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Comment
William Navidi

I would like to address some of the issues raised
by Professor Young, then add an example to the in-
teresting collection presented in his paper.

Professor Young draws a distinction between the
i.i.d. case, where bootstrap methods are often simple
and automatic, and the nonindependent case, where,
if the bootstrap can be made to work at all, the ap-
propriate method is likely to be rather sophisticated
and specific to the problem at hand. It seems to me
that this situation may be unavoidable, in that the
appropriate choice of bootstrap method is often de-
termined by the dependence structure of the data,
with the i.i.d. case being a particularly simple form
of dependence structure yielding a particularly sim-
ple bootstrap method.

For example, let X3,..., X, be ii.d. Bernoulli tri-
als with success probability p. Let p = (1/n)X!_, X;
be the usual estimator of p. We can use the boot-
strap to estimate the distribution of p by defining
X3i,..., X to be i.i.d. Bernoulli trials with success
probability p. This is the usual bootstrap method
for i.i.d. data, since the random variables X%, ..., X
are an i.i.d. sample from the empirical distribution of
X1,..., Xn. If we define p* = (1/n)X7_, X}, then the
asymptotic distribution of (p* — p) is the same as that
of (p — p). Now assume instead that X;,..., X, are
Bernoulli trials with common success probability p,
generated from a Markov process with transition ma-
trix P. If we define X3, ..., X} as above, the bootstrap
will fail, because the variance of p depends on P. In
order for the bootstrap to be successful, the bootstrap
distribution must be based on an estimate P of P, not
Jjust on the marginal estimate p. This shows that in
general the bootstrap must be tailored to the depen-
dence structure of the data in order to produce good
results. It seems that the degree to which universal
methods can be developed may be limited.

I am glad that Professor Young has pointed out
examples where asymptotic accuracy does not carry
over to small samples. In particular, the role of
higher-order asymptotics in the study of the boot-
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strap needs to be assessed. The bootstrap is often
accurate to a higher order than conventional ap-
proximations based on the central limit theorem,
essentially because the bootstrap consistently esti-
mates the third and higher moments of a distribu-
tion while the normal approximation does not. This
has resulted in much beautiful theory. What needs
more investigation is the extent to which higher-
order asymptotic accuracy translates into better ac-
curacy in small samples. This of course is what is
important in practice, not only because real samples
are finite, but because one is inevitably faced with er-
rors of size O (1) due to sampling bias and model mis-
specification, so reducing the remaining error from
0(1/+4/n) to O(1/n) may not matter very much.

A topic mentioned only briefly in the paper which
is potentially quite important is the use of the boot-
strap in model selection or in assessing the accuracy
of model selection procedures. Two of the papers in
LePage and Billard (1992), by Kipnis (1992) and by
Brownstone (1992), address this issue. Discussions
of this topic can also be found in Efron (1983), Gong
(1986) and Freedman, Navidi and Peters (1988). To
give a concrete example, we will discuss variable se-
lection in a linear regression model. The model is
Y = XB + ¢, where the matrix X has n rows and p
columns, and ¢ is a vector of i.i.d. errors with mean 0
and variance o2. Ifitis thought that the matrix X has
a large number of columns which are not well re-
lated to the dependent variable Y, a selection proce-
dure may be used in an attempt to create a model of

" manageable size that retains most of the explanatory

power of the original. Variable selection is a widely
practiced art, with procedures such as forward se-
lection, stepwise selection, all subsets, Mallows C,
and others being found in many statistical software
packages.

It is well known that standard goodness-of-fit
statistics applied to selected models often seriously
exaggerate the degree of fit, because the selected
variables tend to be those whose sample correlation
with Y is inflated by random error. It is worthwhile to
investigate whether the bootstrap can be used to ob-
tain more realistic estimates of fit. Assume for tech-
nical reasons that the matrix X contains in intercept.
The standard method of applying the bootstrap in or-
dinary least squares regression is as follows (Efron,
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1979a; Freedman, 1981):

1. Compute B = (XTX)"1XTY.

2. Letey,...,e, be the residualse — Y — Xﬁ.

3. Letej, ..., e; beani.i.d. sample from the empir-
ical distribution of ey, ..., e,.

4. The bootstrap model is Y* = XB + ¢*.

The bootstrap model is much like the real model,
with the advantage that the “true” value of g,
namely, B, is known. The bootstrap model works
for inference about the distribution of B in that if
B*=(XTX)"1XTY*, then, under mild conditions on
the rate of growth of the elements of X, the asymp-
totic distribution of (B* — B) is the same as that of
(B—B) [see Freedman (1981)]. It might be hoped that
this would enable the bootstrap model to reflect ac-
curately the behavior of estimates based on selected
columns of X as well. Unfortunately, this does not
seem to be the case. Roughly speaking, this is be-

Comment
Mark J. Schervish

Professor Young is to be congratulated on summa-
rizing so succinctly and clearly the vast body of work
on the bootstrap which has appeared since 1979.
The bootstrap has achieved a remarkable level of no-
toriety both due to its ‘analytical simplicity and to
its seeming ability to serve up the proverbial “free
lunch.” However, behind all of the technical details
of the bootstrap and its asymptotics, there still lies
the question of why does (or does not) the bootstrap
work in general. The theoretical use of the bootstrap
involves the replacement of a distribution F in a for-
mula T (X, F) by some other distribution F. The de-
gree to which this replacement is successful depends
on the degree to which F resembles F in important
regards. For example, suppose that F is a distribu-
tion 'with finite variance, F is the empirical distri-
bution and T (X, F) is the average X of the sample
X minus the mean of the distribution F. Then the
variance of T (Y, F) (where Y is a sample from F) can
be expected to be a lot like the variance of T (X, F).
On the other hand, if F is a continuous distribution
on an interval [0, #] and T(X, F) = n(0 — X»)), where
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cause E||XB||2 >||XB2, while Var (¢}) = (1 /M,
E(e?) = (n — p)o?/n. In other words, the mean of Y*
tends to be larger than that of Y, while its variance
tends to be less. Thus the bootstrap model tends to
confirm the overoptimistic assessment of goodness of
fit produced by model selection. The asymptotic per-
formance of the bootstrap is good as n — oo with
p fixed, since (1/n)|| XB]I2 — (1/n)||XB]|?> under mild
conditions on the rate of growth of the elements of X.
When p is a substantial fraction of » however, which
is often the case in variable selection, the results can
be quite misleading (Freedman, Navidi and Peters,
1988). Potential solutions may involve shrinking the
length of B for use in the bootstrap model. Since
the use of model selection procedures is quite exten-
sive in statistical practice, better methods of assess-
ing the performance of selected models would be very
useful. I think it is likely that the bootstrap will turn
out to have something to offer in this area.

X is the largest order statistic, then Young points
out the well-known fact that Pr(7T (Y, F ) = 0) con-
verges to 1 — exp(—1) as n — oo, while T(X, F) has
a continuous distribution.

I believe that some insight into what the boot-
strap does can be gained by doing something with
this last example that is uncommon in most boot-
strap applications, namely, that we think about the
problem. An obvious observation is that Fand F
differ markedly in the manner in which the largest
order statistic from a sample is related to the least

‘upper bound on the support of the distribution. In

particular, with F, the two can be equal with non-
negligible probability; with F, they cannot. An ob-
vious, albeit naive, response is to smooth F, that
is, replace the empirical distribution by a continu-
ous distribution which approximates it. For exam-
ple, if X3y < .-+ < X are the order statistics, one
could define F(x) = Gwi/n+[1 -Gl @G —-1/n
for X; -1y < x < X;), where G is a continuous distri-
bution function and ¥ = (x — X -1))/(X¢) — Xi-1)-
(Forget about x < X (1) for now.) Bickel and Freedman
(1981) claim that even this does not mend the prob-
lem. They attribute (page 1210) the problem to “the
lack of uniformity in the covergence of” FtoF. In
fact, it is not difficult to see what happens in this case.
We get that T'(Y, F) is the sum of two random vari-



