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of Young and Harris (1990). Once the unimportant
variables have been eliminated by simplification, then
biplots can be used to display not only the distribution
of observations in the two-dimensional multivariate
space (as in the Weihs and Schmidli figures), but also
the distribution of retained variables. This provides a
more informative-plot which displays relationships
within the variables and between variables and obser-
vations, as well as within observations. The paper, the
OMEGA pipeline, and the richness of the results
would be strengthened with the inclusion of biplots.

The biplot can be extended in a very interesting
way for redundancy analysis, as was originally pro-
posed by Young and Sarle (1981). The extension uses
the first two redundancy variates as the dimensions
for a two-dimensional plot of the “redundancy plane.”
This is the plane in the predictor space which shares
the most variance with the criterion space. A biplot
can be constructed in this plane in the ordinary way,
using the scores of the observations on the two redun-
dancy variates as coordinates of observation-points,
and the coefficients of the predictor variables on the
redundancy variates as coordinates of the end points
of predictor-variable-vectors which extend from the
origin of the space. This biplot can be extended to
become a triplot by adding to the biplot the projection
of the criterion variables into the redundancy plane.
They should be displayed as vectors. The plot of the
redundancy plane now contains three kinds of infor-
mation: the observations are represented as points,
while the two sets of variables are represented as
vectors.

The algebra underlying the redundancy triplot is as
follows. The redundancy model is expressed by the
equation Y = XL, subject to suitable restrictions on
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* We would like to thank the discussants for initiating
the debate on our conceptual framework of interactive
data analysis. Our responses cover five areas: the
actual implementation of the OMEGA pipeline con-
cerning software and methods, the data analysis ex-
ample, possible extensions of the tool box, and a
desirable ideal strategy.

SOFTWARE IMPLEMENTATION

The implementation of the OMEGA pipeline has
always been, and remains, restricted by the graphical
power of the underlying software (ISP). We have never
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L. Since L is nonnegative definite, it is the case that
L = AB, and we can re-express the model by the
fundamental RDA equation Y = XAB. The rank two
approximation to the criterion variables Y is given by
the approximation Y =~ XA,B, where the subscript 2
indicates we are using only the two sets of linear
combinations that correspond to the largest two eigen-
vectors. The redundancy model can now be re-written
as Y = Z,B, where Z, = XA,. The values in Z,, which
are the scores on the first two redundancy variables,
are displayed as points in the triplot, whereas the
values in A, (the coefficients of the predictor variables)
and B, (the coefficients of the criterion variables)
specify the endpoints of vectors emanating from the
origin of the biplot.
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attempted to program our own graphics system.
Therefore, the concept of the OMEGA pipeline goes
far beyond our implementation (as described in Ap-
pendix 2). We were not intending to describe one more
software tool, as Gower seems to assume, but rather a
working implementation of a concept. Nevertheless,
even the capabilities of the implemented version can-
not be demonstrated on paper (see also Section 4.2).
In fact, no real attempt was made to illustrate dynam-
ics or to describe details of the software, like variable
selection or interactive elimination of observations.
Instead, we tried to demonstrate the power of the
concept by showing what actions lead to which results.
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We believed that this kind of demonstration would
also make clear the flexibility of the implementation
of the OMEGA pipeline. Unfortunately, Gower seems
to take its structure (as illustrated in Figure 1 of the
paper) literally, in that he interprets the ordering of
the blocks as fixed. Let us, therefore, make clear that
the ordering of the blocks is controllable by the user,
apart from some natural restrictions (e.g., dimension
reduction before simplification).

 IMPLEMENTED METHODS

Buja and Hurley proposed a graphical substitute for
our importance criterion based simplification method.
This might work for PCA, since then the absolute
value of the loadings is a natural criterion for effect
elimination (see Section 3.6). For CDA and CCA,
appropriately scaled loadings would have to be dis-
played (see Appendix A1.6). Moreover, our simplifi-
cation procedure includes an additional feature,
namely the rounding of the loadings to a given number
of decimal places (not just to a single decimal place as
Young seems to believe). Stuetzle indicates that the
simplification procedure for the second and higher
principal components might be somewhat unclear. As
noted in Section 3.6, once the first simplified coordi-
nate is found, “the whole orthogonal system - - - [is]
rotated so that the first axis coincides with the ‘sim-
plified’ first new coordinate.” The simplification pro-
cedure as described for the first coordinate is then
applied to the second coordinate of the rotated system,
and so on.

Stuetzle, Buja and Hurley had some difficulties in
understanding the kind of prediction variability we
try to assess with our resampling/Procrustes proce-
dure. Rephrasing the motivation, for PCA say, might
clarify ideas. Our first idea was to look mainly at the
distribution of the projections corresponding to the
complements of the subsamples used to generate the
principal components (prediction) and not only at the
distribution of the principal components themselves
corresponding to those subsamples. This is closely
related to the proposal of Stuetzle, apart from the
different resampling strategy. But, how would an ob-
"server judge the similarity of the simulated projec-
tions? Would he or she not consider as equivalent all
those projections which can be obtained by rotations/
reflections, translations or global scale change (Pro-
crustes)? If so, the problem remains how to choose
the actual representative from these equivalent pro-
jections. For obvious reasons, we decided to choose
the one that is the nearest to the projection obtained
by full sample PCA. Thus, we are representing the
pointwise distribution of predictions of the PCA pro-
jections after elimination of effects arising from ran-
domly arriving at one of many equivalent projections.

Fisher also proposed relooking at the resampling

procedure in order “to see whether we can do rather
better than simply displaying a cloud of grapeshot in
the vicinity of a point estimate, or a skein of spaghetti
strangling a density.” As a response, let us remark
that we are using this kind of graphics as a diagnostic
tool to identify abnormalities in the pointwise distri-
bution and to identify influential observations (see
Figure 19 of the paper).

Critchley mentioned that he had already developed
analytic expressions for the influence of data disturb-
ances for PCA. Unfortunately, his analysis (Critchley,
1985) stops with the principal components and does
not expand on Procrustes transformed projections.
Krzanowski (1984) advanced to a similar stage.

Gower’s discussion reflects some small misunder-
standings (see also above) indicating that our paper
is, perhaps, not as clear as it ought to be. So we repeat:
different nonlinear transformations can be applied to
different variables; there is no restriction causing en
bloc handling (see also Section 4.6.1 of the paper).

Stuetzle seems to have a general uneasiness with
our choice of methods for the OMEGA pipeline. But,
on the one hand, the pipeline has room for improve-
ment and also for personal styles, and, on the other
hand, the methods have proven their usefulness in
routine application.

Since the paper was written, we have ourselves
changed at least one important block of the OMEGA
pipeline. For plot interpolation we now use the static
technique of disconnected arrows in the superposition
of original and simplified projections. In Section 4.3,
we already indicated that this static technique totally
reflects the dynamic interpolation. Moreover, the dis-
connected arrows technique is surely more informative
than the static simulation of dynamic interpolation
(compare Figure 4 of the paper and Figure Al).

Furthermore, we now also recommend Procrustes
transformations after simplification, since the argu-
ments for qualitative projection similarity are also
applicable to simplification (see also Sections 3.6 and
3.7). The way in which the impression of a simplifi-
cation changes by the use of Procrustes transforma-
tions is illustrated in Figures A1 and A2.

EXAMPLE

Stuetzle proposed regression analysis to tackle the
two main questions to be answered by the analysis,
i.e., can coloristic properties be predicted by analytical
measurements, and can visual judgements be pre-
dicted by coloristic measurements? First note that the
visual judgements are ordinal variables, and hence our
use of discriminant analysis appears to be preferable
to regression. Concerning the technical measurements
of coloristic impression, in fact numerical variables,
regression analysis might be an appropriate method.
However, very good predictable linear combinations
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FiG. A. Interpolation illustrated by disconnected arrows in the superposition of original and simplified projection, “+” indicating simplifications,

before (1) and after (2) Procrustes transformations.

of the coloristic variables, e.g., differences in hue under
daylight and artificial light, are of equal interest to
the producer as long as they can be interpreted.

There are two other kinds of comments concerning
the example. One concerns the use of PCA-COV, the
other concerns the outliers.

Critchley wonders whether PCA-COR delivers sim-
ilar results to PCA~COV. This is, in fact, not the case.
On the one hand, this is not surprising due to the very
different scales of the variables. Gower already noted
that the variable TOTORG should be related to the
sum of variables 1-14 (see Table 2 of the paper). On
the other hand, it is not very important, since PCA-
COV delivered an important result, the change of the

measurement procedure. Other methods may, or may’

not, deliver other insights.

Some of the discussants are interested to obtain
more information about “outliers,” in particular about
batches 84 and 93, “misplaced” when plotting TO-
TORG versus SUMDYE (see Figure 8 of the paper),
and about the obvious outlier in Figures 6 and 7 of the
paper, which refers to batch 85. Unfortunately, it has
proved impossible to identify the causes for such out-
liers so long after the actual measurements were taken.

TOOL BOX EXTENSIONS

Critchley, Fisher, Gower and Young took the op-
portunity to recommend extensions to the OMEGA
tool box. Critchley proposed to include a whole, well

structured, bunch of multivariate techniques in order
to guarantee a rich framework of methods. We agree
that the realization of such an ambitious project is
only possible by means of international cooperation.

Critchley also proposes a “constructive interplay
between - -- the exploratory, graphical approach (to
data analysis) and the confirmatory, modeling ap-
proach.” In fact, some of his proposals were all along
included in the OMEGA pipeline. In particular, brush-
ing of influential points was demonstrated together
with CDA (see Section 5.4 and Figure 19), and the
examination of the robustness of the dimension re-
duction methods by resampling is a standard tool in
the OMEGA pipeline.

Fisher recommended the use of his chi-plot matrix
in conjunction with the scatterplot matrix in order to
test, graphically, for independence of pairs of vari-
ables. We compared the outcomes of the permutation
test (superposition mode, see Figure 11 of the paper)
and the corresponding chi-plot (see Figure B). At least
to us, “near-independence” is much clearer in the
superposition.

Gower proposed the extension of the tool box by
the Gifi-methods or, at least, by some variant of
Multiple Correspondence Analysis/Homogeneity
Analysis/Fisher’s Method of Optimal Scores. We al-
ready mentioned in Section 6 that the Gifi-methods
are on the list of planned extensions.

In practice, however, our first essential extension of
the OMEGA pipeline was the Partial-Least-Squares
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(PLS—) method (see Hoeskuldsson, 1988) not listed
in Section 6. This was because PLS is very popular in
chemometrics, which is our main application field.

Young argued for the use of Redundancy Analysis
(RDA) instead of CCA if a set of criterion variates is
to be predicted by a set of predictor variates (unsym-
metric situation). We applied RDA in the two cases
to which we had applied CCA in the paper. This led
to very similar results to those obtained with CCA.
Indeed, RDA, like CCA, selected SUMGRD,
TERTMC, and SUMRED as predictors for
HUEREM, HUEREMAL (compare Table 4 of the
paper and Table A), and the prediction of the meas-
ured brightnesses was poor for both RDA and CCA.

Last, but not least, Young proposed the use of the
biplot (or triplot) complementary to simplification in
order to visualize the distribution of the retained
variables. A biplot version of Figure 2 of the paper
(see Figure C) convinced us that this is indeed helpful.
Note that the diagonals of this projection are inter-
preted in Section 5.2.

IDEAL STRATEGY

Buja and Hurley brought up the idea of a program-
mable pipeline, “which gives mildly sophisticated
users the opportunity to concoct their own viewing
machinery.” We agree that this would be a natural
extension of the concept of the OMEGA pipeline,
since we also believe in personal styles and creativity
in data analysis. We also consider Lisp-Stat (see Tier-
ney, 1989) as a first step in the direction of such a
programmable pipeline. On the other hand, we do not
consider Lisp to be an attractive computer language.

Redundancy analysis

Linear combinations: Analytical variables

(a) (b)

RD1 Rpg mportance  Initial  ppy g
criterion simplification
Redundancy 0.75 0.02 0.60
TERCUP 0.379 0.200 0.0
DNANDI —-0.014 —-0.010 0.0
DNBZDI 0.319 0.298 0.0
SECMC —2.447 —17.862 0.0
TERTMC 3.580 12.099 3.6 0.293
PRIMSC —2.394 —1.324 0.0
SECSC —2.839 —1.062 0.0
DNSEC —1.983 —-0.591 0.0
TERTSC 4.015 3.864 0.0
SUNKUV —-0.312 —0.437 0.0
SUMUV —0.731 —1.094 0.0
SUMRED 2.166 8.221 2.2 —0.135
SUMGRD —4.247 —16.244 —4.2 —-0.113
SUNKDY —-0.536 —0.749 0.0
SUMDYE 0.000 0.009 0.0
TOTORG —0.022 —0.163 0.0
SEC/TE —0.664 -0.211 0.0
LMBDAC —0.312 —0.127 0.0

The loadings RD1 of the first component of the RDA on the
analytical variables predicting the measured hues (HUEREM and
HUEREMAL) are given together with their importance criterion
for each variable and the resulting (initial) simplification. A new
RDA was performed on the selected variables giving the loadings
RD1S.

A nonprogrammable but very attractive computer en-
vironment for exploratory data analysis is the JMP
product of the SAS-Institute (see Held, Lehmann and
Sall, 1989).
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F16. C. First two principal components PC1, PC2: biplot with variables retained after simplification.

Finally, Critchley proposed an expert system to
guide the user through his voluminous tool box. This
really appears to be the ultimate aim, but, looking at
other so-called expert systems in statistics might lead
one to have some -doubts about the practicability of
such a project.

CONCLUDING REMARKS

We would like to express our great satisfaction that,
independently, Buja and Hurley have extended their
original viewing pipeline in a similar direction to ours,
and that our thoughts about sensible data analysis
strategies appear to be very similar. We would also
like to express our great delight at Young’s re-
presentation of parts of our paper, which illuminates,
in a different, very lively way, many of the things we

tried to show. In conclusion, we would like to thank
the editors of Statistical Science for the opportunity
to publish a paper exposing a whole concept of data
analysis in an applied context.
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