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1979a; Freedman, 1981):

1. Compute B = (XTX)"1xTy.

2. Letey,...,e, be the residualse — Y — Xﬁ.

3. Letej, ..., e; beanii.d. sample from the empir-
ical distribution of ey, ..., e,.

4. The bootstrap model is Y* = XB + e*.

The bootstrap model is much like the real model,
with the advantage that the “true” value of B,
namely, B, is known. The bootstrap model works
for inference about the distribution of B in that if
B*=(XTX)"1XTY*, then, under mild conditions on
the rate of growth of the elements of X, the asymp-
totic distribution of (,B* ﬂ) is the same as that of
(B—B) [see Freedman (1981)]. It might be hoped that
this would enable the bootstrap model to reflect ac-
curately the behavior of estimates based on selected
columns of X as well. Unfortunately, this does not
seem to be the case. Roughly speaking, this is be-
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The bootstrap has achieved a remarkable level of no-
toriety both due to its analytical simplicity and to
its seeming ability to serve up the proverbial “free
lunch.” However, behind all of the technical details
of the bootstrap and its asymptotics, there still lies
the question of why does (or does not) the bootstrap
work in general. The theoretical use of the bootstrap
involves the replacement of a distribution F in a for-
mula T(X, F) by some other distribution F. The de-
gree to which this replacement is successful depends
on the degree to which F resembles F in important
regards. For example, suppose that F is a distribu-
tion 'with finite variance, F is the empirical distri-
bution and T(X, F) is the average X of the sample
X minus the mean of the distribution F. Then the
variance of T (Y, F) (where Y is a sample from F) can
be expected to be a lot like the variance of T (X, F).
On the other hand, if F is a continuous distribution
on aninterval [0,0] and T (X, F) = n(B - X(,,)), where
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cause E||XB|2 > X2, while Var(¢}) = (1/n)%"_,
E(e?) = (n — p)o?/n. In other words, the mean of Y*
tends to be larger than that of Y, while its variance
tends to be less. Thus the bootstrap model tends to
confirm the overoptimistic assessment of goodness of
fit produced by model selection. The asymptotic per-
formance of the bootstrap is good as n — oo with
p fixed, since (1/n)||XBl2 — (1/n)||XB||? under mild
conditions on the rate of growth of the elements of X.
When p is a substantial fraction of » however, which
is often the case in variable selection, the results can
be quite misleading (Freedman, Navidi and Peters,

1988). Potential solutions may involve shrinking the
length of B for use in the bootstrap model. Since
the use of model selection procedures is quite exten-
sive in statistical practice, better methods of assess-
ing the performance of selected models would be very
useful. I think it is likely that the bootstrap will turn
out to have something to offer in this area.

X(n) is the largest order statistic, then Young points
out the well-known fact that Pr(T (Y, F ) = 0) con-
verges to 1 — exp(—1) as n — oo, while T (X, F) has
a continuous distribution.

I believe that some insight into what the boot-
strap does can be gained by doing something with
this last example that is uncommon in most boot-
strap applications, namely, that we think about the
problem. An obvious observation is that Fand F
differ markedly in the manner in which the largest
order statistic from a sample is related to the least

‘upper bound on the support of the distribution. In

particular, with F, the two can be equal with non-
negligible probability; with F, they cannot. An ob-
vious, albeit naive, response is to smooth F, that
is, replace the empirical distribution by a continu-
ous distribution which approximates it. For exam-
ple, if Xy < .-+ < X() are the order statistics, one
could define F(x) = Gwi/n+[1-Gwl (G —-1)/n
for X -1 < x < X(;), where G is a continuous distri-
bution function and ¥ = (x — X -1))/(X¢ — Xi-1)-
(Forget about x < X3y for now.) Bickel and Freedman
(1981) claim that even this does not mend the prob-
lem. They attribute (page 1210) the problem to “the
lack of uniformity in the covergence of” FtoF. In
fact, it is not difficult to see what happens in this case.
We get that T(Y, F) is the sum of two random vari-
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ables, one of which is precisely the same as when F
was the empirical distribution, and the other has the
distribution of (1 —U)Z, where U and Z are indepen-
dent and U has distribution G and Z has the distribu-
tion of n/ X, times the difference between two suc-
cessive order statistics corresponding to Y(,) and the
Xy which comes immediately before Y(,). For each
fixed k, the distribution Ofn(X(,,_k+1) - X(,, —k))/X(n) is
asymptotically the same as that of 7(X, F). In other
words, at least the smallest values of T'(Y, F) should
look a bit more like they come from the correct distri-
bution. Although the poor behavior is not completely
remedied, a little thought brings us a little closer to
the solution we sought, or so it seems.

Perhaps the problem which the bootstrap suffers
lies deeper than what we have discovered so far. A
fundamental flaw in the bootstrap logic is that one is
asked to replace F by F without taking into account
the uncertainty which remains concerning F. In the
example at hand, one is particularly hamstrung by
not being able to account for the uncertainty about
0, let alone the uncertainty about he distribution of
X given 6. For example, suppose that we pretend to
be a Bayesian, but a sloppy Bayesian who is trying
to mimic the bootstrap. This sloppy Bayesian might
decide to use a Dirichlet process prior (see Ferguson,
1973) for the distribution of F. Unfortunately, the
least upper bounds of all of the F’s which arise from
a Dirichlet process are the same. One could then
model F as having a Dirichlet process distribution
with base measure oy given 6, where «y is concen-
trated on [0, 8]. Mechanically, the sloppy Bayesian
will simulate a 6 from the posterior distribution and
then simulate a sample Y from the conditional poste-
rior of F given 6 and then calculate n(6 — Y,))/6 and
repeat. Of course Dirichlet processes are discrete
with probability 1, but if the base measure does not
put positive mass on 8, then with probability 1 the
largest order statistic will be less than 6. The fun-
tion c(8) = wy([0, 8]) governs how the rate at which
repeats appear depends on 6. If ¢(9) is chosen to
be constant and oy has a density ag, then the likeli-
hood function for 6 becomes IT}_,as(X;), for 6 > X(y.
As Barron (1986) points out in his comment on the
use of a similar prior distribution by Diaconis and
Freedman (1986), this has the effect of treating the
data asifit were a random sample from a distribution
with density ag/c as far as inference about 6 is con-
cerned. Suppose, for example, that ay(x) = 1/6 for
0 < x < 6, but the data comes from a standard nor-
mal distribution truncated to the interval [0, 8]. The
data distribution is less likely to produce observa-
tions close to 6 than the uniform, hence the posterior
distribution of  will be too highly concentrated near
X(n).- Another problem with the Dirichlet process is
that, because it is discrete, multiple repeated values

will appear in Y much more often than in the boot-
strap sample. Put another way, the probability that
Y(n is small compared to X, is larger for the Dirich-
let than for the bootstrap. An ad hoc procedure might
be to combine the Dirichlet and bootstrap analyses
by using the posterior distribution for 6 as the sloppy
Bayesian does, but then sample the Y data as the
bootstrap does. I have simulated a number of data
sets and applied the four methods already described
to each of them. Some results are summarized in
Figure 1. The simulated data arose from standard
normal random variables conditional on being in the
interval [0, 1.5]. Two hundred X-samples of size n
of such data were simulated and, for each sample,
one hundred Y-samples were simulated. For each
X-sample, the 100 values of n(6 — Y(,))/6 were then
sorted from smallest to largest, and then these 200
sets of order statistics (one for each X-sample) were
averaged to produce the values on the vertical axes.
The horizontal axes are the i/101 quantiles of the
Exp(1) distribution for i = 1,...,100. The straight
line has slope 2.2298, because the asymptotic distri-
bution of (1.5 — X(4))/1.5 is Exp(1/2.2298). (The prior
distribution for § was a continuous mixture of uni-
form on [0, 1] and Pareto with density proportional
to 1/62 for 6 > 1.) Ideally, the points should lie on
the straight line. We see the effect of Y, being too
small on the Dirichlet analysis as well as the effect
of Yy = X(n so often in the bootstrap analysis. We
also see the improvement which smoothing provides
in the lower tail of the distribution. What might be
surprising is how well the ad hoc combination of boot-
strap sampling with sampling from the posterior of
seems to do. By thinking a little more about what was
important in this problem, we appear to have made
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some additional progress, but even this assessment
may be premature.

Emboldened by this slight degree of success, the
sloppy Bayesian might try to overcome some of the
problems inherent in the Dirichlet process prior.
There exist classes of tail-free processes (see Fer-
guson, 1974) which are absolutely continuous with
respect to Lebesgue measure with probability 1.
Mauldin, Sudderth and Williams (1992) and Lavine
(1992) describe a subclass of these processes (called
Polya trees) for which numerical calculations are fea-
sible. Suppose that our sloppy Bayesian tries to be
a little less sloppy and wishes to use one of these
Polya tree priors for which densities exist with prob-
ability 1. Naively, one could proceed just as with
the Dirichlet. First, sample 6 from the posterior
of 6 and then sample Y from the conditional poste-
rior of F given 6, calculate n(6 — Y(,))/6 and repeat.
One would quickly discover that n(6 — Y(,))/6 tends
to be very large, and the posterior distribution of 8
is much more spread out than one would anticipate
from knowledge of uniform distributions and other
distributions with positive density on bounded inter-
vals. This behavior lies at the heart of the problem
being solved. Even though all of the observed data
lies in an interval (such as [0, 1.5] in the example),
there is significant probability that 6 is very large.
The reason is that the class of distributions with
positive density on bounded intervals includes many
distributions whose densities, although positive on
the entire interval [0, 6], are incredibly small near 6.
The very idea of calculating T (X, F) = n(6 — X(,))/6
is founded on the assumption that the density of F
does not go to 0 at 8. Otherwise, T(X, F) does not
have a nondegenerate asymptotic distribution. For
example, if the density of F approaches 0 linearly
as x — 6, then \/n(6 — X(,))/6 has a nondegenerate
asymptotic distribution. One should not be surprised
to see n(6—Y(,)/0 being very large when the densities
can drop to near zero at 6. In fact, this observation
calls into question the very problem of trying to esti-
mate the distribution of n(6 — X,))/6 without further
assumptions on F. For example, should we assume
that the density of F does not go to 0? Should we as-
sume that there is a uniform lower bound on all den-
sities under consideration? We could go on and on
about how to solve more focused problems with more

carefully thought out assumptions, but that would
take us too far from the topic of this discussion. The
point is that the original problem is ill-posed, but we
did not recognize this fact until we thought the prob-
lem through more carefully.

In summary, what do we learn from all of these fail-
ures to solve what appeared to be a fairly straight-
forward problem? First, we should learn that “auto-
matic” approaches to inference, like the bootstrap,
are dangerous because they discourage thinking
about the problem. It is not the use of the com-
puter to replace analysis which is the danger in using
the bootstrap, but rather the misconception that se-
rious thought about underlying assumptions can be
replaced by pretending that F is close enough to F.
For the dependent data problems described by Pro-
fessor Young in Section 5, more assumptions need
to be made than in the independent data case, and
more thought must be given to each problem. This
seems to be movement in the correct direction and
should be encouraged. Second, even when replacing
F by F in a theoretical calculation and then blasting
ahead is fine for an asymptotic analysis, statisticians
should never lose sight of the fact that, with finite
data, uncertainty remains about everything we do
not know. Even if we can convince ourselves that F
has many of the important properties of F in which
we are interested, we still need to take care to say
how uncertain we are about replacing F by F. Per-
sonally, I think that this is where serious research on
the bootstrap ought to be undertaken. For example,
in problems like confidence intervals, where there
is some agreement that the bootstrap has been suc-
cessful, how should one sensibly express the degree
of uncertainty which remains concerning F? Some of
the Bayesian bootstrap literature [e.g., Rubin (1981),
Lo (1987) and Banks (1988), to name a few] makes
a very small step in this direction, but much more is
needed. What we do not need to learn from the exam-
ple described above is that the reason the bootstrap

. fails is that the problem is ill-posed. The reason the

bootstrap fails in this problem, and in others where
it appears to succeed, is that it hinders us from dis-
covering the nature of the problem by discouraging
thought. Until this flaw is overcome, it will be diffi-
cult if not dangerous to take the bootstrap seriously
as a statistical tool.



