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always, his style is so clear and his thought so bold
that I find the temptation to discuss at least some of
his points irresistible.

When the University of Oxford—*“the home of lost
causes”—at last decided to set up a lectureship in
mathematical statistics they called the resulting group
LIDASE: the lectureship in the design and analysis of

®
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scientific experiment. LIDASE eventually became the
Unit of Biometry (with a Readership), then the De-
partment of Biomathematics (with a Chair), and now
the new Department of Statistics has Chairs in Ap-
plied Statistics and Statistical Science. While showing
its traditional resistance to what might have turned
out a passing fashion, the University lived up to its
strong sense of history in choosing the first title. For
" the design and analysis of scientific experiment has
formed the core study of mathematical statistics in
this century and has been mainly responsible for its
impressive growth. Building on foundations laid by
others, our founding fathers—Gosset, Fisher, Neyman
and Pearson (GFNP)—developed a theory of the de-
sign and analysis of experiments involving variable
material. The wide applications these methods con-
tinue to find in agriculture, industry, medicine, biom-
etry and other natural sciences laid the basis for a
post-war “boom.” More recently ideas evolved from
these experimental methods have been applied in
econometrics and in other social sciences.

Meanwhile two other traditions involving uncer-
tainty continued older traditions of probability theory,
especially in its applications to actuarial science and
in the economic theory of risk taking. F. P. Ramsey
and B. de Finetti saw themselves primarily as working
within these traditions, although both saw clearly that
their work had wider philosophical implications. Ram-
sey’s brief references to Fisher’s “likelihood” concept
seem to me to make it clear that he did not see his
work on subjective probability as having much im-
mediate bearing on Fisher’s ideas. There is certainly
no evidence that he rejected the concept.

In this article Lindley presents a unitary concept of
probability which-attempts to encompass all forms of
uncertainty wherever they arise. One may applaud the
boldness of his attempt, while recognising, as does he,
that there is a very long way to go before such a
general theory can be regarded as complete. His Sec-
tion 6 on the measurement of probabilities opens
up very exciting possibilities. And his underlining of
Geisser’s arguments—and those of de Finetti—against
the overuse of parametric formulations is welcome;
though just as the impressioh sometimes given by

- GFNP that the introduction of prior distributional
assumptions came close to mortal sin, the introduction
of parameters when this is not strictly necessary does
not always entail serious harm.

But while Lindley accepts, in Section 6, that we
have a long way to go before we can claim to have a
much broader calculus of uncertainty, some of his
earlier criticisms of GFNP methods seem to assume
we are farther ahead than in fact we are. For example,
in relation to GLIM, Lindley criticises its emphasis
on “likelihood ideas and ad hockeries.” A Bayesian
view would, he says, remove these. Until such a Baye-

sian view is forthcoming, free from ad hoc priors, one
has leave to doubt. And more generally, one is entitled
to ask whether his strictures on GFNP (no eighteenth
century figure could represent them—perhaps Ben
Franklin with his enthusiasm for experiment comes
nearest) are justified. Within their narrower field,
GFNP theories have a clarity and precision which
suggests to me that when we approach the grand
synthesis it will be found to incorporate the main
principles advanced by GFNP.

The DASE ending of LIDASE serves to indicate the
narrower view of the function of the GFNP statisti-
cian. Whereas Lindley is concerned to teach everyone
how to face uncertainty, GFNP is concerned to help
those prepared to undertake experiments with variable
outcomes how to set up appropriate models, how to
design experiments to test the appropriateness of
these models and to learn to make them more specific,
and then how to express in assimilable form the in-
formation supplied by the experiment. It will be for
the client and anyone else who reads the results to
supply their own background information insofar as
this may be needed for a full interpretation.

A scientific experiment involves a repeatable set-up
whose actual outcome x is one of a set {E} of possibly
observable outcomes. Associated with the experiment
is a family {h(6)} of relevant hypotheses, each of which
specifies a probability function p(- | 8) on {E}. It was
Fisher’s insight, arrived at over the period 1912-1924,
to perceive that the primary inference, as he called it,
from the observation x consists of the likelihood func-
tion L,(-) = p(x| -), defined on {h(6)}. Just as p(- | 6),
for each 6, defines a plausibility ranking on {E}, so
L(-) defines a plausibility ranking on {h(#)}. They
share the “product” property in relation to independ-
ent experiments. If x and y are possible results of two
independent experiments, with prebability functions
p(x|8),q(y|8), the combined result x.y (read: x then
y) can be regarded as the result of a larger experiment,
with associated probability function p(x|8)g(y|6);
the likelihood based on x.y is L, (6) = L,(6)L,(6). The
second experiment may sometimes be dependent on
the result of the first. In such a case q(y|#8) must
represent a conditional distribution, and should be
written g (y | 6, x).

The contrast between a result x of a specified ex-
perimental set-up and an observed fact F such as the
existence of a cluster of childhood leukemia cases in
the neighbourhood of a nuclear installation can be
seen from the discussion of the latter reported in
(Gardner et al., 1989). F arose as the result of a visit
to the installation by an investigator looking for can-
cer cases among the adult employees of the installa-
tion. If a knowledgeable person had attempted to list
the possible results of the investigator’s visit, it is
most unlikely that F' would have been listed among
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them. (Oddly enough, a less than knowledgeable per-
son just possibly might have listed F; cf. Gardner et
al., 1989). There would thus be no clearly defined set
corresponding to {E} in this case. I am not by any
means saying that statisticians have no role in dis-
cussing issues raised by facts such as F; indeed, as
the JRSS discussion shows, they have much to con-
tribute—not least a habit of dispassionate adher-
ence to verifiable fact which their GFNP experience
encourages.

Because, with a scientific experiment, it is possible
to list the possible outcomes, and to change the set-
up so as to cease to distinguish between two given
possible outcomes, the logical operations of disjunc-
tion, V, and negative, ~, can meaningfully be applied
to the possible results. (x V y) denotes a result of an
experiment in which the set-up fails to distinguish x
from y. (~x) denotes the contrary to x in an experi-
ment in which all that is to be observed is whether or
not x happens. The addition and the complementation
laws of probability therefore apply to possible experi-
mental results. It is otherwise with possible hy-
potheses h(6). Merely to deny h(6) does not usually
tell us what the true distribution is. And the disjunc-
tion h(6) V h(f’) merely tells us that the probability
of x is either p(x|6) or p(x]8’); it does not tell us
which of these it is. Thus the addition and comple-
mentation rules of probability do not directly apply to
likelihood.

Although likelihood has no use for the addition
rule, the numerical value of a log-likelihood ratio,
A@,0’)=|In L,(0)/L.(6")| has a direct interpreta-
tion as indicating the strength of the evidence for
(say) 6 versus 0’. Because if 6’ were true, and the
mean value of the log-likelihood ratio from a single
observation was A(f, 0’), then the ratio A/\ would
indicate how many more observations would be likely
to be needed to reverse the plausibility ranking. And
we may see here how this part of GFNP would fit into
the global theory of uncertainty at which Lindley aims
by noting that if the global theory enabled You to
assess the log-odds in favour of 6’ as against 6 as A,
the data x would just serve to render You neutral as

‘between these two alternatives.

It may be worthwhile drawing attention to the fact
that in a letter dated 3 April 1922 G indicates to F
that he (G) regards likelihood as the posterior relative
to a uniform prior; and there seems to be no evidence
that he ever came to think otherwise. With his usual
percipience he noted that if you are putting together
two posteriors from independent experiments, each
with its prior 7(f), 7’ () it is only when you take
w(0) = w’(#) = C that you get consistent results.

It was observed by Fisher that it is sometimes
possible for the set {E} of possible results of a single
experiment to be mapped 1-1 onto a product set

{G} X {K}, so that x is mapped to (u, v), with

.u € {G} and v € {K} while p(x|f) factors into

q(u|0)r(v]6, u) with g(.| 8) the same for all . It may
then be possible to regard the experiment as equiva-
lent to two experiments, the first with possible result
set {G}, the second with possible result set {K}; and
the set-up of the second experiment may be partly
determined by the result of the first. In such a case u
is ancillary, and the relevant likelihood is that derived
from the conditional distribution of v, given wu.

An example considered by Laplace may serve as
an instance: We have a set x of three measurements
(x1, x4, x3) of a quantity each measurement independ-
ently liable to an error e with density %2 exp — |e|. If
0 is the true value the joint density of the x’s is

p(x]0)
= (Ys)exp — {|x1 — 0] + |2 — 0] + | — 0]}

By a permutation P, one of six equally probable such,
we can arrange the x’s in ascending order, and then
we can denote the middle x by v, while the lowest x is
U — u,, and the highest is v + u,. The Jacobian of the
transformation from x to (P, u, v) is ¥% and the joint
density of (P, u, v) is therefore

q(P,u,v|0)=(Yas)exp—{|v—10

2) —u|+|v—0|+|v—0+ul|}
The probability function of P is ¥, constant over {6}.
So also is the probability function of u—obtained by
integrating out (v — ) from g; we are therefore left
with the observation v with density

r(v|6, u, P) = K(a, b)exp — {|v — 0 — a|

) +Jvo—0]|+|v—0+b|}
where the normalising constant K depends on the
observed values (a.b) of (u,, uy). The three observa-
tions are equivalent to a single observation v whose
error v — 0§ has the density (3).

Perhaps a more instructive example is provided by
the 2 X 2 table where we have m observations, each 0
or 1, from population I and n observations, each 0 or
1 from population II, with § = (p., p;) representing
the probabilities of 1 in I and in II, respectively. A
reduction similar to that illustrated above shows than
we can represent x as (a, ¢) with a the number of 1’s
from I and ¢ the number of 1’s from II. The log-
likelihood is In L,(f) = a(lnp;, — Ing;) + mIn ¢, +
¢(In p; — In ;) + n In g,. If, as often, we are interested
only in the “difference” between p; and p,, we have to
determine how this “difference” is to be expressed. It
turns out, in the common case where m = n, that
putting £ = % In(pi1q2/p2q1), the semi-log of the
odds ratio, and 7 = % In(p1p2/q:14:), the log-likelihood
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becomes

Lx(g’ 77) = (a+ 0)77 +‘(a —C)S
— mIn{l + exp 2n + exp n(exp £ + exp — £)},

the sum of three terms: the first depending on # not
on £, the second’on £ alone, and the third depending
mainly on 7 but also on |£[, not on £ itself. This
suggests representing the data as (1) an experiment
with m = n fixed, in which r = a + ¢ is observed,
followed by (2) an experiment in which a — ¢ is
observed, the value of r from (1) being fixed. The first
experiment gives us no information at all about the
sign of ¢, and only a small amount of information
about its magnitude, extractable only if some further
information about the value of % can be introduced.
In the absence of such information, and when (as
often) the sign of ¢ is regarded as perhaps more im-
portant than its numerical value, it is therefore rea-
sonable to ignore (1) and to derive inferences about £
from (2) alone. This leads to Fisher’s conditional
analysis of the 2 X 2 table.

Fisher’s test for the 2 X 2 table is best regarded
from the point of view suggested by NP in 1933. For
them, “testing” the hypothesis H amounted to fixing
a set C of values of x such that, if x fell in C, H would
be rejected, not otherwise. If instead of noting the
actual value of x, all that was observed was whether
or not x fell in C, the resulting likelihood function—
the “power function,” as NP called it—would most
nearly match the original power function if C consisted
of just those values of x for which the likelihood ratio
for an alternative to H exceeded some fixed value. In
addition to its interpretation as a likelihood function,
the power function-had its well known interpretation
in terms of long run risks of error—especially impor-
tant in the industrial applications with which P was
much concerned. The only weakness of the NP ap-
proach in this problem was, that it failed to note the
dependence of the likelihood function on r.

Precise definition of the likelihood function requires

precise specification of the probability function

p(x]8). It is often possible to do this exactly or to an
excellent approximation when "{E} is discrete; but
when {E} is continuous we need a form of reasoning
which does not require such precise specification. We
can sometimes do this by regarding L as known only
to within some small ¢, but it is better to proceed
otherwise by adopting a pivotal model. This is always
possible in the continuous case. We can illustrate
by generalising the Laplace example considered
above. The basic pivotal here is p = (p1, P2, Ps) =
(x1, — 8, x2 — 0, x5 — 0), whose density we denote by
@(p1, P2, ps). We can. transform p to (P, u,, uz v) by
the same transformation as used before, with the same
result in the case of P, u;, and u,, but now v =% — 6

where % is the median of the x’s. If P, a and b are the
observed values as before, we can imagine ourselves
learning these before we learn the value of ¥ and again
this justifies us in taking v to have its conditional
density

¥(v) = K(a, b)? (v —a, v, v + b).

Our information about § is again equivalent to that
provided by a single observation, now X, subject to an
error v having the density ¥(v). It is now a mathe-
matical problem, given an approximate specification
of ¢, to derive an approximate specification of ¥. It
often turns out—depending on a and b—that we can
specify ¥ more accurately than we can specify ¥, in
which case we say we have a robust sample.

Thus far I have been stressing the extent to which
GFNP and pivotal inference preserve likelihood func-
tions and, to this extent, must be compatible with
Bayesian reasoning. I now come to a point where, it
seems to me, the GFNP approach can improve on
Lindley’s programme. Abstaining from unnecessary
generality, suppose we have a sample of size n = 2
with mean % and standard deviation s from a normal
population with unknown mean p and unknown
standard deviation o = exp {. The two linear pivotals

t=(£—u)~/r—z/s and z=Ins—¢

have a well known joint density ¥ (¢, z). They are
jointly sufficient for (u, ) (or equivalently, for (u, o))
because the likelihood function @ (%o, 2,), obtained by
subsituting the observed %, s in ¢t and z is equivalent
to the likelihood function based on the original obser-
vations. (See Sprott, 1989, and references there given,
for more on linear pivotals.) If nothing else is known
about {, we may take the marginal density of t—
Student’s density on n = —1 degrees of freedom—as
conveying all the available information about x. From
a Bayesian point of view, this is justified by saying
that the “ignorance” priors for both x and { are locally
uniform, deducing the joint posterior density for (u,
), and then marginalising for the density of u. From
the pivotal point of view, however, we can simply say
that our ignorance of ¢ and of u implies we can have
no grounds for supposing, after the data are known,
that the still unknown values of (t,, z) are anything
other than a randomly selected pair from the joint
distribution ¥ (¢, z); consequently the appropriate dis-
tribution for ¢ is its marginal distribution. (If the value
of ¢ were known, of course, the resulting distribution
for ¢t would instead be its conditional distribution,
given the now known value of z; while if { were simply
known to lie between limits {3, {;, the relevant density
of t would be obtained by integrating ¥ with respect
toz from z =In s — {> to z=In s — {; see Chamberlin
and Sprott, 1989.) The “inference from ignorance” to



BAYESIAN STATISTICS 69

the joint distribution of (o, 2o) seems to be more direct
than that assuming “ignorance” priors; and it has the
advantage of being compatible with a frequency inter-
pretation for u-interval statements derived from ¢.

As my final example, I take the Behrens-Fisher
problem (which also is easily generalised to nonnormal
densities). We have (m, %, s) from (approximately)
N(u, ¢’) and (n, 3, s’) from (approximately) N(n +
8, ¢”) and we wish to estimate 6. (Perhaps I should
interpolate here that I agree with Lindley’s point
about estimation not consisting of “point” and “inter-
val” estimation. Sprott (1989) has suggested the useful
term “inferential estimation” to denote what we are
now discussing.) That is, we wish to find a pivotal
G(%, 3, s, s’, 8) whose distribution is (approximately)
known and which could either serve to test hypotheses
about the value of 6 or could be combined with prior
information to derive a posterior distribution.

To begin with it is convenient to transform the scale
parameters to (o, v) where

’2 ”2 2

o I I
o?=—+— and yol=|—

m n m

so that (1 — v)e2 = (¢”%/n).6? is the variance of the
difference y — %, and y:1 — v is the ratio in which
this variance is shared between % and y. Then the
basic pivotals are reducible to four:

te=(&—p)Vm/s, t,=(5—u—08)Vn/s’,
z=s/ovmy and z.=s'/ovn(1—7).

It is shown in Barnard (1982) that any function H (t,,
t,, 21, 22) which is of the form G(%, y, s.s’, 6) can take
at most three distinct values. So our problem is inca-
pable of solution as stated. However taking v as known
allows it to be a fifth pivotal, and we can find a
nontrivial H (¢, t,, 21, 22, v) of the required form G.
In fact, the quantity

= y—x—0
\/ [(n—1)s"%/(1 =] + [(m = 1)s*/~]

m+n—2

has Student’s distribution on m + n — 2 degrees of
freedom and as a linear pivotal the associated likeli-
hood is equivalent to the marginal likelihood of é.
Further, we have a pivotal for «,

f=2/2=s" Vmy/sn(1—7)

distributed as a multiple of VFon(n—-1,m-1)
degrees of freedom. We could use this to determine
plausible limits for v, and then derive the associated
range of t values corresponding to any proposed value
of 6. But a preferable way would be to assess a prior
distribution for v, use the likelihood based on f to

deduce a posterior distribution for v, and thence de-
duce the density of ¢t as averaged over this posterior
distribution. The likelihood based on f has a Beta
form, so that it is easy to programme the posterior of
y—and the derived distribution of t—relative to a v
prior of the Beta form Kvy°(1 — v)°.

A widely accepted Bayesian solution of this prob-
lem, due originally to Jeffreys, assumes for the scale
parameters of ¢’, ¢”, a joint prior density element
do’ds”/c’ ¢”, indicating ignorance of both scale pa-
rameters. This corresponds to taking for v a Beta
prior with a = b = —1, with divergence at both v = 0
and at v = 1. But this is highly implausible. We shall
almost certainly have arranged the sample sizes m, n
so as to make the variances of x and y at least of the
same order of magnitude, and the observation of a
value of s’ Vmy/svn(1 — v) reasonably distant from
0 and from 1 would contradict the assumption a =
b = —1. Jeffreys appears to have overlooked the fact
that the independence implied by the product form of
the probability element implies not only ignorance of
both ¢’ and ¢”, but also that even if ¢’ were known
exactly we would still be entirely ignorant of ¢”. In
another connection, Jeffreys proposes for a parameter
like v a prior with a = b = —%, which still has infinite
density at each end of the range, but which does at
least converge. In view of the possible adjustment of
m and n already mentioned, I would suggest that a =
b = 0—a uniform prior between 0 and 1—would often
be closer to the truth; while when the problem arises
in another context (that of recovery of interblock
information) it is likely that past experience will be
available to suggest perhaps unequal values of a and
b. The ease of programming with a and b as adjustable
parameters means that when in doubt we can try a
range of (a, b) values; and if—as will often happen—
varying these over a plausible range makes little dif-
ference to the distribution of ¢, we need not bother to
examine the matter very closely.

I have sketched a range of GFNP approaches to
various problems to bring out two main points: (1) the
methods aim for the most part to reduce the original
data to a readily assimilable form in such a way as to
preserve the likelihood function. Any individual read-
ing the reduced forms can therefore add his or her
own prior distributions, if desired. There is no basic
incompatibility with a Bayesian approach. (2) Those
of us who prefer, whenever possible, to think in terms
of likelihood, or of pivotal inference with its “coverage
frequency” interpretations are free to do so. One of
Lindley’s most valuable contributions has been his
propounding of the “Cromwell principle,” which I like
to think of as expressing the fact that we should always
bear in mind that we may have overlooked some
important possibility. Insofar as adoption of a Baye-
sian prior requires us to distribute the total unit
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probability over a specified set of possibilities, it has
always seemed to me that such a procedure is incom-
patible with the Cromwell principle. The likelihood
function serves to rank the possibilities we have con-
templated in order of plausibility on the data, while
leaving entirely open the possibility that other possi-
bilities, not thus far contemplated, exist. And the
“long run frequency” interpretations of pivotal infer-
ences offer a degree of objectivity about our inferences
which is also a valuable feature. Such long run inter-
pretations are, of course, conditional on the accept-
ance of the model assumptions—including, as in the
Behrens-Fisher example, any assumptions we choose
to make about the long run frequency of occurrence
of parameter values such as those of v.

Such model assumptions need to be checkable. And
here comes the first strictly non-Bayesian point: in
discussion of Box (1980), Lindley introduces the idea
of a “small world” within which You can construct a
model for Your beliefs. The “small world” is then
regarded as part of a “larger world” within which the
small world is to be tested. “We may be surprised if
p(x| 0) is tiny within the small world but unless there
is a 6’ with p(x|6’) bigger within the larger world,
then § must remain a plausible value and the surprise
must be accepted.” The assumption here is that “there
is not” and “we cannot imagine” a 8’ for which we can
calculate p(x | 0’) are equivalent. But when, in 1887,
Michelson and Morley performed their experiment,
their null result was very surprising—so much so that
it was often repeated, with many refinements. For 10
years no one could imagine a 6’. Then Lorenz and
Fitzgerald suggested their contraction as a possible
6’ ; but repetitions with varying framework materials
rendered this implausible, and it was not until 1905
that Einstein’s theory provided a 6’ which slowly won
wide acceptance. Again, it was not until the general
theory of 1915 that a tenable 6’ was provided for the
motion of the perihelion of Mercury which had been
noted more than 50 years earlier by Leverrier and for
which attempts to find a “Vulcan” had long since
failed. In both these cases, I would suggest that over
a period of years the relevant § was not regarded as
» plausible, and yet there was no #’ with a calculable
plx|6”). As of this writing the discussion on leukemia
clusters referred to above provides another example,
though the suggested association with movements of
population may soon provide some approximation to
suchap(x|8’).

The repeatability of scientific experiments is im-
portant here. Two independent sets of physicists find
surprising evidence of cold fusion. Immediately others

attempt to repeat. Had the attempts succeeded “ac-

ceptance” of surprise would not have been an option.
There would in that case have soon—though not
immediately—been suggested 6’’s with p(x|6’) >

p(x]8). Such suggestions would have been tentative
until verified by further experiments, which would
soon have been forthcoming. The fact that the “cold
fusion story” lived for months, while the Michelson-
Morley story went on for decades serves to illustrate
the vast increase in the amount of experimental re-
search there has been. But these times of transition,
short though they may now be, are the growing points
of scientific knowledge and it is in them that statistical
methods, including the much maligned P values, play
a specially important role.

On a point of detail: the example of Basu which
Lindley quotes as an indefensible ancillary does not
fit with the account of ancillarity given above. One
can transform the space of x into the set of integers,
and the interval [0, 1); but neither of the associated
sets of probability is independent of §. On the other
hand when the experiment consists in n repetitions x;
of an observation, we can always imagine the result
obtained by a preliminary determination of n, followed
by a permutation giving the observed order of the x;,
followed by the ordered sample. If the first two parts
have distributions independent of 6 they qualify as
ancillaries. This accounts for the common choice of a
fixed n sample space though, as the 2 X 2 case illus-
trates, further reductions may be desirable.

On a point of history: in a certain sense young
Berkeley was a wayward son of GFNP, born around
1934, as a result, I conjecture, of a liaison with A. N.
Kolmogoroff. It will be remembered that ANK pub-
lished at that time a book, Grundlagen der Wahr-
scheinlichkeitsrechnung, which served to change what
had been a dubious area of study into a perfectly
respectable and richly structured branch of pure math-
ematics. The N component of GFNP was much im-
pressed with ANK, having himself belonged to that
extraordinarily brilliant group of pure mathematicians
who grouped themselves around the journal Funda-
menta Mathematicae. It was apparent to N that while
probability theory had received definitive rehabilita-
tion, the same could not be said of the other measure
of uncertainty which N, as well as the other parts of
GFNP, had been calling likelihood. N therefore deter-
mined to rethink GFNP in purely probabilistic terms
while adhering to the doctrine which he had learned
from P, that prior distributions were heresy. He soon
realised that if one stuck to probability only, one would
have to abandon any idea of statistical inference and
speak only of inductive behavior. Here one defined in
full rigour the mathematical model of one’s experi-
ment (it was at this time that N began to lay down
that the set of possible results was required to be a
measure space) and, in advance of observing the re-
sults, one laid down the probabilistic properties re-
quired of those functions of the data that one intended
to calculate. Thus one might require a “point estimate”
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of 6 to be “unbiased,” or require an advance specified
upper bound to the probability of error of the first
kind. That such requirements could lead to absurdities
such as randomised “conclusions,” assertions with
only 90% confidence that a real number lay between
—o and +o, etc., was noted by several of the older
Berkeley’s associates; but the energy, courage, gener-
osity of spirit, brilliant wit, and human warmth of N’s
character so impressed all those who came into contact
with him that the inherent impossibility of the task
N had set himself was not stressed, and old Berkeley
grew into the over-rigid system which Lindley so
mercilessly attacks. Of course, as with the somewhat
similar attempts by von Neumann, Birkhoff, and oth-
ers to “pure-mathematicise” quantum physics, N’s

Comment

James O. Berger

1. INTRODUCTION

There are many reasons to adopt the Bayesian
paradigm. Professor Lindley emphasizes the founda-
tional and axiomatic rationales in this paper. Having
followed that route to Bayesianism myself, I am par-
ticularly appreciative of the job Lindley has done in
illuminating the route. I only regret that this paper
was not around when I started studying the issues.
I emphasize the foundational nature of Lindley’s
paper for two reasons. First, it is a common miscon-
ception that the arguments for Bayesian statistics are
all theoretical, as opposed to practical. To the con-
trary, an extremely strong case for Bayesian statistics
can be made purely on the pragmatic grounds that it
is much easier to understand and yields sensible an-
swers with less effort. Lindley has reasonably concen-
trated on the foundational side, but it is important to
note the existence of these very pragmatic rationales.
Of course, I completely agree with Lindley that foun-
dational issues can have a profound effect on practice.

The second reason for mentioning the foundational
nature of the paper is that, in foundational matters,
virtually everyone disagrees in some respect, even (or
perhaps especially) Bayesians. Thus the bulk of my
discussion focuses on the foundational differences that
I have with Lindley, primarily the issue of specifica-
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programme produced many insights and valuable re-
sults in spite of its ultimate failure.
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tion of unique prior probabilities. While this is per-
haps a significant issue foundationally, it is much less
of an issue in terms of Bayesian statistical practice.
Hence, my disagreements with Lindley are actually
quite minor from the perspective of statistics in gen-
eral. Indeed, my motivation for raising the issue (in
Section 3) is mainly to argue that uncertainty in
probability specifications can be incorporated into the
Bayesian paradigm without any major changes being
necessary.

2. FREQUENTIST BAYESIANISM

As I read Section 1 of the paper, I agreed with
virtually all of the points raised but felt uneasy at the
conclusion that coherence is missing from the Waldian
paradigm. After all, admissibility is at the heart of the
paradigm and, in a sense, admissibility is just a fre-

"quentist version of coherence.

Would Wald have disagreed that the correct solu-
tion to the mixture problem is to choose a procedure
that is Bayesian? Perhaps not. Indeed, there have
existed frequentists who consider themselves coherent
Bayesians, in the sense that they agree with the use
of Bayes’ rules, and even utilization of prior infor-
mation, but still want to base their evaluations of
accuracy on frequentist (Bayesian) measures of per-
formance. Such statisticians would presumably disa-
gree with Lindley’s statement that “only the Bayesian
attitude is coherent . . . Consequently the sample space
is irrelevant.” They would agree with the first part,
but disagree with the second because of their insist-
ence that only frequentist measures are meaningful.



