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Comment

Terry Speed

Geoff Robinson.is to be congratulated for writing
this paper. It is lucidly written, it bridges a number
of gulfs that have developed in our subject, and it is
provocative. That he wrote it is clearly a Good
Thing! I welcome the opportunity to say this and to
make a few remarks that he might have made. I
believe that these remarks will strengthen his al-
ready strong case for a much more explicit recogni-
tion of the role of BLUPs in our subject.

1. THE BAYESIAN DERIVATION

In Section 4.2 Robinson describes a Bayesian
derivation, stating that the posterior mode is given
by the BLUP estimates when (8 is regarded “as a
parameter with a uniform, improper prior distribu-
tion and u as a parameter which has a prior distri-
bution which has mean zero and variance Go?2,
independent of B8.” All this is certainly true, but it
may be helpful to add that if 8 is given a proper
prior (normal) distribution with mean zero and
variance Bo?, say, with u as before, then all of the
results one could possibly want (posterior means,
posterior variances, etc.) can be derived straightfor-
wardly by the standard Bayesian formulae. Then
all one has to do to derive the corresponding BLUP
formulae is let B~! — 0. An identity which I have
found useful, perhaps even indispensible, for carry-
ing out this last step, is discussed in de Hoog, Speed
and Williams (1990). Note that the approach just
described is essentially that adopted in Dempster,
Rubin and Tsutakawa (1981).

2. FORMULAE FOR i

The only actual formulae given in the paper for #
in the general case is the rather complicated one in
Section 4.3. This is a pity, because there is an
,obvious “plug-in”’ expression, namely

(1) & =GZTV-(y - XB),

where V = ZGZT + R. This may be viewed as the
result of regressing u on y, with the mean Xg of y
replaced by its obvious linear estimator.

A variant of (1) is

(1) 2= (2"R"Z+ G ") 'Z"R"}(y - XB).
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The simpler formulae (5.3) and (5.4) arising when
there are no fixed effects also have more general
analogues, namely

) (ZTAZ + G~Y)& = Z"Ay,

where A = R~'(I - S), S = P}y, being the pro-
jector onto #(X) orthogonal with respect to (a, b)
= aTR~1b, and for the variance-covariance matrix
of i:

(3) {61 - (z7az + G71) '} o2

These expressions can be derived readily using the
Bayesian approach outlined in (1) above, together
with the matrix identity already referred to. I note
in passing that Robinson’s formulae (5.4) is in fact
the variance-covariance matrix of # — u, not, as
stated, of .

3. SOLVING THE BLUP EQUATIONS

Perhaps in order to avoid messy algebra, Robin-
son has said little about the actual solution of the
BLUP equations. I know that he has worked on
this problem with some enormous data sets, and so
I am hesitant to comment here. However, it does
seem worthwhile to make one easy point, in order
to connect this topic with another, closely related
one. The obvious rearrangement of the first equa-
tion in (1.2),

(4) XTR'XB = XTR (y - Za),

can be combined with either (1) or (1) above, to
form the basis of an iterative solution of the BLUP
equations, provided, of course, that the separate
problems are readily solved. Just such a strategy is
recommended more generally in Green (1985) in
the context of smoothing, a topic to which I shall
return.

It is also worth pointing out that (1°) or (2) is to
be preferred when G~! has simple structure,
whereas if G is simple and V is readily inverted,
(1) is more useful. In many animal breeding prob-
lems it is G~! which has the simpler structure, as
it also does in the Kalman filter case.

4. REML AND BLUP

In Section 5.4 Robinson states that “REML is the
method of estimating variance components that
seems to have the best credentials from a Classical
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viewpoint.” What he does not say, which should be
of interest to readers of his paper, is that REML
and BLUP are intimately connected. Indeed one
view—certainly not the only one—of the REML
equations for variance components is that they are
simply equating observed with expected sums of
squares of BLUPs. This observation goes back to
the original paper by Patterson and Thompson
(1971; see also Harville, 1977) and can be concisely
stated within Robinson’s framework as follows.

Suppose that Z=[Z, : --- : Z] is blocked,
corresponding to ¢ random effects, with Z; being
nxgq,i=1,...,¢, u=(u; : -+ ! u,) is simi-
larly blocked into ¢ sets of random effects, and
finally G = diag(G,,...,G,) is diagonally blocked
with G; = v,I,,, where ¢? = v,0? is the variance of
each independent component of the ith random
effect u;. It is also convenient to denote e by u,,
put Z, =1, and v, = 1.

With this notation the REML equations take the
form

% — A% -
(5) yT{V IQ?‘lZV lQ}y = tr{r'?V 1Q}
i=0,...,c, where Qy = X8 and @ =I1- Q. (By
contrast, the ML equations have no @ term in the
right-hand expression.)
Turning now to BLUPs in this context, they are
(in the form (1) above)

(6) 2, =v,2'V'Qy
i=0,...,c, and
(7a) var(4;) = (G; - U)o®

i=1,...,c, where U, is the ith diagonal block of
the matrix (ZTAZ + G~')~'. Furthermore,

(7b) var(8) = V-'Qo? = (A — AZUZ"A)q?
where A = R™'S was defined earlier, and U =

(ZTAZ + GV~ If we write p, = v tr(U), i =
1,...,c, then it follows that for i =1,...,c

(8a) . E|a;|%= (q; - pi)"i2
and

(8b) E|&|2=|(n-p)- é(q,.-p,.)

Now the striking thing is this: the REML equations
(5) can rather easily be manipulated into a form
just like (8a) and (8b), with the expectation symbol
IE omitted. Although this is not necessarily the
best way to solve these equations, the repeated
calculation of BLUPs and then updating the vari-

ance components is one simple iterative scheme
which works quite well.

5. PENALIZED LEAST SQUARES

Suppose that we regard (1.1) as an ordinary
(“fixed effects) linear model, and that we wished
to estimate 8 and u by R-weighted least squares
with a “penalty” u”G'u being added to the sum
of squares term being minimized. Then we would
obtain just the expression given in Section 4.1,
which Henderson minimized. Such penalties are
added for many reasons: to smooth, to improve the
condition of the matrix to be inverted, and so on,
and it has long been recognized that this is a way of
making one’s linear model “quasi-Bayesian.” More
precisely, it turns the standard least squares prob-
lem into a case of BLUP. This practice has a long
history, dating back at least to Whittaker (1923).

6. SMOOTHING SPLINES ARE BLUPS

Continuing with the theme of the previous re-
mark, let us see how the smoothing splines popu-
larized by G. Wahba (see her 1990 monograph for a
comprehensive exposition) are just BLUPs. This
observation corrects the terminology which has
been used in the spline literature for over a decade,
for the Bayesian interpretation of the smoothing
spline—with a partially improper prior—is just the
statement heading this section.

It is simplest to deal with cubic smoothing splines
on the interval [0, 1]. If the observations are taken

at0<¢, < -+ <t,=<1,and are
Yi = g(ti) + ¢,
i=1,...,n, where g is an unknown smooth func-

tion, then the function g, which minimizes
n 1
R (- 8(6)) + 0 [ (g (w) du
0

over a suitable class G, ® G, of functions, has the
values

y= (g)\(ti))
(9) =Xx(XTV-iX) 'XTv-ly
+Q, VY (I- X(XTV-1X) ' XTV-1)y,
where
X=(t#1),
Qn(i’j) = Q(ti’ tj)’

..,nk=1,2;

l1=<i,j=<n,;

i=1,.

and

1
Q(s,t) = / (s-w),(t-w), dw,0=<s,t=<1.
0
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It is easy to check that (9) is just the fitted value
»=XB + Za,

where, in Robinson’s notation, 8 and & are the

BLUPs, X is as given above, Z =1, = R, and G =

(nN7'Q,. .

Certainly there is more to smoothing splines than
BLUPs; for example, estimates of the value of the
function g at values of ¢ other than those observed,
but in many applications (9) and related expres-
sions are all that is required.

By now it should come as no surprise to hear that
the technique termed generalized maximum likeli-
hood (GML) for estimating the smoothing parame-
ter A is no other than REML in this BLUP problem.
This is readily checked by comparing formulae in
this paper with ones in Wahba (1990).

With only very few changes, the identification
just made to show that smoothing splines are
BLUPs shows that the model robust response sur-
face designs of Steinberg (1985) are also BLUPs. In
this case the u term corresponds to sums of tensor
products of orthogonal polynomials.

7. LINEAR SMOOTHERS ARE ALMOST BLUPS

There is a sense in which all linear smoothers
(see Buja, Hastie and Tibshirani, 1989) are inti-
mately related to BLUPs. A typical linear smoother
S satisfies S® = T as n — o, where T is idempo-
tent. This corresponds to a projector onto the sub-
space Z(X) in Rgbinson’s model (1.1), and so Ty
corresponds to XB. Thus (S — T)y corresponds to
Zu, and in some situations it is even possible to
construct a covariance matrix V such that this
correspondence is precise. Furthermore, many
smoothers S have form S()\), where X\ is a parame-
ter (bandwidth, variance ratio, smoothness penalty,
etc.) that defines a family of similar smoothers. In
such cases S(o) often has the form T + W, where

W is another projector, while S(0) = T. Many of
the problems and the formulae in the theory of
linear smoothers are analogues of ones arising in
the theory of BLUPs.

8. INTERVAL ESTIMATES INVOLVING BLUPS

In Section 5.6 Robinson briefly alludes to work
done on estimating the precision of BLUP esti-
mates when uncertainty in the dispersion parame-
ter is taken into account. This general problem,
and in particular the assignment of interval esti-
mates, has attracted a lot of attention in the litera-
ture on smoothing splines (see, e.g., Nychka, 1988,
for a recent review). Much concern has been given
to the question of what, if any, coverage properties
can be expected of a “Bayesian” posterior interval.
Making interval statements about an object which
is an estimate of the sum of fixed and random
effects is bound to cause problems of interpretation
to many people, and I would be interested to hear
Geoff Robinson’s comments on this point. I know
that he has studied these matters closely in the
past.

9. SUMMARY

In closing these few remarks, I cannot resist
paraphrasing I. J. Good’s memorable aphorism: “To
a Bayesian, all things are Bayesian.” How does
“To a non-Bayesian, all things are BLUPs” sound
as a summary of this fine paper?
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