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Stochastic Simulation in the
Nineteenth Century

Stephen M. Stigler

Abstract. In the last quarter of the nineteenth century, three separate
(but not entirely independent) papers appeared describing methods of
studying complicated statistical procedures through the generation of
random normal deviates. All three authors referred to problems in the
smoothing of series as a motivation; all used different methods for
generating the deviates. One presented itself as a method for general
use and claimed to be suitable for efficient generation of large numbers
of variates. The relevant works (by Erastus De Forest in 1876, by
George H. Darwin in 1877, and by Francis Galton in 1890) are repro-
duced.
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INTRODUCTION

Simulation, in the modern sense of that term,
may be the oldest of the stochastic arts. Long be-
fore the calculus of probabilities was developed for
secular purposes, lots were cast to attempt to read
the minds of the gods. Indeed, the faith in the
power of this device for learning by analogy was
sometimes so strong that wagers were placed upon
the outcomes. Simulation as a tool of science, how-
ever, is of a much more recent vintage.

The question of when to begin the history of
scientific simulation depends upon what one means
by the term. If by simulation we mean the use of a
controlled random or pseudo-random device to illus-
trate a mathematical theorem, we would have to go
back at least to the eighteenth century. In the
mid-eighteenth century the French naturalist Buf-
fon had a child perform a series of 2,048 sets of
tosses of a coin, each time the set continuing until a
head occurred (Table 1). Buffon was attempting to
determine an empirical value for the St. Peters-
burg game, and he concluded that the value of the
game was about 5, despite its infinite expected
value.

In the same essay that reported this empirical
illustration of a geometric distribution, Buffon also
described his famous ‘“Buffon’s needle” experiment,
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where counts of the number of times a dropped
needle intersects a system of parallel lines can be
used to determine the value of 7 =3.1416 ...
experimentally (Buffon, 1735, 1777; Perlman and
Wichura, 1975). Buffon did not give data for his
needle experiment, but several people pursued this
in the nineteenth century with great vigor.
For example, the Swiss astronomer Rudolf Wolf
performed several experiments comprising over
5,000 trials starting in 1849 (Riedwyl, 1990), and
Augustus De Morgan (1915, pages 283-284) re-
ported experiments performed in 1855 and later
that gave values for 7 of 3.1553 (based on 3204
trials) and 3.137 (based on 600 trials). Other trials
were carried out in America in 1864 (Hall, 1873).
Somewhat later an Italian, Lazzarini (1902), re-
ported performing 3,408 trials and getting a value

~of 7= 38.1415929, an agreement so close that
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Coolidge (1925, pages 81-82) suspected him of
“watching his step,” since he estimated the chance
of such an agreement without optional stopping
was about 1/69. These suspicions are not decreased
by the information (not cited by Coolidge or others
who have indicted Lazzarini) that the year before
these experiments, Lazzarini had published a long
article on rational approximations to = (Lazzarini,
1901)!

There is, however, a question as to whether even
under the most charitable interpretation these
experiments with “Buffon’s needle” should be con-
sidered as instances of simulation: they were
illustrations of mathematical theory and could even
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TaBLE 1
Data from Buffon’s experiment on the St. Petersburg game

Tosses (k) Payoff (2%~ 1) Frequency
1 1 1061
2 2 494
3 4 232
4 8 137
5 16 56
6 32 29
7 64 25
8 128 8
9 256 6

2048

The data from Buffon’s experimental attempt to place a value
on the St. Petersburg game, where a coin is tossed until heads
occurs and 2%~ is the payoff, where % is the number of tosses.
Buffon had a child play the game 2048 times. (Buffon, 1777,
pages 84-85; De Morgan, 1915, vol. 1, page 282; Jorland, 1987,
page 168.)

be construed as checks on the fit of theory to na-
ture, but they were not attempts to learn about a
process by analogy. If the experimental value of =
had come out far from 3.1416, then the experiment
would have been discarded, not the value 3.1416.
Indeed, as Coolidge’s observation about Lazzarini
shows, the experiment would also be discarded if
the experimental value was too close to 3.1416! If
we insist that the purpose of the simulation be to
learn about the process under study, say to learn
the distribution of a complicated statistic by
computing its values from artificially generated
samples, then we must look to a more recent period
for a less ambiguous example (although it could be
argued that Buffon’s coin tosses fit this definition,
since his aim there was to put a value on the St.
Petersburg Paradox wager).

There has been a tendency in recent years to date
the use of simulation in statistics only from the
early years of the twentieth century. For example,
Teichroew (1965) and Irwin (1978) suggest that its
earliest appearance may be in “Student’s” classical
investigation of the distribution of the ¢-statistic
’(Gosset, 1908a), where “Student” (William S. Gos-
set) generated 750 samples of size 4 by shuffling
3,000 cards labeled with anthropometric measure-
ments on 3,000 criminals and then grouping them
in 750 groups of size 4. Gosset also used the same
generated samples in his investigation of the distri-
bution of the correlation coefficient (Gosset, 1908b).
(See also Muller, 1978.) However, even more so-
phisticated uses of the technique can be found in
nineteenth century literature, and it is the purpose
of this note to present three such examples from
the last quarter of the nineteenth century. One of
these was published in America (by Erastus L.

De Forest, in 1876) and two in England (by
George H. Darwin, in 1877, and by Francis Galton,
in 1890).

The use of the word simulation in this context is
somewhat anachronistic; a common definition of
the period would be along the lines of that given by
the Century Dictionary (published in several edi-
tions, from 1889):

simulation, n. 1. The act of simulating, or
feigning or counterfeiting; the false assump-
tion of a certain appearance or character;
pretense, usually for the purpose of deceiving.

The Century entry went on to include a quotation
from Scribner’s Magazine,

The simulation of nature, as distinguished from
the actual reproduction of nature, is the pecu-
liar province of stage art [Kobbé, 1888, page
438].

The three passages to be discussed here are not the
product of stage art, nor were they concocted to
deceive. Rather, all three concern the artificial gen-
eration of normally distributed random numbers
for the express purpose of studying the properties of
complicated statistical procedures. All concern sim-
ulation in the modern sense of the word, as a
modern stochastic art for the study of statistical
science. All three involve the generation of half-
normal variates and the separate assignment of
randomly generated signs to the variates, but the
three involve three different randomizing devices.
De Forest drew labeled cards from a box, Darwin
used a spinner, and Galton employed a set of spe-
cial dice (Figure 1).

1. ERASTUS L. DE FOREST (1876)

Erastus Lyman De Forest (1834-1888) was a
graduate of Yale University (class of 1854) who
published a number of remarkable works in mathe-
matical statistics between 1873 and 1885. His life
and work are discussed in Stigler (1978), and
several of his papers (including the one involving
simulation) are reprinted in Stigler (1980). A major
portion of De Forest’s work was motivated by prob-
lems in the smoothing of life tables, where he
studied methods of local smoothing that included
optimality criteria for fit (least squares) and
smoothness (the minimization of expected fourth
differences). In the course of devising a test for the
goodness-of-fit of his smoothed mortality curves to
the crude empirical curves that were his data, he
was led to consider the distribution of the quantity
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FIG: 1. Ph.otographs of one each of the three types of Galton’s dice. These date from about 1890 and are perhaps the oldest surviving
device for simulating normally distributed random numbers. They are presently in the Galton Collection at University College London

(Box 150/4).

where v and v’ are the absolute values of indepen-
dent standard normal random variables. (De Forest
worked with logarithms to base 10.) We might now
characterize the distribution of this random vari-
able as half the logarithm of a variable with an
FQ, 1) distribution, but such a characterization
was not available in 1876. Anyway, De Forest did
not require the entire distribution; he would be
satisfied with the ‘“probable.error” (the median
deviation, or, .6745 times the standard deviation)
of the arithmetic mean of m independent copies of
this variable. He was also interested in the answer
to this question where both v and v’ are replaced by
averages of n independent similar quantities. That

is, De Forest required, for various m and n, the
probable error E’ of

m v 1 m _z
—Zlog(——,) =— Y log|=|,
m =1 v n m i=1 i
where
1
v, = — Z Uijs
n j=1
1 n
v = — > Vijs
n j=1

and all v,;, v}; are absolute values of independent
N(0, 1) random variables.
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By a delta-method argument, De Forest found
the approximation

oo ]2 (1 6745
STV m 8 Ven |

It was as a cheek on the accuracy of this approxi-
mation that he was led to his simulation study,
which we reproduce here. The simulation study,
which appears to have been based on sampling
without replacement, included an assessment of the

(113)

TABLE 2
Errors of equal frequency
P t P t P t P t
.005 .0044 255 .230 .505 .483 .755 .822
.015 .0133 .265 .239 .515 494 .765 .840
025 .0222 275 .249 .525 .505 .775 .858
.035 .0310 .285 .258 .535 .517 .785 877
.045 .0399 295 268 545 .528 .795 .896
.055 .0488 .305 .277 .555 .540 .805 .916
.065 .0577 .315 .287 565 .552 .815 .937
.075 0666 .325 .296 .575 .564 .825 .959

accuracy of the result.

From pages 23-25 of Interpolation and Adjust-

ment of Series, by E. L. De Forest (1876):

The demonstration of formula (113), however,
was not a strictly rigorous one, and it has been
thought desirable to test the accuracy of the
formula by trials made on a sufficiently large
scale, in the following manner.

The well-known function

p 2 t 2 4
e /0 e t
represents the probability that, in a system
whose mean error is V2, any error which
occurs will not exceed ¢ when taken without
regard to sign. The function becomes zero when
t is zero, and unity when ¢ is infinite. The
values of P, for all values of ¢ taken at inter-
vals of .01 from O to 2, may be found in a table
appended to Vol. II. of Chauvenet’s Astron-
omy. From that table the values of the variable
t have been obtained by simple interpolation,
for every value of the function P from .005 at
intervals of .010 up to .995, making in all 100
values of t. These values, corresponding as
they do to equal increments of .010 in the
value of P, from zero up to unity, may be
regarded as approximately a system of errors
of equal frequency, that is, errors any one of
which is as likely to occur as any other. These
100 errors are shown in the accompanying table
[the present Table 2]. They have been inscribed
upon 100 bits of card-board of equal size, which
were shaken up in a box and all drawn out one
by one, and entered in a column in the order in
which they came, like the errors v’ in column
(5) of Table VI, if the signs are neglected.
[Table VI, De Forest (1876, page 18), presented
the details of an example of the calculation of
his empirical estimates.]

They were again shaken up in the box and
drawn out and arranged in a second column,
like the errors v in column (6) of that table.
From these two columns 100 values of log(v/v’)

.085 .0755 335 .306 .585 .576 .835 .982
.095 .0844 345 316 .595 .589 .845 1.006
.105 .0933 .355 .326 .605 .601 .855 1.031
115 1023 .365 .336 .615 .614 .865 1.057
125 1112 375 346 625 .627 .875 1.085

135 .1202 385 .356 .635 .641 .885 1.115

145 1292 395 .366 .645 .654 .895 1.146
.1556 1382 405 .376 .655 .668 .905 1.181
165 .1473 415 .386 .665 .682 915 1.218
175 1564 425 396 675 .696 .925 1.259
.185 .165656 435 407 .685 .710 935 1.305
195 1746 445 417 695 725 945 1.357
.205 .1837 455 428 .705 .740 .955 1.418
215 1929 465 439 7156 756 965 1.491
225 .202 475 449 7256 772 975 1.585
235 211 485 460 735 .788 985 1.720
245 221 495 471 745 805 995 1.985

This table, taken from De Forest (1876, page 24), is essen-

tially a table of the inverse cumulative of a half-normal distribu-
tion with “probable error” (that is, median deviation) 1.0. As De
Forest explains, it is based upon a table in Chauvenet (presuma-
bly Table IX, as in Chauvenet 1891, vol. 2, page 593, which
gives P as a function of ¢). One typographical error is corrected
here, where he had .234 for .235 in column one.

were computed, just as in column (7) of the
table. Also, by taking v and v’ in groups of two,
four and five, three other columns were formed
containing the fifty, twenty-five and twenty
values of log(v/v’)y, log(v/v’), and log(v/v')s
respectively, after the manner of column (8) in
Table VI, making four such columns in all.
Since the two systems of errors v and v’ are
here known to be equivalent systems, the
arithmetical mean of all the values of log(v/v),
in either of the four columns will be theoreti-
cally zero, and may be taken as such in esti-
mating the probable error of the mean. The
sum of the squares of the deviations from this
mean in any column, therefore, will be simply
the sum of the squares of the numbers stand-
ing in that column, so that the probable error
of the arithmetical mean of all the values of
log(v/v’), in any column will be

_ .6745 S log? (l,)

v
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where m denotes the whole number of groups
of n errors each. The values of E’ thus ob-
tained are of course liable to some deviation
from the normal values, depending as they do
on the fortuitous sequence of the errors v and
v’ as they come from the box. To obtain a fair
average result, therefore, six separate sets of
drawings were made and treated in the man-
ner just described.* The means of the actual or
observed values of E’, as deduced from these
six trials, are shown in the following table,

n=1 n=2 n=4 n=>5

m=100 m=50 m=25 m=20

E’ (observed) .0423 .0334 .0332 .0311

E’ (theoretical) .0398 .0357 .0335 .0329

and the theoretical values given by formula
(113) are also shown for the purpose of compar-
ison. From the differences between the sepa-
rate results of the six trials and the means of
them all, it appears that each of the above
mean values of E’ (observed) is subject to a
probable error of about .0009. The agreement
between observation and theory is thought to
be as good as could be expected, under all the
circumstances. It justifies the belief that for-
mula (113) is accurate enough for practical
purposes, furnishing a value of E’ more trust-
worthy than could be obtained from the ob-
served errors in any particular case, and espe-
cially so when the number of terms in the
series is not large.

2. GEORGE H. DARWIN (1877)

George Howard Darwin (1845-1912), mathe-
matician and astronomer, was the son of Charles
Darwin and a cousin to Francis Galton. From 1883
he was the Plumian Professor of Astronomy and
Experimental Philosophy at Cambridge, and most
of his work concerned the earth, including tidal
theory and dynamic meteorology. In 1877, while a
Fellow at Trinity College, Cambridge, he published
an article on the smoothing of series of observa-
tions and the interpolation of surfaces, with partic-
ular attention to the application to meteorological
data.

Darwin’s main concern was to present an “em-
pirical rule” for smoothing series. In fact, as he
discovered while the paper was in press, the local
smoothing methods he discussed were similar to

*Or, speaking more accurately, there were only four columns
drawn, and these gave six different combinations of two and two
[De Forest’s footnote].

earlier work. A footnote stated:

Since this paper has been in the hands of the
printer, I have learnt that M. Schiapparelli has
written a work entitled Sul modo di ricavare la
vera expressione delle leggi della natura dalle
curve empiriche; (Milan, 1867), and that M. De
Forest has written on the subject in the ‘An-
nual Reports of the Smithsonian Institution’
for 1871 and 1873, and in the ‘Analyst’ (Iowa)
for May 1877.

The De Forest papers he cited (De Forest, 1873,
1874, 1877) all discuss De Forest’s methods for
adjusting series, and in that respect there was con-
siderable overlap (De Forest’s development went
further). However, Darwin made no mention of De
Forest’s 1876 pamphlet, which included his only
treatment of simulation. Since that pamphlet was
privately printed and not circulated as a periodical,
and no particular emphasis was put upon simula-
tion as a method, it is unlikely that Darwin was
initially aware that De Forest had preceded him in
this regard, although De Forest did cite the pam-
phlet in the July 1877 continuation (De Forest,
1877b) of the “Analyst” article Darwin mentioned
in the footnote (De Forest, 1877a), and it is plausi-
ble that Darwin saw the work eventually. In any
event, Darwin’s implementation differed from De
Forest’s: where De Forest had drawn tickets from a
box, Darwin constructed a spinner. A circular card
was marked along its edge with a scale determined
by a half-normal cumulative distribution. By spin-
ning the card, Darwin could generate half-normal
variates. He attached signs to these by tossing
a coin, and he would then attach the resulting
“errors” to a sinusoidal function in order to
experiment with his “empirical rule” for smoothing
series. As a test of fit, he was content to observe
that “The general result of a good many trials was
such as to justify the smoothing process.” He did
not give details on how finely the scale was gradu-
ated (or how the scale was constructed). He did
advise that the disk (which he at one point referred
to as “the roulette”) be stopped manually while it
was still spinning rapidly. Presumably this was
both to diminish potential bias toward one section
of the disk and to speed up the procedure.

From pages 6-7 of “On Fallible Measures of
Variable Quantities,” by G. H. Darwin (1877):

The merits of an empirical rule like this
must of course depend on how it seems to work
practically. I therefore devised the following
scheme for testing it. A circular piece of card
was graduated radially, so ghat a graduation
marked x was 720 [{e * dx/Vr degrees
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distant from a fixed radius. The card was made
to spin round its centre close to a fixed index.
It was then spun a number of times, and on
stopping it the number opposite the index was
read off." From the nature of the graduation
the numbers thus obtained will occur in ex-
actly the same way as errors of observation
occur in practice; but they have no signs of
addition or subtraction prefixed. Then by toss-
ing up a coin over and over again and calling
heads + and tails — , the signs + or — are
assigned by chance to this series of errors.
About a dozen equidistant values of some func-
tion (say sine or cosine) were next taken from a
Table, and the errors added to or subtracted
from them in order. The errors may be made
either small or large by multiplying them by
any constant. The falsified values may then be
fairly taken to represent a series of observa-
tions; but we here know what are the true
ones. The corrections were then applied, in
some cases arithmetically and in others graph-
ically, and the deviations of the corrected
values from the true were observed.

In other cases a series of equidistant ordi-
nates were taken, and a sweeping free-hand
curve was drawn to represent the true curve,
and the several ordinates of this curve were
falsified by the roulette and then corrected by a
graphical application of the rule. The general
result of a good many trials was such as to
justify the smoothing process. Where the errors
were considerable the mean error was much
reduced, although the actual error of some or-
dinates was increased; where the errors were
very small the mean error was even slightly
increased. Although the danger of oversmooth-
ing was obvious, and the sharpness of the fea-
tures of the curve was generally diminished,
yet I think it was clear that the method might
generally be employed with advantage, espe-
cially in such cases as the attempt to deduce
some law from statistics or a series of baromet-
ric oscillations of considerable periods. The
errors must be very large to justify a quadruple
operation. This method of trial could not be so
well applied to testing the case of an odd num-
ber of smoothing operations, where we are left
finally at intermediate ordinates.

' It is better to stop the disk when it is spinning so fast that the
graduations are invisible, rather than to let it run out its course
[Darwin’s footnote].

3. FRANCIS GALTON (1890)

Francis Galton (1822-1911) was such a fertile
source of statistical ideas over his long life that it
should not cause surprise that he contributed to
simulation as well. Indeed, his well-known
probability machine, the Quincunx (Stigler, 1986,
Chapter 8) can be viewed as a simulation device,
although of a different type than those we consider
here. Galton was in frequent correspondence with
his cousin George Darwin, and it is possible that
Darwin’s idea of a simulation spinner arose from
communication with Galton, although I have no
direct evidence of this. (A January 12, 1877 letter
from Galton to Darwin explaining the Quincunx is
reproduced in Stigler (1986, pages 278-279).)

Galton’s 1890 letter to Nature, reproduced in its
entirety below, differs from the earlier works in the
important respect that it purports to present a
general method for simulation. The investigation of
processes for smoothing or interpolation are men-
tioned as applications, but Galton’s aim clearly
goes further. And he specifically claims that his
method is superior to the alternatives of shuffling
cards, drawing marked balls from a bag, or spin-
ning a roulette wheel. Galton was surely aware of
Darwin’s paper, and, while I doubt he had seen De
Forest’s, it would not have surprised him.

Galton’s scheme was ingenious. For two cen-
turies it had been apparent that a well-made die
could produce a random selection from among six
possibilities. Galton may have been the first to see
how this could be enlarged to 24, by writing the
possibilities along the edges of the die!

In essence, Galton’s scheme could be viewed as a
refinement of De Forest’s. One die is used to pro-
vide a random selection from 24 different values.
The values were taken from a table he had given in
his 1889 book Natural Inheritance and were con-
structed to give a discretized version of a sample
from a half-normal distribution with “probable er-
ror”’ (median error) 1.0. The three largest values
were marked with parentheses, indicating that if
they were observed, attention should instead be
given to a second die with a much finer scale
covering the range 2.29 to 4.55. A third die was
used to attach signs to the selection; these were
arranged in groups to save work.

From Nature, vol. 42, pages 13-14 (May 1, 1890):

DICE FOR STATISTICAL EXPERIMENTS

Every statistician wants now and then to test
the practical value of some theoretical process,
it may be of smoothing, or of interpolation, or
of obtaining a measure of variability, or of
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making some particular deduction or infer-
ence. It happened not long ago, while both a
friend and myself were trying to find appropri-
ate series for one of the above purposes, that
the same week brought me letters from two
eminent statisticians asking if I knew of any
such series suitable for their own respective
and separate needs. The assurance of a real
demand for such things induced me to work out
a method for supplying it, which I have already
used frequently, and finding it to be perfectly
effective, take this opportunity of putting it on
record.

The desideratum is a set of values taken at
random out of a series that is known to con-
form strictly to the law of frequency of error,
the probable error of any single value in the
series being also accurately known. We have
(1) to procure such a series, and (2) to take
random values out of it in an expeditious way.

Suppose the axis of the curve of distribution
(whose ordinates at 100 equidistant divisions
are given in my ‘“Natural Inheritance,” p. 205)
to be divided into n equal parts, and that a
column is erected on each of these, of a + or
a — height as the case may be, equal to the
height of the ordinate at the middle of each
part. Then the values of these heights will
form a series that is strictly conformable to the
law of frequency when 7 is infinite, and closely
comformable when n is fairly large. Moreover
the probable error of any one of these values
irrespectively of its sign, is 1.

As an instrument for selecting at random, I
have found nothing superior to dice. It is most
tedious to shuffle cards thoroughly between
each successive draw, and the method of mix-
ing and stirring up marked balls in a bag is
more tédious still. A teetotum or some form of
roulette is preferable to these, but dice are
better than all. When they are shaken and
tossed in a basket, they hurtle so variously

against one another and against the ribs of the
basket-work that they tumble wildly about, and
their positions at the outset afford no percepti-
ble clue to what they will be after even a single
good shake and toss. The chances afforded by a
die are more various than are commonly sup-
posed; there are 24 equal possibilities, and not
only 6, because each face has four edges that
may be utilized, as I shall show.

I use cubes of wood 1} inch in the side, for
the dice. A carpenter first planed a bar of
mahogany squarely and then sawed it into the
cubes. Thin white paper is pasted over them to
receive the writing. I use three sorts of dice, 1.,
I1., and III., whose faces are inscribed with the
figures given in the corresponding tables. Each
face contains the 4 entries in the same line of
the table. The diagram shows the appearance
of one face of each of the 3 sorts of dice; II. is
distinguished from I. by an asterisk in middle;
III. is unmistakable. It must, however, be un-
derstood, that although the values are given to
the second place of decimals both in the tables
and in this diagram, I do not enter more than
one decimal on the dice. The use of the second
decimal is to make multiplication more accu-
rate, when a series is wanted in which each

"term has a larger probable error than 1.

In calculating Table 1., n was taken as 48.
This gives 24 positive and 24 negative values
in pairs, but I do not enter the signs on the
dice, only the 24 values, leaving the signs to be
afterwards determined by a throw of die III. It
will be observed that the difference between
the adjacent values in Table I. is small at first,
and does not exceed 0.2 until the last three
entries are reached. These, which are included
in brackets, differ so widely as to require ex-
ceptional treatment. I therefore calculated
Table II. on the principle of dividing that por-
tion of the curve of distribution to which those
entries apply, into 24 equal parts and entering
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the value of the ordinate at the middle of each
of those parts in that table. Moreover, instead
of entering the three bracketed values on die I.
I leave blanks. Then whenever die I. is tossed
and a blank is turned up, I know that I have to
toss die II., and to enter the value shown by it.

The precise process I follow is to put 2 or 3 of
dice I. into a small waste-paper basket, to toss
and shake them, to take them out and arrange
them on a table side by side in a row, squarely
in front of me, but by the sense of touch alone.
Then for the first time looking at them, to
write down the values that front the eye. If,
however, one of the blank spaces fronts me, I
leave a blank space in the entries. Having
obtained as many values as I want from die I.,
I fill up the blank spaces by the help of die II.

Lastly, the signs have to be added. Now as
24 = 16 + 8 = 2 + 23, it follows that 16 of the
edges of die III. may be inscribed with se-
quences of 4 signs in every possible combina-
tion, and the remaining 8 with sequences of 3
signs. Then when die III. is thrown, the several
entries along its front edge, which are 4 or 3 in
number as the case may be, are inserted in an
equal number of successive lines, so as to stand
before the values already obtained from the
other dice.

The most effective equipment seems to be 3
of die I., 2 of die II., 1 of die III., making 6 dice
in all.

Values for Die I.
003 --- 051 - 1.04 --- 1.78
011 --- 059 --- 114 --- 195
019 --- 067 --- 125 --- 215
027 ... 0.76 --- 137 -+ (2.40)
03 --- 0.8 --- 150 --- (2.75)
043 --- 094 --- 163 --- (3.60)
Values for Die II.

229 -.- 251 277 ---  3.25
232 ... 255 --- 283 .-+ 3.36
23 -+ 259 -+ 290 --- 3.49

. 239 --- 264 --- 298 --- 3.65
243 --- 268 --- 306 --- 4.00
247 --- 272 --- 315 .-+ 455

Values for Die III.

+44++  +-—+ ——++ -+
+++-  H+--=—  ——4- 4--
++-+  —+++ ———+  —++
+4+-—  —4+-  ——== —+-
+-4++  —+-4+ +++ -—+
+-+-  —4-= 44— -—-

S. M. STIGLER

CONCLUSION

All three of these works display ingenuity, and
all were potentially useful as general techniques
for investigating properties of statistical proce-
dures, yet not one of them seems to have attracted
a following. There are no doubt several reasons for
this. Two of the techniques (De Forest’s and Dar-
win’s) made no claim to general usefulness, and
their potential may have gone unnoticed. All three
required specially made equipment, and while in
no case should that have been an insurmountable
difficulty, I believe that this should not be dis-
counted—after all, simulation has only come into
widespread use with the ease of implementation in
modern computers. A contributing factor in this
neglect may have been that those statisticians who
might have tried Galton’s device (say, Edgeworth,
Pearson, Weldon) did not consider their problems
as suitable for investigation in that way. The
simulation techniques were all tied to the normal
distribution, and all involved generating errors to
be added to a signal. In some cases—least squares,
for example—where that model might have been a
reasonable supposition, Edgeworth and Pearson
were usually capable of doing reasonably well with
other approaches. The smoothing problems (really
a sort of nonparametric regression) where the tech-
niques appeared were of a quite different type.
Nonetheless, one might expect that problems in
meteorology or the estimation of growth curves
would have provided potential applications for sim-
ulation. It is a distinct possibility, of course, that as
historians of statistics take a closer look at the
literature of the early decades of this century they
will find that variants of these techniques were
employed far more often than is now believed. In
any event, these works of De Forest, Darwin, and
Galton are eloquent testimony to the ingenious
scientific energy of that era.
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