B,ASA’) = |A|?¢(X, S)

and have the form ¢(S) = ¢| S| where c is a constant.
Such estimators have constant risk (expected loss),
which is minimized by taking ¢ = (n — p + 2)!/(n +
2)! (Selliah, 1964). Thus, in this problem,

(n—p+2)!

$o(S) = o

IS1,

as an estimator of | 2|, plays a role analogous to
s?/(n + 1) as an estimator of o2

Using the ideas of Stein (1964) on variance esti-
mation, exploiting zonal polynomials, and searching
in a larger class than that of the affine equivariant
estimators, Shorrock and Zidek (1976) showed that

P(X, S)

. {(n—p+2>!
=T o)

(n+k+2-p)!
(n+k+2)!

| S|, | S+ XX’ |}>
has uniformly smaller risk than [(n — p + 2)!/(n +
2)!11S|. The estimator (X, S) is the analogue of
Stein’s estimator of o2 Shorrock and Zidek’s proof
depends heavily on invariance, as does that of Sinha
(1976), who extended their results.

A problem in which invariance seems to play a
minor role is the estimation of the parameter A of an
Inverse Gaussian distribution. The setup is as follows:
Let X;, X, +-+, X, be a random sample from an
Inverse Gaussian distribution with parameters x and
A (denoted by IG(u, A)) and density function

f (s, A) = VA/27mx® exp{

2p

A
2, (x—ﬂ)2}’ x3/~"’>\>0~

The mean of this distribution is u and the variance is
u3/\. Writing X = (1/n) ¥ Xiand U= Ty (X' —
X, it is well known that X ~ IG(u, n\), U ~
A x2_,, and X and U are independent (Tweedie,
1957). The statistic V = nA(X — 1)>/X has a x}
distribution when p = 1 (Shuster, 1968), which sug-
gests that the ratio V/U can play a similar role in this
problem to that of Z = x/ﬁX'/S in the normal problem;
there, a small value of Z indicates that p is close to 0.
In the inverse Gaussian case, a small value of V/U
indicates that u is close to 1. For the loss function
L5, A1) = (8 — \Y)% the best estimator of A~
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that depends only on U is U/(n + 1). Considering
estimators of the form U®(V/U), and using tech-
niques analogous to those of Stein (1964), Pal and
Sinha (1989) showed that the choice

1 4
e(V/U) = mln{m, I (1 + U)}

produces an estimator that dominates U/(n + 1).
For the same loss function, and using techniques
analogous to those of Brewster and Zidek (1974),
we can find a smooth estimator of A~! (MacGibbon
and Shorrock, 1989). Because of the scale invariance
of the problem, the distribution of V/U is independent
of A and this appears to be the only place in the
argument where invariance plays a role.

Comment

Andrew L. Rukhin

Maatta and Casella start their interesting paper
with an analogy between the estimation of a multivar-
iate normal mean and that of a normal variance.
Indeed, in both of these problems a surprising inad-
missibility phenomenon of a traditional and intui-
tively reasonable estimator has been discovered.
However, each of these problems has distinctive fea-
tures, and I would like to start by discussing two of
them and then to comment on the asymptotic variance
estimator and the variational form of Bayes esti-
mators. -

1. THE PROBLEM OF ESTIMATING A
MULTIVARIATE NORMAL MEAN IS EASIER
IN A SENSE

Let X have multivariate normal distribution

N.(u, 02I) and let S* be a statistic which is independ- -

ent of X and such that S%/0® has a chi-squared distri-
bution with v degrees of freedom. This setting arises
in a classical linear model where X represents the
least squares estimator, and S?, the residual sum of
squares.

If 4 is to be estimated under, say, quadratic loss,
then one can demonstrate the inadmissibility of X for
k = 3 using Stein’s by now popular technique of
integrating by parts. Indeed, if 6(X, S) is a smooth
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estimator, then one can obtain an unbiased estimator
D; (X, S) of the risk difference

Ap, 0) = [E| X = u|® — E[6(X, 8) = u]*]07%,
ie.,
ED«S(X9 S) = A(”’, U)-

It is also possible to choose 6 so that D; = 0, and
hence this estimator, 8, improves on X.

In the problem of variance estimation, one can
derive unbiased estimates of the risk difference for
quadratic loss for the best equivariant estimator
S?%/(v + 2). However, there is no alternative estimator
for which this estimate is nonnegative. Conditioning
on || X||/S or representing the noncentral t-distri-
bution, that of this statistic, as a Poisson mixture of
central ¢-distributions is crucial for the inadmissibility
proof. Notice that to estimate the risk difference
Strawderman (1974) had used the so-called Baranchik
lemma, which implies the nonnegativity of the ex-
pected value of a product of one monotone and one
which changes signs.

2. RELATIVE RISK REDUCTIONS OF VARIANCE
ESTIMATORS ARE SMALLER THAN FOR MEAN
ESTIMATORS

It is known that in our setup for the crude James-
Stein estimator
(k — 2)S” ]

0(X, S) = [1 —m



