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the suggestion that 6 has the same sort of reality as x,
the observation.

This article has served to put into sharp contrast
the Bayesian and Berkeley schools of statistics. Per-
haps it is appropriate to close by remarking on a point
of agreement between them.

By and large, all statisticians agree on the use of
probability to model uncertainty. Perhaps we should
unite on this agreement and look outside mainstream
statistics. There we would notice a growth industry in
ad hoc uncertainty modeling: fuzzy sets, possibility
theory, varieties of belief representations, inexact log-
ics, . ... While we debate the niceties of priors versus
sample spaces, there are many out there developing
alternatives to our tools for inference and decision.
Moreover, their alternatives, despite so many flaws
obvious to us, are apparently far more attractive to
those who award research and development funds.
Many projects are building decision support systems
and inference engines with what I can only describe
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I want to supplement Lindley’s admirable overview
of Bayesian Statistics with some references and spec-
ulations about how modern computing may both in-
fluence Bayesian thought and be wuseful in
accomplishing the agenda that Lindley, and before
him Savage and others, have set out. The simplest
Bayesian analyses, using exponential family likeli-
hoods and stated priors in the conjugate form, do not
require computing at all. Raiffa and Schlaifer (1961)
give a still rather complete treatment of the compu-
tation of posterior distributions under these condi-
tions. Modern Bayesian thought goes beyond these
ideas in several respects. The important dimensions
of generalization are:

a) The prior may not be stated, but may instead
have to be elicited. ’

‘b) The likelihood may not be in the exponential
family, or the prior may not conjugate with it.

¢) The problem may not be the computation of
a posterior distribution (or some functional of
it) but rather a design problem.

d) Robustness may be of special concern.

I give some brief comments on each in turn.
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as “inbuilt irrationality.” Is it right that we stand idly
by, waiting for their comeuppance? Professor Lindley
is one of the few explaining carefully and patiently
the flaws of these alternatives to probability modeling.
It might be wise for us to forget, at least for the time
being, some of the disagreements within statistics and
put our energies into the wider debate of the value or
otherwise of nonprobabilistic modeling of uncertainty.
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1. ELICITATION

The idea of elicitation is to discover a prior that
models the user’s opinions well. Unfortunately this
very important problem has not received the attention
it deserves from the Bayesian computing community.
For example, in Goel’s (1988) survey of Bayesian
programs, only two of the more than thirty listed
concern elicitation, and neither of those was ready to
be released. Nonetheless, this is a natural area for
computation, particularly of the interactive sort. An
early attempt of my own is given in Kadane, Dickey,
Winkler, Smith and Peters (1980). For some more
recent work in elicitation see Chaloner and Duncan
(1983) and Gavaskar (1988). A very interesting recent
work by DuMouchel (1988) uses graphical methods in
the elicitation of a generalized ANOVA model.

As I have already remarked, I consider elicitation
to be a very fruitful area for future work. One would
think that the flexibility offered by modern devices
such as mice would be useful in permitting users to
express their views. While to date all the work re-
viewed here has assumed a given, known likelihood
function, future elicitation work will, I believe, deal
with the fact that likelihoods, as well as priors, are
subjective and hence subject to elicitation (Bayarri,
DeGroot and Kadane, 1988). Perhaps Lindley’s work
reported here will be the basis for future computer
work in elicitation.
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2. COMPUTING POSTERIOR MOMENTS AND
MARGINAL DISTRIBUTIONS WITHOUT
CONJUGACY

This is an area of rapid progress in the last few
years. There are several methods under investigation.
The simplest method relaces an integral by a sum-
mation over a grid, which works well when the dimen-
sion of the parameter space is small. However, grids
are exponential in the dimension, so they rapidly
become infeasible as the dimension becomes even
moderate. One response to this problem has been the
development of methods asymptotic in the sample
size. Some work along these lines are Mosteller and
Wallace (1964), Lindley (1961, 1980), Leonard (1982),
and Tierney and Kadane (1986). Kass, Tierney and
Kadane (1988) give a review of this literature. The
most recent programs are those of Tierney (1989).
The current advantage of this work is that it gives a
second-order-accurate approximation to posterior mo-
ments the computation of which is quadratic in the
dimension of the parameter space. The methods are
no more complicated than computing maximum-like-
lihood estimates and their covariance matrices. A
second line of response is to use classical polynomi-
als in an iterative way, as suggested in Naylor and
Smith (1982) and Smith, Skene, Shaw, Naylor and
Dransfield (1985). The set of programs developed at
Nottingham based on these ideas are a strong com-
petitor to the asymptotic methods. Yet a third line
being aggressively pursued is based on Monte Carlo
sampling with an importance function (Geweke, 1990;
Stewart, 1985; Zellner and Rossi, 1982; van Dijk and
Kloek, 1985). Another variant leads to a sample from
the posterior distribution (Tanner and Wong, 1987).
There is recent and very interesting work on Gibbs
sampling by Gelfand and Smith (1990) along these
lines. It is my opinion that after a period of exploring
the advantages and disadvantages of each of these
methods in different situations, attention will be di-
rected to hybrid methods that will seek to combine
the advantages of each. While such a development is
several years ahead, progress has been swift in this
domain and Bayesians can now compute many of the
posterior quantities they need. '

3. DESIGN

An almost completely neglected area of Bayesian
computing, the design of experiments is a very rich
area for the application of Bayesian methods, and
nearly ready, scientifically, for programs to be written.
The analysis of designs puts 'great strains on the
posterior calculations described above, since in prin-
ciple to measure the worth of a design, it is necessary
to anticipate each of the data sets that might ensue,
its analysis and hence worth, and its probability. Con-
sequently most work in optimal designs, at least at

first, will concentrate on tractible families in which
the integration over the sample space can be done
analytically. Even in the ad hoc way that classical
statisticians do designs now, they have to ask them-
selves or their clients about the size of effects they
expect to see. Surely Bayesian programs with formal
prior elicitation to guide design can be a great advance
over this informal method. In fact, classical statisti-
cians may find Bayesian design more appealing, at
first, than Bayesian analysis of data after the design
has been implemented. The recent work of Chaloner
and Larntz (1988, 1989) along these lines is very
welcome.

4. ROBUSTNESS

Another rich topic for Bayesian computing is the
issue of sensitivity and robustness. Virtually any
Bayesian program can be run again under different
assumptions, but it is often possible to speed the
analysis of the consequence of a different prior, like-
lihood, dropping single data points, etc. Some recent
efforts along these lines are Gelfand and Smith (1990),
Kass, Tierney and Kadane (1989), O’Hagan (1988),
Polasek and Potzelberger (1988), but I expect that
there will be many more. ‘

5. CONCLUSION

This fast and idiosyncratic review of Bayesian com-
putational work is intended to supplement Lindley’s
find paper. There’s lots going on, and much remains.
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1. INTRODUCTION

The present paper is the latest manifesto in Lind-
ley’s long crusade to wrest the Holy Land of Statistics
from the infidels. In it he has given a new name to
this heathen host: Berkeley, eponymously named after
the Bishop with whom Thomas Bayes had his own
disagreements, but also after the campus of the Uni-
versity of California, which “has perhaps the best
department broadly holding to that [non-Bayesian]
view.” This seems a bit unfair to my long-time col-
leagues Blackwell and Dubins, both enthusiastic
Bayesians, who are untainted except through such
guilt by association.

" As a Berkeleyan, both geographically and in Lind-
ley’s ideological sense, I shall take this opportunity to
comment on some of my agreements and disagree-
ments with the orthodox Bayesian view presented by
Lindley. Of course these are only my personal opin-
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ions; Berkeleyans are no more unified in their for-
mulations than are Bayesians.

2. ROLE OF THE SAMPLE SPACE

This is the topic of Sections 1.3 and 1.4 of Lindley’s
paper and is mentioned by him as a major point of
disagreement. He notes that the sample space is often
difficult to specify; I fully agree (see, for example,
Lehmann, 1988). Lindley refers to Jeffreys’ character-
ization of the sample space X as “the class of obser-
vations that might have been obtained but weren’t”
and (rightly) declares this class to be an artificial
construct. “The practical reality,” Lindley writes,
“is the data x (not X), the parameter-space O
and the likelihood function p(x|-) for fixed x and
variables 6.”

However, the sample space is of course only the
beginning of Berkeley’s violation of this dictum. Spec-
ifying a probability distribution (or class of distribu-
tions) assigns not only possible values to X but also
the possible probabilities of all these values.

The idea that the actual data set is only one of
many possible such sets that might have been obtained
under the given circumstances is central to the concept



