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Fic. 2. The first 20 bootstrap lowess curves; the sharp break at
0.85 seen in the original lowess curve is validated by the bootstrap
replications.

to the readers. Lowess is probably better for this
situation. Figure 2 shows the first 20 of the 2,000
bootstrap lowess curves. The sharp break in the re-
sponse function at x = 0.85 is a dependable feature

Comment

of the replications. It is easy to quantify “depend-
able” with a bootstrap confidence interval for, say,
Poreak = 10g((6100 — 685)/(Pe5 — 650))-

Without making too much of this small example,
it does illustrate some encouraging trends in modern
data analysis: more flexible fitting techniques than
ordinary least squares polynomial regression; better
confidence intervals than 8 + 1.645c; and attention
to “difficult” but interesting parameters like ypreak.

Theoreticians naturally focus on pathologies,
which test a theory to its limits. Real applications
tend less to be pathological than clumsy, awkward
and difficult, as illustrated by the cholesterol exam-
ple. In other words, they do not easily fit the simple
mathematical models of classical statistical analy-
sis. Computer-intensive methods like the bootstrap
greatly extend the range of classical methods, and
this is the way I believe that they will most dramati-
cally affect 21st century statistics. Young’s knowl-
edgeable delineation of the limits of current boot-
strap theory should not obscure an important fact:
that these limits are already wide enough to permit
a much more flexible approach to statistical practice.

Patricia M. Grambsch, Mary Kathryn Cowles and Thomas A. Louis

Young’s review provides an informative history of
the development of the bootstrap and discusses re-
cent developments. We let others comment on tech-
nical issues, and briefly discuss Young’s warnings re-
lated to the bootstrap. His principal worry is that the
bootstrap invites mispractice by many users in that
it has the reputation of an all-purpose procedure that
will provide at least approximately valid inferences.
Developers and generators of the bootstrap literature
understand that, as with all statistical procedures,

"the bootstrap performs extremely well in many con-
texts (basically those where large-sample Gaussian
asymptotics hold), but can fall on its face in nonregu-
lar contexts. Embellishments such as bias-correction
and the nested bootstrap have improved small and
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moderate sample performance, but bring with them
additional complications and decisions. Also, they
strongly refute Efron’s original claim that the boot-
strap is “A statistical procedure devoid of intellectual
content”!

Although Young’s concerns are valid, are they any
more compelling for the bootstrap than for other pro-
cedures such as the ¢-test, multiple regression or the
Cox model? Our answer is both yes and no. Any sta-
tistical procedure frequently used will be frequently
abused. Availability in a user-friendly computing
package facilitates use and abuse. So, Young’s criti-
cisms unfairly single out the bootstrap. On the other
hand, especially in its nonparametric, vanilla form,
the bootstrap is relatively easy to apply to a limit-
less class of problems. All one has to do is decide on
the sampling unit (or not decide and just get on with
it), put the relevant data on actual or symbolic to-
kens and let the Monte Carlo run. Unlike the ¢-test,
regression or Cox model, there are no explicit or im-
plicit limits to the models or methods that comprise
the “black box” around which one bootstraps. Some-
times the bootstrap will provide valid assessments of
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the properties of a procedure (the black box), but it
will not rescue an inappropriate or suboptimal one.
Articles on the bootstrap have appeared in Science
and The New York Times. Because of its apparent
general applicability, ease of use and reputation, the
bootstrap has caught on like wildfire in fields ranging
from genetics to geology. So, Young’s special concern
regarding the bootstrap is quite valid.

AN EXAMPLE OF MISPRACTICE

As an example of how easy it is to misuse the boot-
strap, consider the problem of producing a confidence
interval or band for a loess curve (Chambers and
Hastie, 1992; Cleveland and Devlin, 1988). We sim-
ulated data from the sine-wave model considered by
Hérdle and Bowman (1988):

Y, =sin(dnX;)+¢e, i=1...,n
where the ¢’s are iid N (0, o2).

We used 17 points, with the X;’s evenly spaced on
[0, 1], and fit a linear loess smoother to each data
set using two bandwidths: span = 0.75 (near the
S-plus algorithm’s default value) and span = 0.40
(better to adapt to curvature). Then, we computed
point estimates and 90% confidence intervals at five
X-values: 0, 3, 1, 3, 3, using four standard bootstrap
techniques [see Efron and Tibshirani (1993) for defi-
nitions]:

1. the type I bootstrap percentile interval, based
on resampled residuals from the loess fit that
are rescaled to account for degrees of freedom
lost in fitting; -

2. residuals as in technique 1 with the bias-
corrected percentile intervals;

3. atype II bootstrap percentile method, based on
resampled (X, Y) pairs;

4. the bias-corrected confidence interval for these
pairs.

Each bootstrap used 1,000 samples, and simulation
estimates are based on 1,000 data sets.

" The loess algorithm produces a biased estimate
at many X-values, and the bias varies considerably.
Due to the large bias in the loess estimate, the boot-
strap estimate of bias is very poor (see Table 1 and
Figure 1). Note especially that, in the absence of
measurement error, there is a considerable discrep-
ancy between the true bias (the difference between
the dotted curve and the solid curve) and the boot-
strap estimate of the bias (the difference between
the dashed curve and the dotted curve). Since the
bias is associated with X-values, the residuals are
not even approximately exchangeable, and the type I
bootstrap does not properly account for variability.

TABLE 1
Bias
Span = 0.40 Span = 0.75

Loess Bootstrap Loess Bootstrap
X algorithm estimate algorithm estimate
0 0.28 0.11 0.65 -0.10
1/8 -0.35 -0.19 -0.67 0.01
1/4 0 0 0.06 0.10
3/8 0.35 0.23 091 0.12
1/2 0 0 0 0
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F1G6.1. Thesolid line shows the sine curve at the 17 equally spaced
points on [0, 1]. The dotted curve shows the result of linear least
squares loess (span = 0.40) applied to those points on the sine curve.
The dashed curve shows the result of applying loess to the dotted
curve. Thus, the difference between the solid and dotted curves
gives the bias for the loess algorithm. The difference between the
dotted and dashed curves gives the mean bootstrap bias.

.The type II bootstrap cannot rescue the situation.

All coverage probabilities differ substantially from
the nominal values. Table 2 shows results for span
= 0.4; results for span = 0.75 showed even greater
departure from the nominal probabilities.

As pointed out the nonparametric smoothing lit-
erature (see Hirdle and Bowman, 1988), for nonlin-
ear and oscillating curves, the span or bandwidth
must be adapted to local curvature. Our example
suggests that the curve that generates the bootstrap
samples must be fit with a substantially smaller span
or bandwidth than is desirable for the curve estimate
being evaluated. This approach reduces the bias in
the curve generating the bootstrap samples and re-
veals the bias and nonexchangeability of residuals
associated with the curve estimate being evaluated.
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TABLE 2
Percent coverage for nominal 90% confidence interval*
Bootstrap method
o=0.1 o0=05
X T1 T1BC T2 T2 BC T1 T1BC T2 T2 BC

0 74 94 50 50 83 88 65 63
1/8 0 7 81 50 39 76 70 67
1/4 100 100 100 94 96 89 90 90
3/8 0 3 74 48 33 76 67 66
1/2 100 100 100 95 97 90 91 90

*T1 means type I percentile bootstrap; T1 BC is type I percentile bias-corrected; T2 is type II
bootstrap; T2 BC is type II bias-corrected as described in text.

To confuse matters further, in using the bootstrap to
pick a bandwidth for a kernel density estimate, the
model generating bootstrap data must be an over-
smoother. Failure to recognize these subtleties will
result in very poor inferences.

Applying the smoother and then the bootstrap is
a breeze (our simulations caused the breeze to blow
1,000 times), and we were able to commit misprac-
tice with practically no effort. There are many other
examples where hidden problems with the bootstrap
will occur unless one is especially knowledgeable and
careful.

Our response to Young’s paper and to our example
is a call to action. The statistical profession needs to
communicate the good news, the bad news and the
“no news yet.” The bootstrap will succeed for a broad
class of models and data structures. It will fail in

Comment
David Hinkley

INTRODUCTION

This is a timely article. It is likely to appear in
,print about the same time as first reviews of the ex-
cellent introductory book by Efron and Tibshirani
(Efron and Tibshirani, 1993), a book which should
allay some of the impatience and scepticism that I
sense in the sophisticated user community about the
bootstrap as a practical tool. We are also beginning to
see the first wave of software products which claim to
do bootstrap analysis: some of these are embarrass-
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others; sometimes it can be rescued by modifications
that attend to the structure of the problem. We need
to communicate what we know about the procedure’s
strengths and weaknesses and to identify situations
where we do not yet know the answers. This commu-
nication must reach current and potential users and
thus must appear in a broad array of journals and
other information sources. As we learn more, infor-
mation needs to be updated. Of course, the same
recommendations hold for all statistical procedures,
but the attraction of the bootstrap makes the need
most acute.
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ingly naive. Let us hope for more good applications-
oriented books and better software products.

I think that Alastair Young has done an excellent
job of highlighting the key theoretical developments
and has suggested some sensible steps for further
research. Much of what I have to say will comple-
ment his assessment and will focus on a few practical
points.

WHEN DOES BOOTSTRAP WORK?

This question comes up twice in the paper, in the
context of nonparametric bootstrapping of a point es-
timator. The first time we are given a succinct math-
ematical characterization which is clearly useless to
even the best applied statistician. The second time



