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Some Applications of Number-Theoretic

Methods in Statistics

Kai-Tai Fang, Yuan Wang and Peter M. Bentler

Abstract. Number-theoretic methods (NTM’s) are a class of techniques
by which representative points of the uniform distribution on the unit
cube of R° can be generated. NTM have been widely used in numerical
analysis, especially in evaluation of high-dimensional integrals. Recently,
NTM’s have been extended to generate representative points for many
useful multivariate distributions and have been systematically applied in
statistics. In this paper, we shall introduce NTM’s and review their appli-
cations in statistics, such as evaluation of the expected value of a random
vector, statistical inference, regression analysis, geometric probability and

experimental design.
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1. INTRODUCTION

Number-theoretic methods (NTM’s) or quasi-
Monte Carlo methods are a class of methods which
represent a combination of number theory and nu-
merical analysis. As noted by Niederreiter (1978),
“The widest range of applications, and indeed the
historical origin of these methods, is found in numer-
ical integration, but related matters such as interpo-
lation problems and the numerical solution of inte-
gral equations can also be dealt with successfully.”
Korobov (1959, 1989), Niederreiter (1978, 1988,
1992) and Hua and Wang (1981) give a compre-
hensive review in a bibliographic and historical
setting.

The reader may have the following questions.
What is a number-theoretic method and how is it
applied to various problems in statistics? We shall
illustrate that all the applications can be reduced
to one key problem: how to find a set of points
called an NT-net which are uniformly scattered in
the s-dimensional unit cube C*. A so-called number-
theoretic method is a method by which we can gen-
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erate such a set in a certain sense. Note that a “uni-
formly scattered” set of points generated by NTM is
not a sample from the uniform distribution on C*, the
unit hypercube in R, by the Monte Carlo method.
Figure 1la, b present the plots for the two sets of
points of size 17.

Although there is a close relationship between
NTM and the Monte Carlo method, it appears that
only a few statisticians have directed their attention
to NTM and their applications in statistics. The first
applications of the NTM in statistics were naturally
in evaluating probabilities and moments of a mul-
tivariate distribution (e.g., Fang and Wu, 1979, and
Zhang and Fang, 1982). Fang (1980) and Wang and
Fang (1981) were first to apply the NTM idea to ex-
perimental design, and they proposed a new design
which is called a uniform design. This may be the
first application of NTM in statistics except in inte-
gration. Since then many nice results were obtained
on the uniform design in many areas of applications
in China. Shaw (1988) gave a detailed discussion on
applications of NTM to Bayesian statistics, mainly
for numerical computation of posterior density and
moments. Recently Wang and Fang (1990a, b, 1992),
Fang and Wang (1990, 1991), Fang, Yuan and Bentler
(1992) and Fang, Zhu and Bentler (1993) have sys-
tematically studied applications of NTM in statis-
tics. Most results mentioned in this paper are from
these references and the forthcoming book of Fang
and Wang (1993).

Why are NTM’s powerful?
ple example.

Let us see a sim-
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F1G6. 1. Two kinds of sets: (a) random numbers; (b) an NT-net.

ExaMPLE 1. Suppose that random vector x ~
N3(0, Is) and we want to evaluate the probability of
x falling in €3 = [0, 113, that is,

1,1 p1
p= / f / 2n)~3/2 exp{— 1(x? + x2 +x§)]
o Jo Jo

~dxy dxg dxg

1

= [ f(®) dx,
c3

say. In fact, the probability p = [®(1) — ®(0)]® =
0.039772181953, where ®(x) is the cdf of the stan-
dard normal distribution. Suppose that {xy, ..., X,}
is a set of points in C3. If {x;} is uniformly scattered
in C3, we can estimate p by

~ 1
(2) p= Z f(X).
k=1

Let us choose the following three sets of points: (i)
equi-lattice points

2i-12j-12-1 . .
{ 2m ) 2m £ 2m ’ l!]yk_]-’z,'--’m]’
(ii) random numbers in C? generated by the Monte
Carlo method; and (iii) points generated by the good
lattice point method, one of the NTM’s described in
_ Section 2. We choose the points from the table given

by Hua and Wang (1981) in (iii). Since the number of
points in (i) should be of the form n = m3, we choose
the minimum m such that m3 > n. Table 1 gives
comparisons of the errors p — p obtained when using
the three sets of points. In this case, the number-
theoretic method is the best.

In general, if f(x) is a continuous function of finite
variation in C¥, the integral

p=| f®dx
C:

can be estimated by p in (2), where {x;} can be
generated by one of the above three methods.
It is known that under a certain condition, as
n— o0, |p—pl<O0®@) by using equi-lattice
points; |p — p| <O(n~1/2) by using random numbers;
and |p — p| <O(n~1log’ n) by NTM.

In this paper we shall discuss some applications
of NTM’s in statistics and present some new results.
The paper is organized as follows. In Sections 2 and 3
we introduce the NTM in a general sense; in particu-
lar, we shall recommend some methods of generating
representative points of a multivariate distribution.
In Section 4 we shall consider evaluation of E(f(x)),
where x is a random vector with a given density func-
tion and f is a continuous function. In particular,
when the domain of an integral is not a rectangle,
some useful methods are suggested. The solution
of many statistical problems needs theory and vari-
ous algorithms in optimization. However, most cur-
rent algorithms in optimization require that the ob-
jective function is unimodal and differentiable. In
Section 5 we introduce a sequential number-theoretic
method for optimization (SNTO), which is available
for multiextremal global optimization problems, and
we discuss its applications in statistics. NTM’s also
can be applied to statistical inference, such as tests
for multinormality and for sphericity, and to robust
estimation of the mean vector. We will treat these
applications in Section 6. In the last two sections,
we give applications of NTM in geometric probabil-
ity and other topics.

TABLE 1
Errors p — p by the three sets of points

Equi-lattice Random Good lattice

n points n numbers n points
64 —2.22E - 04 35 —2.12E - 03 35 —1.16E — 04
125 -141E-04 101 1.94E -03 101 5.38E — 05
729 —-4.36E-05 597 6.35E - 05 597 —3.98E - 06
1728 —-2.45E - 05 1626 —6.56E — 05 1626 6.69E — 06
5832 —1.09E - 05 5037 —-3.25E - 05 5037 2.63E — 07
39304 —3.07E — 06 39029 1.34E — 05 39029 2.44E — 09
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2. NUMBER-THEORETIC METHODS

In this section we shall briefly introduce NTM in
terms of “statistical language.” Let F(x) be a con-
tinuous multivariate distribution in R® and » be a
given integer. We are required in many applications
to find n points x;, ..., X, in R such that they form a
good representation for F(x). As we shall see, a set of
good representative points (or rep-points for simplic-
ity) can be generated by NTM. There are a number
of measures for the closeness of the representation.
The most commonly used measure is the so-called
discrepancy. A more general concept is given as
follows.

DEFINITION 1. Let P = {x;, k= 1,...,n} be aset
of points in R® and F, (x) be its empirical distribution,
that is,

Fu(x) = % > Ixi <x),
i=1

where I{A} is the indicator function of A, and all in-
equalities are understood with respect to the compo-
nentwise order of R*. Then

3) Dp(n, P) = sup |F,(x) — F(x)|

X€R*

is said to be the F-discrepancy of P with respect to
F(x).

When F(x) is the uniform distribution on C* =
[0, 1], denoted by U(C*®), the F-discrepancy reduces
to the common discrepancy in the literature (cf. Hua
and Wang, 1981). In this case we shall use D(n, P)
instead of Dr(n,P), and discrepancy instead of F-
discrepancy. Obviously the F-discrepancy is a mea-
sure of representation of P with respect to F(x) and
is just the Kolmogorov-Smirnov distance.

DEerFINITION 2. For given F(x) and n, a set
P*={x, k = 1,...,n} is called the set of opti-
mum rep-points with respect to F(x) if Dg(n, P*) =
mingp Dr(n, P), where P runs over all sets of n points
in RS.

The following lemma shows that a set of optimum
rep-points always exist for every given continuous
univariate distribution.

LEMMA 1. Let F(x) be a continuous distribution
function and let F~1(x) be its inverse function. Then
the set {F~1((2i — 1)/(2n)), i .= 1,...,n} with F-
discrepancy 1/(2n) is the set of optimum rep-points
with respect to F(x).

When s > 1 it is difficult to find the optimum
rep-points even in the simple case of U(C*). Hence

we want to find a set of points that has a low F-
discrepancy.

An open problem in number theory states that for
every given set P of n (> 2) points and every s > 2 we
have

4) D(n,P) > C(s)ntlog’ !,

where C(s) is a constant depending on s. For s = 2
this conjecture was proved by Schmidt in 1964 [see
Schmidt (1970)]. Thus if we can find a sequence of
sets P,, where P, has n elements such that the order
of D(n, P,) is near to the right-hand side of (4), then
P, can be regarded as a set of representative points
of U(C¥).

DerFINITION 3. Let P,, n € N, where N is an in-
finite subset of nonnegative integers, be a sequence
of sets of points in R* with a certain structure, and
let F(x) be an s-dimensional distribution function. If
Dr(n,Py) = O(n~'**) as n — oo, where 0 < ¢ < 1,
the points of P, are called rep-points of F(x).

When F(x) is the uniform distribution U (C*), the
points of P, are called uniformly scattered on C* if
D(n,P,) — 0 as n — oo. In the literature most au-
thors use “uniformly distributed” for our “uniformly
scattered.” In statistics, the words “uniformly dis-
tributed” have an exact meaning which is different
from the present one. Therefore, we recommend
using the word “scattered.” For simplicity a set of
rep-points of the uniform distribution on a bounded
domain D is called an NT'net on D. Points of an
NT-net on C* are often called quasirandom num-
bers in the literature, because in some circumstances
quasi-random numbers can be used instead of ran-
dom numbers.

For the random number sequence P, generated by
the Monte Carlo method, Chung (1949) and Kiefer
(1961) pointed out that

(5) D(@n,?,) = 0(n'1/2(log logn)l/z)

with probability 1. Halton (1960) proved that for
s > 1 there exist an infinite sequence {x1, X3, ...,}
satisfying

(6) D(n,®?,) = O(n"'(logn)*),

., X}, and for s > 2 there exists a
., X,,} and

where P, = {x1,..
sequence P, = {x,1, ..

@) D@, P, = O(n_l(logn)s_ 1).
His results suggest that we can find a sequence P,

with a lower discrepancy than that generated by the
Monte Carlo method. By comparing (5) and (6) or
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(7), it is now clear that NTM provide a more powerful
tool than the Monte Carlo method when s is not very
large. We now introduce several methods by which
the sequence of NT-net on C* can be obtained.

2.1 The glp Set

The set obtained by a so-called good lattice point
modulo n is called the glp set, which is often used
and is convenient for computations.

Let (n; hy, ..., hs) be a vector of integers satisfying
1<hi <n, his#h;fori=j,and s <n. Let
2kh; — 1
€©)) xki=l : }, =1,..,8k=1,...,n
2n

where {x} is the fractional part of x. Then the set
P = X = (Xk1,...,%s5), Kk = 1,...,n} is called
the set of lattice points of the generating vector
(n; hy, ..., hs). If the sequence P, has discrepancy
D(n, D,) = O(n~1+?), the set P, is called a glp set.
Korobov (1959) and Hlawka (1962) proved the ex-
istence of a sequence of glp sets. For the practical use
of NTM’s we need the generating vector (n; hq, ..., hy)
for given n. It is very heavy computational work to
find the best generating vector and associated set
of lattice points that has the smallest discrepancy
among all possible sets of lattice points. Therefore,
Korobov (1959) suggested considering (h, ..., k) to
be the form
9) (hy,....hy) = (1,a,a2, ...,a’_l) (mod n),
where a is an integer and 0 < a < n. Many tables
of generating vectors can be found in Hua and Wang
(1981) for 1 < s < 19, in Wang and Fang (1981) for
small n and in Shaw (1988) for large s and small n.

2.2 The gp Set

Let v = (31, ...
points of

,¥s) € RS. If P, forms the first n

(10) [ ((rik}, -, (vak)), k= 1,2, ... ]

where {x} denotes the fractional part of x, with dis-
crepancy

D(n) = O(n_l"'s) asn — 0o,

then the set P, is called a gp set and « a good point.

Baker (1965) and Schmidt (1970) proved the exis-
tence of the gp set. The following are some useful
good points:

(a) Let py, ...

(11) v = (/1> /P5)-

, s be the first s primes. Take

(b) Let p be a prime and g = p/¢+D, Take

(12) v = (q,q2,...,qs).

The reader can find other useful methods such
as Halton, scrambled Halton, Haber, Hammersley,
Faure and Sobol sequences in Hua and Wang (1981),
Shaw (1988) and Niederreiter (1987, 1988, 1992).
Shaw recommends the use of the glp set by compar-
ison among several methods. Our experience leads
to a similar conclusion, but other methods are still
useful.

3. GENERATION OF REP-POINTS OF
A MULTIVARIATE DISTRIBUTION

The NTM’s mentioned in Section 2 only concern
the generation of rep-points of the uniform distribu-
tion U(C*). However, rep-points for a given mul-
tivariate distribution are often required in many
problems. The Monte Carlo method provides vari-
ous techniques, such as the inverse transformation
method, the compositional method, the acceptance—
rejection method and the conditional distribution
method for generating an observation from a given
distribution. Most of these techniques can be used
similarly in generating rep-points of a given distribu-
tion. However, some methods, such as acceptance—
rejection, are difficult to apply in NTM.

Let x be a random vector in R*, and let F(x) be its
distribution function. Suppose that F(x) is continu-
ous and x has a stochastic representation

(13) X = h(Y),

where y ~ U(C"), t < s, and h is a continuous
function on C’. We want to generate rep-points for
F(x). The natural idea is as follows: we first gener-
ate an NT-net {¢c;, k = 1,...,n} on C’, and then let
x = h(ey), k = 1,...,n. Then {x;} is a set of rep-
points of F(x). To show this idea to be true, we need
to find the F-discrepancy of {x;} with respect to F(x).

When F (x) has independent marginals F;(x;), that is,
(149  F®=F@&....x) =[] F@),
i=1

the inverse transformation method suggests
(15) x¢ = (F{'(cia), ... FMews)), k=1,...,m,

where {¢; = (ck1,...,cs), k=1,...,n}is an NT-net
on C*. Then the F-discrepancy of {x;} with respect
to F(x) equals the discrepancy of {¢;}. In general, it
is very difficult to find the F-discrepancy of {x;}. Let
us see a simple example first.
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EXAMPLE 2. Let x = (x1, x2)’ be uniformly dis-
tributed on the unit disk B = {(x, y): x2 + y2 < 1},
and consider the polar coordinates

x1 = R cos(270),

(16) )
xg = Rsin(2n0),

where (R, 6) € C2. It is easy to show that R and 6 are
independent with respective cdf’s

an Fr(x)=x% 0<x<1,
Fo(x)=x, 0<x<1.

Let {(rx,6:)', k = 1,...,n} be an NT-net on C2? with
discrepancy d. Then the above idea suggests {x; =
(i cos(2mby), /¢ sin(2m6;)), k = 1,...,n} to be a
set of rep-points of x. We can calculate the F-
discrepancy of {x;} even though it is not very easy.
There is no analytic relation between the discrep-
ancy of {(r, 6;)} and the F-discrepancy of {x;}.

The more serious problem is that the F-
discrepancy of {x;} is not invariant under orthogonal
transformations. It is more natural to use a measure
of uniformity of {x;} on B which is invariant under
orthogonal transformations. Therefore, we need the
concept of quasi-F-discrepancy. Let x € R* be a ran-
dom vector with a continuous cdf F(x) and a stochas-
tic representation (13). Let P = {¢;, k = 1,...,n}
be an NT-net on C’, and let Pr = {x; = h(cy), k =
1,...,n}. Foranyr e C', let

(18) Gy = {x x=h(y), y<r},

and let N(r, Pr) be the number of points in Pr such
that x; falls in G,. Then

(19) D}.(n, Pr) = sup N(r—?F)

reC’

— Pr(Gy)

is called the quasi-F-discrepancy of Pr with respect
"to F(x), where Pr(Gy) is the probability of x falling
in 'G,. We can prove the following.

THEOREM 1. Under the above notations we have
(20) Dy(n,Pr) = D(n,P).

For an illustration of -the sense of quasi-F-
discrepancy we go back to Example 2, where

Gr = {(x1, x2): x1 = r cos(276), xg = r sin(276),
0<r<.r,0<6<r}

0.5 . 0.5 r

NN

0 05 " 0 0.5 1
(a) (b)

FiG. 2. Relation of discrepancy and quasi- F-discrepancy; (a) dis-
crepancy; (b) quasi- F-discrepancy.

(cf. Figure 2). The areas of the rectangle [0, r;] x
[0, ro] and the fan-shaped region G, are rirs and
wrire, respectively. The ratio of area of [0, r1] x [0, 3]
and C? equals r1r; and the ratio of areas of G, and B,
because the latter is nrire/m = rire. Furthermore,
the quasi-F-discrepancy in this case is invariant un-
der orthogonal transformation. Therefore, the quasi-
F-discrepancy can be considered a good measure of
representation.

Wang and Fang (1990a) introduced F-and quasi-
F-discrepancy and gave an algorithm for generat-
ing an NT-net of the uniform distribution on various
domains G as well as rep-points of elliptically con-
toured and multivariate Liouville distributions (cf.
Fang, Kotz and Ng, 1990). We shall show that an
NT-net on some bounded domain G is extremely use-
ful in simulation, experimental design and geomet-
ric probability.

4. EVALUATION OF EXPECTED VALUE
OF A FUNCTION OF A RANDOM VECTOR

Evaluation of E(g(x)), where x is an s-dimensional
random vector with a cdf F(x) and a pdf p(x) on G C
RS, is often required in applied statistics. Obviously,
we have

E(g(x)) =f g(X)p(x) dv
(21) ¢
=/;f(x)dvsl(f,G),

where f(xX) = g(x) p(x) and dv is the volume element
of G.

There are many deterministic quadrature formu-
las for computing (21) with well-behaved integrands
and small s (Genz, 1991). There are many useful
methods for computing (21) with x having a mul-
tivariate normal distribution. Unfortunately, there
are few algorithms for x having a multivariate non-
normal distribution. If the function g fails to be regu-
lar (i.e., have continuous derivatives of moderate or-
der) Monte Carlo integration has been recommended
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in the literature. Let x,X;,X2,... be an ii.d. se-
quence, then by the strong law of large numbers we
have )

1y
(22) Jim ;;g(xi) = E(g(x))

with probability 1. If E(g (x))2 < 00, the central limit
theorem implies that

1 n
(23) f(; Y oax) - E(g(X))>—>LN(0.02(g))
i=1

as n — oo, where o2(g) = Var(g(x)) and “—.”
means convergence in distribution. Therefore, the
rate of convergence of the Monte Carlo method is,
on average, O(1/s/n) and in no case worse than
O(y/In(Inn)/n) by the law of the iterated logarithm.

NTM'’s can be employed for numerical evaluation
of multiple integrals and are recommended by many
authors. Let Pr = {x4, k = 1,...,n} be a set of rep-
points of F(x). The expectation E(g(x)), where x ~
F(x) can be approximated by

1 n
(24) L®)==3 gx).
k=1

This method is called the NT*mean method. When G
is a closed and bounded domain in R* and the volume
of G, v(G), can be calculated analytically, I(f, G) in
(21) can be approximated by

1 n
(25) In(f,G) = ~v(G) ) _ f(¥x),
k=1

where {y;} is an NT-net on G. When G is the unit
sphere, the study of distributions over G is the sta-
tistical basic of directional data (see Mardia, 1972,
and Watson, 1984). If G is the simplex

T={x:x=(x1,....x), x >0,
i=1,...,s, x1+.--+xs=1},

then the observations of distributions on G are called
compositional data (see Aichison, 1986, and Fang,
Kotz and Ng, 1992). The following result gives an
upper bound for the error, I,(f, G) — I(f, G), when
D =C".

THEOREM 2 (Koksma-Hlawka). Suppose that P is
a set of n points in C* with discrepancy D(n,P) and
that f(x) is a function of finite variation with total
variation V(f) over C*. Then we have

(26)  (f,C) = L(f,CH = V(f)D(n,P).

The case of s = 1 of this theorem was established by
Koksma, and it was generalized by Hlawka to s > 1
(cf. Hua and Wang, 1981, Chapter 5).

Another upper bound for the error with bounds of
derivatives of order s is given as follows. Suppose
that the partial derivatives are bounded

omf

————|<L, 1<i1<---<in=<s
8x,~1~-8x,-m

@27
and1l <m <s.

Then we can derive
(f, C*) = L(f,C*)| < 2°LD(n, P),

and consequently by Theorem 2 and the discussion
in Section 2 we have

(£, C°) — L(f, C*)| < O(n1+5)
or even
ll(fv CS) - In(f» Cs)l = O(n_l(logn)s),

which is better than the Monte Carlo method when
s is not very large. Actually the rate of conver-
gence O(n~l(logn)®) can still be improved, such as
O(n~*(logn)*®), @ > 0, or O(n~'(logn)*/?) if the in-
tegrand is smooth enough. The above results about
the rate of convergence of I,(f, G) with G = C* have
been extended into the case of G=C* under some
condition.

Since there are a number of methods for gener-
ating an NT-net on C* with low discrepancy, we
want to know which method, in general, is the
best for approximating 7(f, G). Recently, Pagés and
Xiao (1991) compared several methods including the
Halton method, the scrambled Halton method, the
gp set with « in (11), on a selection of smooth peri-
odic functions. They concluded that the gp set with
Y = (/P1,-..,+/Ps) worked best. Unfortunately,
they did not include the glp set in their comparisons.
In our experience the performance of the glp set is as
good as that of the gp set. Shaw (1988) considered
weighted approximations to

1 n
(£, w) =~ 3w f(x)
i=1

and discussed applications in Bayesian statistics.
Many variance reduction techniques in Monte
Carlo methods such as stratified sampling, impor-
tance sampling, correlated sampling and the method
of antithetic variates (Rubinstein, 1981) also can be
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TABLE 2
Orthant probability by methods of the NT-mean and symmetrization

n 135 597 1010 2440 5037 39024
Error by

NT-mean 1.00E - 2 593E-4 297E-4 -177E-4 323E-5

method
Error by

symmetrization

method 859E—-4 117E-4 185E-5 8.00E-7

used in evaluating E(g(x)) and can improve the effi-
ciency of NTM’s for integration. The following ex-
ample gives an application of the method of anti-
thetic variates in NTM’s, called the symmetrization
method, for integration.

ExAMPLE 3. Suppose we want to calculate the
orthant probability

o0 o0 o0
p= f f f n3(x; 0, R) dx,
0 0 0

where n3(x; 0, R) is the pdf of N3(0,R) with R =
(0ij), p11 = p22 = p33 = 1 and p12 = p13 = p23 = 0.5.
The p-value is known and equals to 0.5 by Gupta
(1963). Let {yx, k =1,...,n} be an NT-net on [0, 51°.

Then
5 5 5
pwfffna(y;O,R)dy
0 0 0

1 n
A= Z n3(ye; 0, R).
n k=1

The second row of Table 2 gives some numerical
results. Using a symmetrization method, the corre-
sponding results are listed in the last row of Table 2.
Obviously, the latter is better. Therefore, there is a
potential for using variance reduction techniques in
NTM’s for integration.

5. OPTIMIZATION METHODS IN STATISTICS

There is a close relationship between optimization
and statistics. There are many problems in statistics
(such as maximum likelihood estimation, various es-
timates in regression analysis, optimal experimental
design, optimal quantizer, etc.) which can be treated
as optimization problems. Also, there are a number
of numerical methods in optimization theory. For ex-
ample, the Newton—-Gauss method, Nelder and Mead
simplex method, the BFGS (see Nash and Walker-
Smith, 1987) or the truncated Newton method can be
applied. In those methods, it is often required that
the function f to be optimized is unimodal and dif-
ferentiable, otherwise maybe only a local maximum
(minimum) can be reached. Therefore, Horst and

Tuy (1990) in their book said “The enormous practi-
cal need for solving global optimization problems cou-
pled with a rapidly advancing computer technology
has allowed one to consider problems which a year
ago would have been considered computationally in-
tractable.” The book collected a number of diverse al-
gorithms for solving a wide variety of multiextremal
global optimization problems. On the other hand, in
the past 20 years there has been considerable activity
related to Monte Carlo simulation, including Monte
Carlo optimization (cf. Rubinstein, 1986).

In this section we introduce a sequential number-
theoretic method for optimization (SNTO) and its ap-
plications in statistics. We will show that it is a good
addition to other optimization methods.

Let G be a closed and bounded domain in R*, and
let f be a continuous function on G. Suppose that we
want to find a global maximum M of f over G, and
also a point x* of G, such that

(28) M=fx*= max fx).

An NTM for optimization requires the following
steps:

1. Choose an NT-net P = {x, k=1, ...
2. Find M, and x} € ? such that

,n}onG.

(29) M, = f(x}) = max fx).

Then M, and x} are respective approximations of M
and x*.

Fang and Wang (1990) have extended the result of
Niederreiter (1983) and give the following theorems.

THEOREM 3. Suppose that f(X) is a continuous
function defined on a closed and bounded domain G,
and that {P,}, n1 < ng < ---, is a sequence of sets on
G which have a,, = Dg(n;, P,,), where F is the cdf of
the uniform distribution on G, such that a,, = o(1) as
i — oo. Let x; € Py, be a point satisfying

(30) M, = f(x;) = max f(x).

' xeP,
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Then M,, — M as i = 00. More precisely, we have
M,,,—M+o(a )andx — x*asi —»> oo if x*is
unique. .

THEOREM 4. Supposethat df/dx;, i =1,...,s,are
continuous and bounded by C over G. Then

(31) M, <M < M, + sCb,(G, P,),
where b, is the dispersion of P, on G defined by

(32) b,(G,P,) = max min d(x, x;),
xe€G 1<k=<n

and d(x, X;) is the la-distance between x and x;.

As a result of these theorems, an NTM for opti-
mization can be applied to any continuous function,
in particular, to a continuous multiextremal func-
tion. This is certainly a big advantage.

If we choose P,, with the “best” order of F-
discrepancy O(n~'(logn)®), then the convergence
rate of M, to M is O (n'/* logn), which is slow. Hence
Niederreiter and Peart (1986) and Fang and Wang
(1990) proposed independently a sequential number-
theoretic method for optimization (SNTO) with a
much faster convergence rate which has been suc-
cessfully applied to various statistical problems.

Now we illustrate an SNTO for G being a rectangle
[a, b].

Step 0 (Initialization). Sett = 0, G® = G = [a, b],
a® =aand b® =b.

Step 1 (Generating an NT-net). Use an NTM to
generate an NT-net of n, points P on G®.

Step 2 (Computing a new approximation). Find
x® ¢ POUEXEC~D}and M® such that M® = f(x®) >
f(y), Yy € POUx?-D}, where xD is the empty set.
Then x and M® are the best approximation to x*
and M so far.

Step 3 (Termination criterion). Let ¢® = (b® —
a®)/2. If maxe® = max(ci'), vy €®) < 8, a preas-

signed small number, then G® is small enough; x® .

and M® are acceptable; terminate algorithm. Oth-
erwise, proceed to next step.

Step 4 (Contract domain). Form new domain
G¢+D =[a¢+D b¢+D] as follows:

al*th =max (x” —rc’,a;) and

b(' *D — min (P +rc?, b;)
where r is a predefined contractzon rate. Settr =t+1.
Go to Step 1.

According to our experience, we suggest taking
ny > ng = ng = --- and r = 0.5, while Niederreiter
and Peart (1986) suggested using r; = r for contrac-
tion ratio at the ith stage for some 0 <r < 1.

We compared SNTO with the BFGS method, which
is a quasi-Newton method available in MATLAB as
a built-in function. We chose the following objective
functions:
fi = —[ exp(~(x1 +0.5)%) + 2exp(~(xz — 0.5)?)

+ 4exp(—(xs + 3)2)];

1
fo= 4xf - 2.1x‘11 + gxf + x1x2
—4x? +4x; (six-hump camelback function);

f3 = 100(x2 — x1)® + (x1 — 1)2 (Rosenbrock function);
fa =10, 000(xz — xl) + (x1 — 1)2
(scaled Rosenbrock function);
fs = 100(x? — x2)” + (1 — x1)?
+90(xq — x2)* + (1 — x3)?
+10.1[(x2 — D + (x4 — 1)?]
+19.8(x2 — 1)(x4 — 1) (Wood function);

fo = —[2 exp[—%(xf + (x2 — 4)2)}

1 2
+ exp[—§ ((x1 -2+ %)}
1 + 4)2
+ exp{—§ ((xlT) + xg) ]]

Since BFGS is a local optimization algorithm, for
each objective function we calculate 100 minimiza-
tions by BFGS. The computing time is the average
of computing times to attain the global minimum.
Table 3 gives comparison between SNTO and BFGS,
showing the percentage of times the global minimum
was reached by each algorithm, and the error defined
as the average of errors for those attaining the global
minimum. We can see that BFGS needs less com-
puting time than SNTO, but also that it much more
frequently failed to reach the global minimum. We
can expect that if SNTO can be used as a built-in
function, it will be substantially faster.

Without providing a detailed comparison, we
would like to say a few words that relate to an-
other global optimization method, simulated anneal-
ing (SA). In a recent issue of this journal Bertsimas
and Tsitsiklis (1993) gave an introduction to SA, with
related discussion. Simulated annealing is a proba-
bilistic method proposed in Kirkpatrick, Gelett and
Vecchi (1983) and Cerny (1985) for finding the global
minimum of a cost function defined on a finite set that
may possess several local minima. “One of the great
charms of SA is its extraordinary generality. Almost
any optimization problem can be approached by SA,
and often the coding is quite easy,” said Steel (1993).
The convergence rate of SA is not clear, but “the most
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TABLE 3
Comparison between SNTO and BFGS
Percentage Average
attaining computing
global time
Function Domain minimum El;ror (seconds) Method
h [-2,2]1x[-1,4] 52% 4.62E - 7 0.6123 BFGS
100% 4.62E -7 0.6833 SNTO
fa [-8,3]x[-2,2] 65% 4.53E -7 0.6328 BFGS
100% 4.52E - 7 0.9500 SNTO
fs [-2, 212 97% 8.47E — 10 0.6180 BFGS
100% 4.66E — 4 0.7333 SNTO
J4 [-2, 212 4% 4.04E — 4 0.5170 BFGS
100% 9.65E — 3 1.4330 SNTO
/5 [-2,2]¢ 88% 1.64E — 8 1.8790 BFGS
100% 1.75E — 4 2.2300 SNTO
fe [-10,7] x [-6,7] 20% 1.83E-17 0.7300 BFGS
100% 1.83E -7 0.7500 SNTO

serious drawback lies in its very slow convergence
rate” (see Ferrari, Frigessi and Schonmann, 1993). It
is not easy to give a fair comparison between SNTO
and SA, because there are some flexible parameters
and different termination criteria in these two algo-
rithms. Very often, a small thing in programming
will cause a big difference in computing time. This
is an open problem for further study.

Although we have no numerical comparison to SA,
it should be clear that SNTO has certain advantages.
(1) We need not calculate the derivatives or its approx-
imation of the function f. (ii) The programming is
easy and can be universally used for different prob-
lems with only a minor modification. For example,
consider a general regression model

EY = g(x; 0),

wherex = (x1, ..., xp) areindependent variables and
0 = (64, ...,0;) are parameters to be estimated. The
first aim of regression analysis is to use a set of obser-
vations {Y;,x;, i = 1, ..., N} to estimate 8. This prob-
lem is-often treated by the least squares method. Let

N

L) =) [¥: - gxi: O]

i=1
Then the least squares estimator 8 satisfies L(@) =

migg* L(6), and the robust estimator 6 satisfies
L*(@) = ming L*(8), where

. N .
L*(0) =) _h(Y; — g(x:; 0))
i=1

and 4(-) is a nonincreasing and nonnegative function.
Usually, different methods and different computer
programs are used to find 8 and 6. In contrast, we
can use the same method and almost the same pro-
gram to obtain @ and various s by SNTO.

We have successfully applied SNTO to maximum
likelihood estimation (MLE) (Fang and Yuan, 1990)
and to solve a system of equations with applications
in statistics (Fang and Wang, 1991).

6. APPLICATIONS OF NTM
IN STATISTICAL INFERENCE

We have mentioned some applications of NTM’s
in statistical inference, such as in MLE and estima-
tion of regression analysis. In this section we will
consider more applications of NTM’s in statistical
inference.

6.1 Projection Pursuit Methods

The term “projection pursuit” (PP) was first used
by Friedman and Tukey in 1974. The PP method
reveals structure in the original data by offering se-
lected low-dimensional orthogonal projections of it
for inspection. Huber (1985) gave a review of devel-
opments in PP.

Let X be an N x p matrix of observations with p
variables. For any a € R?, Xa is an N x 1 vector
which is the orthogonal projection of the sample onto
direction a. Without loss of generality we always as-
sume a'a = l,ora € U, = {x:Xx = 1, X € R)}.
If H is a function to measure the interest of a one-
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dimensional sample, then I(a) = H(Xa) is called
a projection index. We want to find ap such that
I(ap) = maxacy, I(a) [or I(ap) = min,cy, /(a)l. For
example, I (a) is the sample variance of Xa in princi-
pal component analysis (PCA). There is an analytic
solution to ap in this case. In general, we have to use
numerical optimization methods to find approxima-
tions of ag and 7(ag). In the past statisticians had
difficulties finding a¢ and I(ay) (see Malkovich and
Afifi, 1973, and Rousseeuw and van Zomeren, 1990).
NTM'’s are powerful tools for this purpose by using
an NT-net on U,. An example will be shown in the
next subsection.

For orthogonal projection onto a space of dimension
g > 1, aisreplaced by a p x ¢ matrix A, and the cor-
responding projection index becomes I (A) = H(XA),
where A € O(p, q) and

O(p,q) ={U: Uis a p x ¢ matrix, UU =1}.

Similarly, we need to find Ay and 7(Ay). If we want
to use NTM, we need an algorithm to generate an
NT-net on O(p, q). A simple way is based on the fol-
lowing fact. Let Y be a p x ¢ random matrix with
iid. elements each having the standard normal
distribution N(0, 1), that is, Y ~ N,,,(0,I, ® L).
Then U = Y(YY) 1”2 is uniformly distributed on
O(p, q). With this fact, we first generate an NT-net
P = {ex, k = 1,...,n} on CP and obtain a set of
rep-points of Y ~ N, , (0,1, ® I), Py = {Yi(p x g):
k=1,...,n},by some method mentioned in Section 2.
Then Pr = {Uy = Y (Y, Y Y2, k = 1,...,n}, is an
NT-net on O(p, q). This algorithm is simple, but the
uniformity of Pr on O(p, ¢q) is not good when 7 is
small. Since there are pg — q(q + 1)/2 degrees of
freedom in A € O(p, q), the above method wastes
q(q +1)/2 degrees of freedom. Improvements to this
are discussed in Fang and Wang (1993).

6.2 Tests for Multinormality and for Multivariate
Goodness-of-Fit

"Testing multinormality has received considerable
atterition in the past few decades. Mardia (1980),
Malkovich and Afifi (1973), Gnanadesikan (1977),
Cox and Small (1978), Baringhaus and Henze (1988),
Csorgo (1989) and Horswell and Looney (1992), for
example, constitute a large literature.

The PP algorithm discussed in the previous subsec-
tion can be applied to this problem. It is well known
that a p-dimensional random vector x is distributed
according to a multinormal distribution if and only
if, for each a € U,, a'x is a univariate normal distri-
bution. If we can find the “worst” projection direc-
tion ag, then the test of multinormality is equivalent

to testing normality of a’'ox. Let {a;, k = 1,...,n}
be an NT-net on U,. Then the worst direction a,
among {a;} is close to ag, and the test of multinormal-
ity is approximately equivalent to testing normality
of a/x.

Let Sk(a) and Ku(a) be the sample skewness and
kurtosis of {a’x;,i = 1,..., N}, respectively. The
worst direction ag can be considered as such that

Sk(ap) = max |Sk(a)| = max|Sk(ay)| = Skmax

or

Ku(ap) = ﬂaUXIKu(a)l = mkaleu(ak)| = Kumax-.
14

Hence, the statistics Skynax and Kumgax can be used for
testing multinormality. For a given significance level
a, the rejection region is Skmax > Sk(a) or Kumax >
Ku(e). The critical points of Sk(a) and Ku(a) for o =
1%, 5% with p = 2 ~ 5 and for various sample sizes
are given by Fang, Yuan and Bentler (1992).

6.3 Test for Spherical Symmetry

Spherical distributions have been completely dis-
cussed by Fang, Kotz and Ng, (1990). Let x € R*
be a random vector. It is well known that x has a
spherical distribution if and only if, for each a € U,

(33) aX =, X,

where “=,” means that two sides of the equality have
the same distribution and X; is the first component
ofx. Given a samplexy, ..., Xy from an unknown un-
derlying distribution function G(x), we want to test
the following:

(34) Hy: G(x) is spherical;
H;: G(x) is not spherical.

By the characteristic (33) of spherical distributions,
hypothesis (34) can be expressed as Hy: all a'x, a €
U;, have the same distribution. Let {a;,...,a,} be
an NT-net on U;. Then hypothesis (34) can be ap-
proximated by

(35) Hy:ax,i=1,...,m,
have the same distribution,

if m is large. For given 0 < k < I < m, consider a
two-sample problem:

. / /
I axg,...,axy,

II: ajx;,...,axy.
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The following statistic is a Wilcoxon-type statistic for
the two-sample problem: :

1 N N
Vv, a) = =5 [T1] H{aix <ax;},
i=1j=1

where I{A} is the indicator function of A. The statis-
tic

(36) Ty = 13:1112 {Vw(ag, ay)}
& '#Tm

can be used for testing hypothesis (35).

Since Vy(ax,a;) is constructed by two depen-
dent samples, it is not the traditional two-sample
Wilcoxon statistic. Fang, Zhu and Bentler (1993) ob-
tained the limiting distribution of Ty for the case of
a;’s being orthogonal and gave some suggestions for
improvement.

NTM’s can be also applied in robust estima-
tion. For example the minimum-volume ellipsoid
estimator (MVE) is a popular method in robust
estimation, as discussed by Rousseeuw and van
Zomeren (1990). They suggested using the pro-
jection algorithm for MVE and need to find g* =
maxaey, g(@X1, ..., (@xXy), where {x;,...,Xy} is a
sample and g is a certain function. They had dif-
ficulties in evaluating g* and suggested taking all
a as the direction of x;, —m, i = 1,..., N, where
m = (median;{x;1},..., median;{x;})’. Obviously,
the set {direction of x; — m} is not a set of rep-points
on U, in general. Taking an NT-net on U; instead of
{direction of x; — m} into the projection algorithm,
we can expect to get a better approximation of
g*. Furthermore the idea of projection with the a-
trimmed mean can motivate a new robust estimator
of the location by using NT-nets on U; (Fang, Yuan
and Bentler, 1992).

7. GEOMETRIC PROBABILITY

Many problems in geometric probability need sim-

ulation studies. Let D be a domain where a simu-
lation is required. It is difficult to do simulation in

many situations where D is not a rectangle (e.g., D
is the unit sphere U,). For illustration of the use
of NTM’s in geometric probability we would like to
present an interesting and typical problem in geo-
metric probability: the distribution of the life of a
roller in steel production.

This problem arose from steel rolling and had no
satisfactory solution since'1980 (cf. Cheng, 1983).
People wish to increase the life of the roller by us-
ing a randomly rotary ball roller instead of a fixed
roller. Its mathematical model can be stated as fol-
lows: Let S be a unit sphere in R? and be covered by
independently random belts with fixed width one by

one. Each belt is symmetric about a great circle of S
and uniformly distributed on S. Denote by G, (x) the
random belt on S,

(37) Gu(x) = {a: |[a’X| < h},

where x is the normal direction and 2k is thickness
of the belt. Let Gj(x1), G,(X2), ... be a sequential
sample from the population G;(x), where x ~ U(S),
the uniform distribution on §. For any y € S we
denote by Ny (y) the number of belts which cover y
in the first M random belts. Given a positive integer
m the life of the roller is defined by the minimum of
M such that Ny (y) > m for some y € S. Obviously,
the life of the roller, T, (h), can be expressed as

T,,(h) = min{M: Ny (y) > m for some y € S}

M
(38) = min [MI sup | | Ieyxp(¥) = m]

yes j=1
where I,(-) is the indicator function of set A. We need
to obtain the distribution of 7,,(h) and the expected
value E(T,,(h)), and to find some way to increase the
life of the roller.

We can find the limiting distribution of 7,, (k) (cf
Cheng et al., 1990). Unfortunately, there is big differ-
ence between the limiting distribution and the real
distribution when m is not very large. For example,
when # = 0.1 and m = 20, the mean and the standard
deviation of the limiting distribution are m/h = 200
and /m(1 — h)/h = 424, respectively. However, the
simulation by Fang and Wei (1992) shows

39) E(Tgo(o.l)) ~ 99.7 and U(Tzo(o.l)) ~ 9.8.

Therefore, simulation is more useful in practice. A
simulation process was suggested to find the empir-
ical distribution as well as the mean and variance of
T,.(h). For example, we generate 50 samples of size
5,000 with m = 20 and # = 0.1 and find that 50 em-
pirical distributions are close to each other with aver-
age mean and standard deviation (39). Furthermore,
we note that the longest life of the roller in 100,000
simulated observations can reach 125, which is sig-
nificantly longer than the average life 99.7. Denote
by a3}, ..., a}y; the corresponding normal directions
of the roller with the longest life. This suggests that
if we fix the normal directionsata; = af, i =1,2,..,,
we always have T, (h) = 125 in the case m = 20
and h = 0.1. Since aj, ..., a},; are generated by the
Monte Carlo method, we might try NTM to improve
the result such that the roller has a longer life than
125. We used a glp set on S to be the normal di-
rections and found that the longest life of the roller
can be 155! This work indicates that NTM’s can be
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significantly better than 100,000 experiments by the
Monte Carlo method. For more details, see Fang and
Wei (1992).

8. CONCLUSIONS AND OTHER APPLICATIONS

We have mentioned many applications of NTM’s
in statistics. More applications can be found in other
topics. One important area is experimental design.
Suppose that there are s factors and each factor has n
levels. Then the number of all possible experiments
is n*. The orthogonal array is to choose at least n? ex-
periments with good representation among these n*
experiments. When r is large (e.g., n > 7) the number
of experiments is comparatively large by the orthogo-
nal array. For example, we met an important project
with six factors, each with more than 12 levels, and
had to design it within 50 experiments. Due to this
requirement Fang (1980) and Wang and Fang (1981)
proposed a new type of design: “uniform design” by
the glp set. The uniform design has been applied
satisfactorily in design of new products in the textile
industry, metallurgical industry, pharmaceutics, and
military industry in China. Furthermore, the idea of
the uniform design can be applied in experiments
with mixtures and can improve the simplex—lattice
design and the simplex-centroid design proposed by
Scheffé (1963) and the axial design suggested by Cor-
nell (1981).

There are some relationships between the uni-
form design (UD) and the latin hypercube sampling
(LHS) including its versions OA-based latin hyper-
cube sampling (OALHS) (cf. Stein, 1987; Owen, 1992;
Tang, 1993). Some comparisons among UD, LHS and
OALHS and suggestion for further research can be
found in Fang and Wang (1993, Section 5.6).

Based on the above discussion one can conclude
that NTM’s can be useful tools for statistics, in par-
ticular, for multivariate statistics. Due to lack of at-
tention paid by statisticians, the results mentioned
in this paper are preliminary. There are many open
problems for further study. For example, what is the
convergence rate of SNTO? How can SNTO be com-
pared with simulated annealing and other optimiza-
tion methods? How can SNTO be useful effectively
with other optimization methods? It is clear that
there are many potential applications of NTM’s in
statistics to be discovered. The purpose of this paper
is to emphasize the growing importance of NTM’s in
statistics. On the other hand, every method has its
limitation. We can not expect that NTM’s will have
the best performance in each field of statistics.
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