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Bootstrap: More than a Stab in the Dark?

G. Alastair Young

Abstract. A critical review is given of recent research activity on boot-
strap and related procedures. Theoretical work has shown the bootstrap
approach to be a potentially powerful addition to the statistician’s toolkit.
We consider its impact on statistical practice and argue that, measured
against the hopes raised by theoretical advances, this has been until now
fairly modest. We suggest that while this state of affairs is a consequence
to be expected of the sophisticated character of the bootstrap procedures
required to cope reliably in many of the settings of most interest, much
theoretical work is not serving the immediate needs of statistical practice.
Emerging lines of research are reviewed and important future research
directions suggested. In particular, we appeal for greater focussing of
research activity on practicalities.
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1. INTRODUCTION

Among the most significant developments in sta-
tistical methodology of the 1980’s were those relat-
ing to the study of bootstrap resampling procedures.
Publication of Efron’s seminal paper (Efron, 1979a)
drew attention to the potential scope of the bootstrap
as a procedure by which many statistical problems
could be tackled. Since then, a great deal of work has
been carried out which demonstrates the extent to
which the very simple procedure of resampling from
a given set of data can approximate sampling varia-
tions which produced that data in the first place. Has
this work revealed a statistical success story? Was
early enthusiasm (Efron, 1979b; Diaconis and Efron,
1983) for the bootstrap justified? How useful has the
bootstrap proved to be? Why has the full scope of the
idea been so slow to catch on among practitioners?

Early work, of the kind detailed in Efron (1982),
stayed close to the notion of bootstrap as a simple ex-
tension of other resampling methods of statistical er-
ror estimation, such as the jackknife and delta meth-
ods. More recently, bootstrap has come to be viewed
as a more general purpose tool which can be used to
tackle a wide range of statistical problems. When we
judge bootstrap against the heightened expectations
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suggested by recent focus of work in this area, is the
bootstrap revealed to be more than just a stab in the
dark? To what extent can the user of the bootstrap be
sure of it hitting its target? These are key concerns
for the practitioner.

Publication of Exploring the Limits of Bootstrap,
edited by LePage and Billard (1992), offers an oppor-
tunity for reflection on what recent work on the boot-
strap has achieved, and in particular on its lessons
for statistical practice. With publication also of mono-
graphs by Beran and Ducharme (1991), Hall (1992a)
and Mammen (1992), the time is perhaps ripe to
consider too whether the great volume of theoretical
work devoted to bootstrap has, until now, addressed
the correct issues from the point of view of statistical
practice.

Readily accessible accounts of bootstrap which
stress applications are given in the review article by
Efron and Tibshirani (1986) and in the recent mono-
graph (Efron and Tibshirani, 1993) by the same au-
thors. As well as giving a detailed introduction to the
bootstrap, the latter monograph gives a brief exposi-
tion of many recent developments of key importance.

The intention of the current article is to give a criti-
cal account of perspectives and progress on bootstrap
methodology that have emerged in the last few years.
We will discuss reasons why, though a theoretical
success, the bootstrap may be judged to have been
a less spectacular practical success in recent years
than many might have expected or than should be
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possible. We will suggest, too, that the bulk of theo-
retical work has not served the immediate needs of
statistical practice.

2. THE BOOTSTRAP PARADIGM

The term “bootstrap” which Efron gave to his pro-
cedure is emotive, perhaps unfortunate, and it may
in part be responsible for the suspicion with which it
is sometimes viewed. As noted by Hall (1992a, Sec-
tion 1.1), the name has tended to convey the notion
of the statistician striving to obtain something for
nothing, of hopeless endeavour. The thinking should
rather be that of a procedure by which sound sta-
tistical conclusions can often be reached, but which,
being entirely conditioned by the sample data, pro-
vides no direct guarantee of doing so.

The bootstrap paradigm is easily stated, though
often less easily implemented effectively. A given set
of data x is assumed to come from some unknown
underlying distribution F. Letting X denote the un-
derlying random variable, interest lies in some real-
valued “root” T(X, F), depending on X and possibly
F. The inference being performed requires knowl-
edge of the sampling distribution of 7 ( X, F) under F.
The bootstrap estimates the probability mechanism
F by some mechanism F based on x, and hence the re-
quired sampling distribution by that of T (¥, F), when
Y is generated from F. This latter sampling distri-
bution is usually constructed via Monte Carlo simu-
lation, by repeated sampling from F. It is in linking
a simple estimation idea with computing power that
the great scope of bootstrap lies.

The bootstrap may be applied parametrically or
nonparametrically. In the former case, some para-
metric form for F is assumed, unknown parame-
ters are estimated from x and sampling takes place
from the distribution so fitted. The bulk of published
work, however, concerns the nonparametric case, for
this is where the fun lies and the most immediate

practical gains, in terms of quick error estimates and .

p-values, might be expected. Here, in the simplest
, setting, x is assumed to be an independent, identi-
cally distributed sample [x = (x31, x2, ..., x,), sayl, F
is the empirical distribution function of the observed
sample, which puts equal mass 1/n at each of the x;,
and sampling from F amounts to resampling, with
replacement, from (x1, xa, ..., x,).

To illustrate further, we consider now three re-
lated examples which will be discussed further later
in the paper. In each example, suppose the given
data (xi, xg, ..., x,) represent an independent sam-
ple from an underlying univariate distribution F.

ExaMPLE 1. Denote by u the mean of F, and
let X1, ..., X, denote independent random variables
with distribution F. Let X, = n~!'%7_, X;. Con-

sider estimation of the distribution function H(z) of
S = "1/2(Xn — W)

H(z) = P{n'*(X, — p) <z}.

Let X, = n~1%7_, x; be the observed sample mean,
and let {Yy,...,Y,} denote a random sample of size
n drawn, with replacement, from {xi, ..., x,}. Then
the bootstrap estimate H(z) of H(z) is

H(@z) = P(n*2(¥, - %) <z},

with Y, = n~!$?_, Y; and the probability computed
under the repeated drawing of “bootstrap samples”
{Y1,..., Y,}.

ExXAMPLE 2. Generalizing Example 1, let 6 =
0(F) denote an unknown parameter of interest,
with estimate 6 taking the observed value ?(x) =
0(x1,...,x,). Let

r n12{0(Xy,..., X,) —6)

o

where 62 = 62%(Xy,...,X,) is an estimate of
the asymptotic variance o2 of n1/2. Consider es-
timation of the distribution function G(z) of T,
G(z) = P(T £ 2).

The bootstrap estimate of G is

2o, ... V) — 0@} _ ]

Gm:P[ (T, ... ) =z

where, as in Example 1, {1, ..., Y,} denotes a boot-
strap sample drawn from {x1, ..., x,}.

Suppose that G(v,) = o, and G(¥,) = «. Then an
exact two-sided, equal-tailed confidence interval for
0 is, using the notation of Hall (1992a, Section 3.2),

Jo = @(x)—n_l/z?f(x)v(1+a)/2, @\(x)—n_l/z?(x)v(l_a)/z).

The bootstrap version of this interval, the “percen-
tile-t bootstrap confidence interval,” is

T2 = (0(0) =26 (x)011a)/2, 0 (1) =G (X)D1—ay2).-
ExAMPLE 3. Consider use of the root
U=n"2{8(X1,...,Xs) —6)

instead of T in Example 2. The bootstrap estimates

zl)lebc}l’istribution function G'(z) of U, GT(z) = P(U <

G'(0) = P[a2{6(11, ..., Y) —B)} < 2]
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Now an exact, two-sided, equal-tailed 1—a confidence
interval for 6 is

L= 00) —n"ouq raye, 0(x) — n 7 oua _w2),

where

P[nl/z[é‘(xl,...,x,,) -6}

<uy| =c.
o

The bootstrap version of this interval, a “percentile
bootstrap confidence interval,” is

I = (0(x)—n"Y26 ()i + a2, 8(X)—n Y26 (x)ii(1 - oy 2),

where

P[nl/z{é‘(yl, r Y,) — g(x)] < ;;a] =a.
o(x)

Note that, in each example, exact analytic evalua-
tion of the bootstrap quantities will rarely be possi-
ble. In principle, however, and here lies much of the
strength of the bootstrap approach, these quantities
may be computed, to any desired level of accuracy,
by a Monte Carlo simulation. Beran and Ducharme
(1991, pages 7-14) give a detailed account of proce-
dures for computation of a bootstrap distribution.

We must now, however, immediately acknowledge
that there is a stumbling block with the bootstrap
which certainly makes it difficult to adapt to many
statistical problems of interest. It is only within the
narrow independent, identically distributed sample
setting, and here indeed only to a partial extent, that
the prescription of bootstrap is so simple and there-
fore that the procedure has any hope of becoming
automatic. With any other data structure, the boot-
strap still demands user choice of the model F to be
sampled from. A simple example concerns the het-
eroscedastic linear model, where it is not at all obvi-
ous how the fitted model F should be chosen [see Wu
(1986) and the associated discussion].

3. THE CURRENT STATE OF PLAY

Work on bootstrap has had its theoretical high
points. Historically, fundamental work (e.g., Bickel
and Freedman, 1981) establishing asymptotic con-
sistency of the bootstrap in wide generality was fol-
lowed by a stream of research establishing its higher-
order accuracy properties [see, e.g., Singh (1981)].
Subsequent work [see, e.g., Efron (1987) or Beran
(1987)] was largely aimed at defining refined boot-
strap methods and at elucidating the comparative
asymptotic properties of competing procedures. Par-
ticular focus here has been on the relatively straight-

forward problem of interval estimation for scalar
parameters (see Hall, 1988). The Exploring the Lim-
its of Bootstrap volume edited by LePage and Billard
(1992) suggests that once more the focus is shifting.
Currently much attention is devoted to extension of
the bootstrap paradigm to dependent data problems,
such as time series analysis, to establishment of con-
sistency in general settings, such as robust inference,
and to use of the bootstrap within other statistical
procedures, such as bandwidth selection in nonpara-
metric smoothing problems.

Much of the current appeal of bootstrap, with-
out doubt, stems from the not unrealistic hope of
obtaining—as much of the research effort has been
geared to show—higher-order accuracy in an auto-
matic and simple manner. By use of the bootstrap
we may, in particular, gain, in considerable general-
ity, improvements over procedures based on the nor-
mal approximation, without those improvements be-
ing at the expense of sophisticated, problem-specific
theoretical analysis. The only price that needs to be
paid is one of increased computation.

The bulk of work carried out on bootstrap has been
devoted to these higher-order asymptotic properties.
While the fruits of this labour have provided strong
justification for pursuing the bootstrap idea to its
limits, doubts must remain about the gulf between
theory and practice. Theoretically, especially with
refinement, bootstrap works! It is less clear from the
applied statistical literature that practitioners are
impressed enough by theoretical discoveries to grasp
the bootstrap approach as fully as they might.

Although much has been achieved, we must ques-
tion whether the direction theoretical work has taken
has led, for the most part, to the wrong issues being
addressed. Researchers have succumbed too much,
perhaps, to the temptation to devote their efforts to
squeezing even better performance from the boot-
strap, through refinement of procedures which al-
ready provide valid inference, rather than focussing

. their efforts on more fundamental issues concern-

ing basic reliability of the approach. Work which is
leading, as Efron and LePage (1992) note in their
introduction to LePage and Billard (1992), to prac-
tical solution of the problem of producing highly ac-
curate confidence intervals is impressive, but global
answers to more basic questions seem further off.
When does bootstrap work? When does bootstrap
fail to provide valid inference? Are cases of failure
pathological, or practically significant? The answers
here should reflect an important point.

As popularly perceived, the bootstrap has two
main attributes. It provides an automatic approach
to inference, by utilizing the computer, and it pro-
vides a handle on inference in circumstances where
standard approaches which invoke strong assump-
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tions are judged inappropriate. The danger is that
the practitioner may well be attracted to use of the
bootstrap for the second of these attributes, in other
words in precisely those circumstances where the
bootstrap is most likely to fail and where least is
known. Procedures which allow empirical identifi-
cation of bootstrap breakdown are much needed.

Undoubtedly, bootstrap has been successfully
demonstrated to be a sensible approach for simple
error assessment and confidence interval construc-
tion in many statistical problems. Published applica-
tions of the bootstrap are now numerous and include
problems in reliability studies, ecology, high-energy
physics, genetics, record linkage studies, meteorol-
ogy and biostatistics. A number of applications pa-
pers are contained in LePage and Billard (1992), and
a number of examples of data analysis via bootstrap
are given by Efron and Tibshirani (1993). However,
most published applications of bootstrap are limited
to its use for construction of simple measures of sta-
tistical accuracy, of the kind which were the focus of
early work on the bootstrap and highlighted by Efron
and Tibshirani (1986). Evidence that more sophisti-
cated procedures, such as the iterated bootstrap and
bootstrap resampling schemes for dependent data,
which have been the predominant focus among boot-
strap researchers for some time, have been so read-
ily adopted is rather scarce. The reasons for reti-
cence are clear.

First, theoretical work has shown that statistical
inference performed by bootstrap may depend cru-
cially on the form of estimator used. Since the early
theoretical work of Bickel and Freedman (1981) and
Singh (1981), it has been recognised that the boot-
strap, in its simplest and most easily applied form,
as described in Section 2 above, will not always yield
an asymptotically valid inference. Naive use of an in-
valid resampling scheme can produce trouble, even
to the extent of inconsistency.

A well-documented example concerns the boot-
strap distribution of the maximum of a sample.
Let X = (X1, ..
identically distributed random variables with dis-
tribution supported on the interval (0,6). Con-
sider the root T'(X, F) = n(0 — X(»))/6, where X(,) =
max{Xy,..., X,}. Let, as before, F denote the em-
pirical distribution function of the observed sample
x = (x1,...,%,). Let xp;y = max{xy,..., x;}. Thellthe
bootstrap version of the root is given by T'(Y, F) =
n(xey — Y))/*), where Ygq) < --- < Y, are the or-
dered members of a bootstrap: sampleY = (Y1,...,Y,)
drawn independently from F. Then it is easily seen
that P{T(Y,F) = 0} - 1 —exp(-1) as n —» oo.
However, if F is the uniform distribution U (0, 6), the
asymptotic distribution of 7 (X, F) is exponential of
mean 1, from which it is seen that the bootstrap dis-

., Xn), with X1, ..., X, independent,»

tribution does not have a correct asymptotic limit [for
further details see Bickel and Freedman (1981)].

Singh (1981) gives a further example which warns
against naive use of the bootstrap. His example in-
volves use of the resampling scheme appropriate to
independent and identically distributed data when
the data are actually weakly dependent observa-
tions; we will return to this example in Section 5.

As a third example, consider the bootstrap dis-
tribution of the mean in the infinite-variance case.
Let X3, Xs,..., X, be independent, identically dis-
tributed random variables of infinite variance, but
with X; belonging to the domain of attraction of a
stable law. In these circumstances, it is known that
the appropriately normalized mean X, converges to
a stable law, but that the bootstrap version of the
normalized mean has a limit which is a random dis-
tribution, implying that the simple bootstrap scheme
can fail for heavy-tailed distributions. See Athreya
(1987) for details.

A second inhibiting factor relates to choice of boot-
strap procedure. Research has shown, not unex-
pectedly, that there is no specific implementation of
the bootstrap paradigm which is universally supe-
rior to others. Even if the simplest bootstrap sam-
pling scheme, which resamples from the empirical
distribution function of the given data, is asymp-
totically valid, it may not be the only feasible ap-
proach, or the best. As well as the choice of root
T to be bootstrapped being crucial, as we shall see
below, other choices of F may be worthy of consid-
eration. For example, Silverman and Young (1987)
consider use of the bootstrap in simple functional es-
timation problems, such as those involving estima-
tion of moments. They compare the simple bootstrap
scheme which resamples from the empirical distri-
bution function with a “smoothed” bootstrap, which
constructs the distribution F to be sampled from by
smoothing the empirical distribution function using
a kernel method. Whether the smoothed procedure
is preferable to the standard scheme is shown to de-
pend crucially on both the underlying distribution F
and on the quantity being estimated.

A third problem relates to the relevance, or
otherwise, of asymptotics. Attractiveness of the
bootstrap approach is somewhat dimmed by the re-
alization that favourable asymptotics of a particu-
lar bootstrap estimation procedure is no guarantee
of good small-sample behaviour. Schenker (1985) il-
lustrates the poor small-sample performance of pro-
cedures, which have asymptotic justification, when
constructing confidence intervals for a population
variance. As further forceful illustration of this
point, consider the percentile-r method, as described
in Section 2. It is well known that this method
has desirable theoretical properties as a means of
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constructing nonparametric confidence intervals; we
will review some of these properties in Section 4. In
small samples, however, it may lead to unreliable in-
tervals, due to the difficulty in many problems of con-
structing a stable variance estimate. For instance,
Hall, Martin and Schucany (1989) consider construc-
tion of bootstrap confidence intervals for a correlation
coefficient, by the kind of procedure illustrated in Ex-
ample 2. In that problem, it is not possible to find
an estimator 62 of the asymptotic variance o2 which
itself has low variance. The result is confidence in-
tervals for the correlation coefficient & which, when
constructed from small samples by the percentile-
method, are often erratic, with endpoints escaping
the interval [-1, 1].

Difficulties of the above kind must be set against a
background where, for the most part, bootstrap only
provides a valid inference where other, simpler, first-
order alternatives such as the normal approximation
are available.

Finally, and in this author’s view crucially, boot-
strap procedures which have been developed to han-
dle more complex problems, such as those involving
dependent data, are generally not automatic in that
they require choice of some form of design parame-
ter. A bootstrap approach with time series data is
to resample “blocks” of successive observations. As
we shall see in Section 5, a choice regarding block
size must be made. Considerable practical problems
remain.

Recent volumes (Le Page and Billard, 1992; Hall,
1992a) reflect well the extent to which sophisticated
theory has been put into the service of analysis of
the bootstrap. The bootstrap has provided statisti-
cians with a valuable tool with which to supplement
standard statistical analyses. However, theory has
not generally yet developed to the extent of provid-
ing a practically dependable higher-order accurate
methodology as general in scope as the range of con-
texts studied would appear to herald.

In the following sections we will examine in more
detail the main strands in current development of
bootstrap methodology and amplify the above points.

4. INDEPENDENT DATA
4.1 What Is Known

The bulk of published work on the properties of
bootstrap concerns the case of independent—and
usually identically distributed—data, for the simple
reason that if bootstrap is to be a success, it must
work here. Does it? The answer is arguably all that
might be expected: a partial “yes.”

Efron’s early development of the bootstrap, as sum-
marized in Efron (1982) and Efron and Tibshirani

(1986, 1993), remains faithful to the idea of the boot-
strap as a development of other resampling methods,
particularly the jackknife. Viewed in these terms,
there can be little doubt of the success of bootstrap.
The bootstrap may work, for example, in the prob-
lem of estimating the asymptotic variance of a sam-
ple quantile, where jackknife does not. Efron (1982)
and Efron and Tibshirani (1986) give a number of
examples where bootstrap considerably outperforms
preexisting methods of error assessment, such as the
jackknife and delta methods. It is this author’s con-
tention, however, that early theoretical and practical
findings led to bootstrap being viewed in much more
ambitious terms than as merely extensions of these
methods. Itis when the more ambitious view is taken
that the cracks begin to appear.

A detailed general account specifically addressed
to questions, both in terms of underlying distribution
and resampling scheme, of when bootstrap works is
given by Mammen (1992). Consideration is given to
application of bootstrap in three contexts: estimation
of smooth functionals; nonparametric curve estima-
tion; and linear models. Numerous other authors
have considered particular problems.

Overall, the bootstrap has been shown to be a po-
tentially effective approach to many standard prob-
lems of statistical inference, especially error estima-
tion and confidence interval construction, not only in
the independent, identically distributed sample set-
ting, but also the practically important regression
setting. A brief summary of general conditions that
together imply consistency of the bootstrap is given
by Efron and LePage (1992). These conditions were
first established by Bickel and Freedman (1981).

In the notation of Section 2, the simple bootstrap
resampling scheme for independent data, which re-
samples from the empirical distribution function,
will work provided that the following hold:

i) T{(X1,..., X,), G} tends weakly to alimit law

Lg whenever X, ..., X, areindependent, identically
distributed with distribution G, for all G in some
neighbourhood of the true distribution F into which
the empirical distribution function F eventually falls
with probability 1;

(ii) the convergence in (i) is uniform on this neigh-
bourhood;

(iii) the function G — L is continuous.

Establishing validity of bootstrap in a particular set-
ting may be a highly nontrivial exercise. Of these
conditions, that involving uniformity of convergence
as a function of the unknown data model is often the
most taxing to verify. Bickel and Freedman (1981)
provide a number of examples, including the exam-
ple of bootstrapping the distribution of the maximum
of a sample, where the bootstrap fails because uni-
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formity of convergence does not hold on any suitable
neighbourhood of the true distribution F. Efron and
LePage (1992) note that the bootstrap can fail due
to violation of each of the three conditions individu-
ally. We have already indicated in Section 3 a number
of cases of bootstrap failure. Further examples are
given by, among others, Bickel and Freedman (1981)
and Mammen (1992).

Theoretically important work [see, e.g., Bretag-
nolle (1983)] has shown how validity of the bootstrap
may be ensured in many settings by simple modifi-
cations such as introduction of smoothing and alter-
ation of the resample size. Consider the independent,
identically distributed case. The latter idea involves
ensuring that the above conditions hold by estimat-
ing the distribution of T(X, F) by that of T(Y, F),
where Y = (Y3,...,Y,) denotes a bootstrap sample
drawn from the observed data {x1, ..., x,}, but of size
m, for suitable m to be specified, rather than size n as
would be usual. How is m to be chosen in any given
context? It is easy to question the practical value of
such modified bootstrap procedures.

Many of the remarks made in Section 3 are some-
what disparaging of the tone of much of bootstrap
research. However, it would be wrong to be too crit-
ical of the way bootstrap research has developed.
Paradoxically, the flavour of much theoretical work
in the independent data setting has been influenced
precisely by bootstrap’s own success, what Efron
and LePage (1992) describe as “an unexpected ma-
jor advance.” The bootstrap, properly formulated,
is not only an automatic alternative to more classi-
cal procedures, such as normal approximations and
procedures based on explicit Edgeworth correction,
but is actually capable of producing greater accu-
racy automatically, without any special theoretical
analysis being necessary, and will do so in consid-
erable generality. Efron and LePage (1992) sum-
marize very briefly some of the results concerning
the higher-order accuracy properties of bootstrap.

Roughly speaking, for estimating the distribution .

function of a studentized statistic, the bootstrap au-
tomatically produces answers as good as those ob-
" tained by a one-term Edgeworth expansion. For
constructing one-sided confidence intervals, the per-
centile bootstrap method provides no improvement
over use of a normal approximation, giving a cov-
erage which differs from the nominal required cov-
erage by an error of order O(n~'/2), where n is the
sample size. The percentile- method, however, typ-
ically gives a coverage error of order O(n~') and in
that sense displays higher-order accuracy. For two-
sided confidence intervals, both the percentile and
percentile-t methods yield the same order of cover-
age error, O(n1), as procedures based on the nor-
mal approximation, though as we shall discuss be-

low more sophisticated versions of the bootstrap can
reduce this error. Further details of the theoretical
properties of bootstrap and references may be found
in Hall (1992a, Chapter 3).

It is particularly worth noting that Singh’s (1981)
paper, which described the skewness-correcting role
of bootstrap methods in the case of a standardized
sample mean, was based on the development of a one-
term Edgeworth expansion. This paper firmly es-
tablished a framework, based on Edgeworth expan-
sion methodology, for analysis of bootstrap which has
been central to bootstrap research and from which
we have learned much [see Hall (1988, 1992a)]. It
may be argued that by its very nature this frame-
work has encouraged a certain preoccupation with
higher-order accuracy considerations, within partic-
ular classes of models. Balanced against this view-
point, though, must be set the argument that without
such higher-order comparisons a less satisfying pic-
ture, not of what bootstrap is capable of achieving,
but of how this should be achieved, would be avail-
able.

Among the key issues which have been of concern
to bootstrap researchers in recent years, and about
which the Edgeworth expansion methodology in par-
ticular has had much to say, are questions relating
to pivoting and the related notions of prepivoting,
calibration and iteration. It is worthwhile summa-
rizing here some of the current thinking with respect
to these issues.

A special role is played in bootstrap methodology
by pivotal methods. Recall that in Section 2 we pre-
sented two examples (Examples 2 and 3) concerning
inference for a scalar parameter 6. The first pro-
cedure, Example 2, was based on an asymptotically
pivotal statistic T, whose limiting distribution does
not depend on unknown quantities. In Example 3
inference was based on the nonpivotal statistic U.

As noted by Hall (1992a, Section 3.1), the advan-
tages of pivotal applications of the bootstrap are
readily explained by means of Edgeworth expansion.
If T is asymptotically normally distributed, then in
regular cases [see Hall (1992a, Chapter 2)] we may
expand its distribution function as

G@) =@ +n 9@ +0n™Y),

where ¢ is an even quadratic polynomial and ¢ and
¢ are the standard normal distribution and density
functions, respectively. The bootstrap estimate G(z)
admits an analogous Edgeworth expansion

GQ@) =2 +n G R) + 0,(n™Y),

where 7 is obtained from g on replacing unknown
population quantities by bootstrap estimates. Since
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such estimates are typically 0,(n~1/2) distant from
their population values in ¢, 7 — g = 0,(n""/?), so
that G(z) — G(z) = Op(h‘l). The bootstrap approxi-
mation to G is in error by a term of size n~!, while a
normal approximation, which approximates G(z) by
®(z), is in error by a term of size n=1/2.

If, however, we use the bootstrap to approximate
the distribution of a nonpivotal statistic U, as in Ex-
ample 3 of Section 2, we commit an error of size n~1/2,
The relevant Edgeworth expansions are now

Gl =o(2) +n712p(2)p(2) + 007

Z Z
o o) \o
and
G'@) = c1>(§) + n—lfzﬁ(ai)qb(%) +0,(n™Y).

Since p — p = 0,(n"'2) and ®(z/0) — ®(z/7) =
0,(n~1?), we see that

G'(2) - G'(») = 0,(n™3).

The bootstrap approximation is in error by terms of
size n=1/2, not n!, if we bootstrap the nonpivotal
statistic U.

Other recent key theoretical developments concern
the notion of prepivoting (Beran, 1987) or bootstrap
iteration (Hall and Martin, 1988). We provide an
illustration of this notion involving Example 1 of
Section 2.

An ideal, one-sided confidence interval for u of
exact coverage 1 — « is

C={nlS<H'A-w)}
={ulH(S) <1-a}.

The corresponding bootstrap confidence interval may
be written

C={ulHS <1-a}
={ulS<H'QA-w).

This confidence set may have coverage probability
which differs substantially from the nominal value
1—«. The idea of prepivoting is that of transforming
the root S to a new root S, whose distribution de-
pends less strongly on F than that of S. Such a trans-
formed root is H(S), whose distribution is, assuming
continuity, U(0, 1). However, H is unknown, so the
bootstrap approach suggests considering S; = H(S),
which has distribution function

Hi(z) = P(51 <2)

under sampling from F. Let H, be the bootstrap esti-
mator of H;. Construction of the bootstrap confidence

set from S; gives the prepivoted bootstrap confi-
dence set

61={M1515ﬁf1(1—¢¥)}

* P ~

® = {u [S< H'l(Hl'l(l—a))}.
Construction of C; entails an iterated bootstrap com-
putation. Bootstrap samples must be drawn from the
bootstrap samples drawn from the given sample data
[for details see Beran and Ducharme (1991), pages
27-36]. It is clear from (%) that, in this context of
constructing a confidence set, the prepivoting or iter-
ated bootstrap idea amounts to making an additive
correction to the nominal coverage level of the origi-
nal bootstrap confidence interval C.

Martin (1990) discusses use of iterated bootstrap
procedures in constructing confidence intervals, as il-
lustrated above, and shows that bootstrap coverage
correction produces improvements in coverage accu-
racy of order n~'/2 in one-sided intervals and of order
n~1in two-sided intervals.

In general terms, bootstrap iteration aims to en-
hance the accuracy of a bootstrap method by esti-
mating some error term and adjusting the bootstrap
method so as to reduce that error. Loh (1987) intro-
duced the notion of bootstrap calibration as a device
for improving the coverage accuracy of confidence in-
tervals. If calibration is applied to a bootstrap confi-
dence interval, it amounts precisely to bootstrap it-
eration. There now exists a widely held view that,
at least from a theoretical viewpoint, a significant
part of the future of bootstrap methodology lies in
the use of the iterated bootstrap [see Hall (1992a,
Section 3.11.1)]. The disadvantage is that iteration
is highly computer intensive, perhaps unattractively
so for the potential user.

4.2 What Is Needed

The bootstrap will usually provide a consistent sta-
tistical procedure in the independent data setting,
if not directly, at least after some modification. We
have noted that there are often practical problems,
however, once consistency has been ensured. Patch-
ups of the basic bootstrap involving devices such as
modification of resampling size, while understood
theoretically, suffer still from a lack of practicality.

The smoothed bootstrap is a further case in point.
Smoothing of the empirical distribution function be-
fore resampling has been shown to be necessary to
obtain asymptotically valid inference in some prob-
lems [see the example of bootstrapping the mode
considered by Romano (1988)]. Also, while in most
problems smoothing will not affect the rate of con-
vergence of a bootstrap estimator, it can be sub-
stantially worthwhile in small-sample contexts [see
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Silverman and Young (1987); De Angelis and Young
(1992)]. Also, there are problems involving estima-
tion of quantities which depend on local properties
of the underlying distribution, such as problems in-
volving confidence intervals for quantiles, where a
slow rate of convergence of the simplest bootstrap
estimator can be improved by smoothing. Examples
are considered by Hall, DiCiccio and Romano (1989)
and De Angelis, Hall and Young (1993a, b). The in-
troduction of smoothing takes away the automatic
character of bootstrap and leaves behind the practi-
cally important and nontrivial problem of specifying
a smoothing bandwidth.

The point here is that work which we may perform
to ensure that the bootstrap enjoys the second of its
key attributes above, general applicability, may well
deprive it of the first, simplicity. The practitioner
may not mind, provided some more specific guide-
lines than those currently available are provided.

Some of the reticence that potential users of
bootstrap may feel relates to absence of direct
procedures for critical thinking about the bootstrap
procedures they may be using. Study of empirical
procedures which enable informed decision from the
data of when bootstrapping is sensible is required.
Only recently has attention been paid to the prac-
tically crucial question of providing the user with
some means of assessing how well-determined, or
accurate, the bootstrap estimator is. Efron (1992)
presents a jackknife-after-bootstrap procedure for
this use [see also Efron and Tibshirani (1993, Chap-
ter 19)]. An important research direction will cer-
tainly be investigation of the practical value and
scope of such procedures. How generally might they
be applied? Do they provide the basis for empir-
ical determination of breakdown of the bootstrap?
Will extension of these methods be a panacea for the
problems of bootstrap which have emerged from the
great volume of theoretical study to which it has been
subjected, and some of which we have noted here?
One can remain hopeful, but since the most natu-
ral and flexible procedures for internal error assess-

“ment are based on the bootstrap itself (Efron, 1992;
De Angelis and Young, 1992), some circularity of ar-
gument seems inevitable.

The vast bulk of published work on bootstrap has
been concerned with asymptotics, which may reas-
sure, but provide little direct backing for use of the
bootstrap in the small sample context. It may be
argued that too little has been done to study small-
sample properties. Young and Daniels (1990) provide
a very limited small-sample study of bias of the boot-
strap in simple estimation problems, and analytic
procedures by which, if extended, it may be possi-
ble to analyze small-sample behaviour more gener-
ally. Owen (1991) provides small-sample compari-

son between various procedures used for construc-
tion of nonparametric confidence intervals for a pop-
ulation mean. While limited simulation studies of
this kind will often suggest that asymptotic results
are reasonably true in small samples, this is not al-
ways the case. Simulation results which illustrate
this point very clearly are contained in Mammen’s
(1992, Chapter 1, Section 5) comparison between the
bootstrap and normal approximations in the problem
of estimating the sampling distribution of a sample
mean.

5. DEPENDENT DATA
5.1 Recent Attention

As LePage and Billard (1992) clearly reflects, at-
tention has recently shifted away from polishing of
the bootstrap in the independent data setting toward
extending the procedures to dependent observations,
in particular, stationary and nonstationary time se-
ries data and Markov chains. This is an important
shift of focus. A very readable account of some of the
developments in this area is given by Léger, Politis
and Romano (1992). They make a key point which is
obscured somewhat by the theoretical tone of the pa-
pers on bootstrapping dependent data in LePage and
Billard (1992). In this context, the distribution of an
estimator generally depends heavily on the joint dis-
tribution of the observations, and, while distribution
theory of estimators is often known, its use is often
difficult. By contrast with the simpler independent
data setting, therefore, the bootstrap has a more fun-
damental enabling role to play. In the independent
data setting, bootstrap offers the possibility of auto-
matic improvement over standard procedures, such
as those based on normal approximation. In the de-
pendent data setting, practical alternatives to boot-
strap are more limited, and the bootstrap therefore
more appealing. The rewards may be higher, but the

- problems are trickier and practical methodology is

still some way off.

To illustrate some of the key points relevant to
bootstrapping dependent data, consider again Ex-
ample 1 of Section 2, but suppose now that the
X; are m-dependent. This example is considered
by Singh (1981) and Léger, Politis and Romano
(1992). Recall that the sequence of random vari-
ables {X,, n = 0,%1,+£2,...} is stationary if, for
all n = 0,%1,%2,..., the joint distribution of
(Xi, Xk 41, --+» X +n) does not depend on k. A sta-
tionary sequence is m-dependent if the set of ran-
dom variables {X,, n = —1,—2,...} is independent
of {X,, n=m,m+1,...}.

If X1,..., X, are from a univariate m-dependent
stationary sequence, E(X,) = u, with p = E(Xy),
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and if m < n,
o2 = var(n'?X,)

=var(Xy) + 22 (1 - :—l—)cov(Xl, X14i)-
i=1

By the central limit theorem for m-dependent pro-
cesses, n/2(X, — u) converges in distribution to
N(0,02), where

m
aozo = nlingocrnz =var (X1) + 2Zcov(X1, X1440)-

i=1

This asymptotic distribution may be used to con-
struct confidence intervals for w, but only provided
a consistent estimate of 02 is available, and which is
far from straightforward to obtain.

Politis and Romano (1994) give a number of other
examples of dependent data problems where statis-
tics of interest possess asymptotic distributions, but
where use of these is difficult. The bootstrap pro-
vides a route which can bypass difficult problems as-
sociated with use of asymptotics, but at a price. It
is clear that use of the bootstrap resampling scheme
appropriate to independent data will fail to provide
consistent approximation even in the case of weakly
dependent processes. In the above example, for in-
stance, the simple bootstrap estimate of the variance
of n'/2X, converges in probability to var (X;) and is
therefore inconsistent for 2. Identification of a valid
resampling scheme requires knowledge of the depen-
dence structure of the observations.

As in the independent setting, bootstrap can
be applied parametrically to structured dependent
data models, often with improvement over standard
asymptotic procedures. Most developments to de-
pendent data problems have considered such struc-
tured models. Papers by Athreya and Fuh (1992) and
by Datta and McCormick (1992) consider Markov
chain models.

However, once again most interest lies in nonpara-
metric resampling schemes. Key developments here
are quite recent. Kiinsch (1989) proposed a “moving
blocks” resampling scheme for stationary time series
data [see also the paper by Liu and Singh (1992)].
The basic idea here is to break the observed data se-
ries x up into a collection of overlapping blocks of
observations. Bootstrapped data series are obtained
by independent sampling, with replacement, from
among these blocks. .

We illustrate this procedure in the context of
the example above. Let b be a given block size.
Define & = (x;,...,xiy+»-1) to be the block of
b consecutive observations starting from x;, | =
1,....,n — b+ 1. The moving blocks bootstrap is

based on sampling with replacement from the col-
lection {&1, ..., &, —p+1}. Suppose that k is an integer
such that kb is approximately n, and let &}, ..., & be
sampled independently and with replacement from
{€1,..., & —p+1}. Let thel = kb elements of &, ..., &F
be concatenated into a single vector (Y3,...,Y)) =
(&f,....&). Then (11, ..., Y)) is the bootstrap sample
under the moving blocks bootstrap scheme and, for
example, a bootstrap estimate of P{n'/2(X, — u) < z}
is P{IY2(Y, — x,) < z}, where the probability is com-
puted under the moving blocks resampling scheme,
and where Y, = ["!3}_, Y;. Consistency under the
model of m-dependence is now achieved if b is allowed
to grow to infinity with n (see Liu and Singh, 1992).

Alas, the spectacular and immediate higher-order
theoretical success of the bootstrap in the indepen-
dent case, noted by Singh (1981), is not quite as evi-
dent with the moving blocks bootstrap.

The paper by Lahiri (1992) demonstrates that the
rate of approximation by Kiinsch’s method may be
worse than the rate of normal approximation: it is
only with suitable modification in the definition of the
bootstrapped statistic that second-order correct ap-
proximation is obtained. In the above example, such
modification amounts to estimating P{n'/2(X, —u) <
z} by P{IY2(Y; — E*Y)) < z}, where E*Y, denotes the
expectation of Y, under the moving blocks resampling
scheme. The paper by Politis and Romano (1992a)
suggests a variant of the moving blocks bootstrap
which automatically provides this modification.
Politis and Romano (1992b) define a generalization of
the moving blocks resampling scheme which can be
used for inference about parameters associated with
the whole, infinite-dimensional, distribution of the
observations, such as those that arise in the problem
of estimating the spectral density function.

It would appear, therefore, that in the dependent
data context validity of the bootstrap is a more deli-
cate matter than in the independent case. There any
one of a number of procedures may be valid, even
if some are judged better than others, and the basic
bootstrap is valid in quite wide generality. Theoret-
ical results, such as those developed in LePage and
Billard (1992), are strongly conditioned too by the
form of dependence assumed. The assumption of m-
dependence and conjecture that results will hold also
for more general dependence models is widespread.
In practice the dependence structure of the obser-
vations may have to be estimated. Key questions
arise here also in relation to the assumption of sta-
tionarity of the data-generating mechanism. Lahiri
(1992) includes the reassuring result that the moving
blocks bootstrap enjoys a certain degree of robust-
ness against departure from stationarity. Somewhat
worrying, however, is the observation (Léger, Politis
and Romano, 1992) that, while it assumes the mech-
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anism generating the data to be stationary, the mov-
ing blocks bootstrap utilizes resampled data series
which lack this stationarity property. The “station-
ary bootstrap” of Politis and Romano (1991) solves
this problem.

5.2 Immediate Needs

The appealing simplicity of Efron’s original boot-
strap idea for independent data is somewhat lost for
dependent data. Quite sophisticated procedures may
be required to cope successfully and provide valid in-
ference in this setting. How in practice, given only
sample data, are we to identify an asymptotically jus-
tified resampling procedure? A pragmatic answer
to this question for confidence interval construction
with independent data may now be available: use an
iterated percentile interval (Hall, 1992a, page 142).
No such general answer is yet available for depen-
dent data problems. We have noted already that,
even with more theory, serious practical difficulties
remain. All resampling procedures that have been
described for dependent data depend in some way
on a “tuning constant,” such as the block size b in
the above description of the moving blocks bootstrap.
Practical guidelines for choice of such constants,
essential to use of the schemes in any setting, are
scarce and lacking in generality.

To date there has been very limited empirical study
of bootstrap procedures for dependent data. Most
work, such as the papers in LePage and Billard
(1992), is highly theoretical and little concerned with
statistical practice. Once again, though, such doubts
about the current utility of bootstrap in this area
must be tempered by the realization that real ad-
vances of practical importance should be obtainable,
especially in such areas as spectral density estima-
tion, through use of the bootstrap. However, the
methods required may be somewhat sophisticated
and far from automatic.

6. PRACTICALITIES

Practicalities are paramount. If bootstrap is to be-
come 'a standard part of the statistician’s tool kit,
then it must be presented both sharpened and ready
for use. As we have noted above, for some jobs boot-
strap is a sensible and feasible option. For other cir-
cumstances it is still pretty well on the drawing board
and needs much sharpening. There are two reasons
why everyday use is not widespread. First, as we
have seen, in many settings there is still much the-
oretical analysis of bootstrap required before we can
be confident of its value. ‘Second, there is need for
readily accessible software. A major difficulty here
is noted by Léger, Politis and Romano (1992). The

bootstrap is a class of procedures, rather than a sin-
gle method. Even with availability of routines for use
within packages such as S for bootstrap sampling,
such as those detailed in the appendix to Efron and
Tibshirani (1993), the user is left the task of identi-
fying the objects to be resampled. While books such
as those by Noreen (1989) and Westfall and Young
(1993) help popularize the approach, LePage and
Billard (1992) suggests that, in this area as much
as in any other, researchers are little concerned with
the packaging of their theory. They have preferred
to tackle practical issues of a different kind.

Bootstrap estimates can rarely be expressed in
closed form, and most often Monte Carlo simula-
tion must be used for their approximation. Recently
much attention has been paid to questions relating to
efficient computation for the bootstrap; some of this
work is reviewed by Hall (1992b) and by Efron and
Tibshirani [(1993), Chapter 23]. Inventive though
this work often is, is it important? Potentially, yes.
However, despite the increasing range of problems
tackled by bootstrap and the increasing number of
applied publications which make use of bootstrap for
error assessment, there is little evidence—certainly
not in LePage and Billard (1992)—of routine and
repeated use of bootstrap. The computational sav-
ings which may be achieved through use of the
fairly sophisticated efficient simulation schemes may
not have much practical significance. Considera-
tion of the large volume of work in this area leads
to the pragmatic conclusion that simple resampling
schemes, such as the “balanced” bootstrap, strike an
effective balance between the competing demands of
implementational simplicity and efficiency (see Hall,
1992b).

Related to work on variance reduction methods for
use in a bootstrap simulation is work on analytic
approximation methods which replace entirely the
need for a Monte Carlo simulation [see Davison and
Hinkley (1988) and the extensions given by Daniels
and Young (1991) and DiCiccio, Martin and Young
(1992a, b; 1994)]. The same criticisms may, however,
be levelled against these methods. They are rela-
tively complex, compared to standard bootstrap sam-
pling, and computational savings are probably not
very worthwhile in general. The notable exception
here is with the iterated bootstrap, where analytic
approximation has enabled (DiCiccio, Martin and
Young, 1992b) routine construction of accurate con-
fidence intervals with significant computational sav-
ings over the standard iterated resampling scheme.
As iterated procedures must be viewed as likely can-
didates for solution of many of the outstanding prob-
lems of bootstrap methodology, such as determining
suitable tuning constants, these analytic methods
seem worthy of further development. Analytic meth-
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ods of this kind may have potential also as diagnostic
tools. It has been demonstrated (Daniels and Young,
1991) that analytic procedures applied to the em-
pirical distribution function may break down in the
presence of outliers or with data samples from “ex-
treme” underlying distributions, and so may provide
a means of identifying empirically circumstances
where bootstrap is unreliable.

Analytic procedures are likely also to be of value
when considering what Efron and LePage (1992) rec-
ognize as important recent developments and refer
to as “double dip” bootstrap. The idea here is that of
choosing between different estimators (possibly dif-
ferent bootstrap estimators) that with smallest boot-
strap estimated error and then subsequently using
bootstrap to assess the sampling properties of the
adaptively chosen estimator.

7. THE FUTURE?

There seems no limit to the circumstances where
bootstrap has a role. What will be the next phase
of development of bootstrap? Two areas which seem
likely to attract much attention are evident.

Exciting new developments, represented, for ex-
ample, in the papers by Marron (1992) and by
Brownstone (1992), concern use of the bootstrap
within other statistical procedures, such as band-
width selection problems in curve estimation and
variable selection problems in linear models. Here
the emphasis is on demonstrating usefulness of boot-
strap as a competitor to more conventional methods,
within an accepted framework or with an accepted
class of estimators, rather than on replacement of
these methods with resampling procedures which as-
sume less. Such use of bootstrap is somewhat differ-
ent in tone from that envisaged by Efron’s introduc-
tion of bootstrap, but less controversial. As we might
expect, care must be taken with the form of resam-
pling method used, as is crucially the case with de-
pendent data problems. For example, Hall (1992a,
Chapter 4) gives a detailed account of the extensive
suite of bootstrap techniques that ean be used to con-
struct confidence intervals in nonparametric curve
estimation problems and discusses their comparison.

Although much of the work on use of bootstrap
within other statistical procedures is still in its in-
fancy, early results are encouraging. Bootstrap com-
pares very favourably with other more conventional
methods and, by avoiding the need for extensive
analysis, enjoys the advantage of simplicity.

Another discernible thread in the development of
bootstrap—and much of the content of LePage and
Billard (1992)—represents a reversion to basics. The
concern here is with bootstrapping in more general
settings, and in particular with establishing consis-

tency of bootstrap in M-estimation, with bootstrap-
ping U-statistic quantiles and with elucidation of
asymptotic accuracy of bootstrap in these situations.
This sort of work is important. The contexts to
which the results apply (robust estimation, Hodges—
Lehmann estimators etc.) are highly relevant to pre-
cisely the sort of circumstances—where there is lim-
ited knowledge about the underlying distribution—
for which bootstrap was designed. It is puzzling that
such work has not been undertaken before. Again,
one must reflect upon whether interest in comparison
between higher-order properties of competing boot-
strap procedures, while it has revealed important
insights and seen the development of important gen-
eral theoretical tools such as Edgeworth expansion,
has delayed exhaustive consideration of the ques-
tions that may be more significant from the viewpoint
of statistical practice. Can we effectively delimit cir-
cumstances where bootstrap works? In what cir-
cumstances does bootstrap provide valid inference,
while simpler alternatives such as normal approxi-
mation are not available? Much of the material of
LePage and Billard (1992) and related work such as
Mammen (1992) represents a sensible return to grap-
ple with these basic issues.

Also to be stressed, and balanced against enthu-
siasm for bootstrap, are circumstances where boot-
strap works, but equally good rates of convergence
are obtainable by simpler means. For example, De
Angelis, Hall and Young (1993b) consider bootstrap
approximation of the distribution of the regression
parameter estimators in an L! setting. The simplest
resampling scheme provides consistent estimation
and may be improved upon by use of a smoothed boot-
strap scheme, but only to an extent that may more
easily be obtained by a normal approximation. A sys-
tematic identification of these circumstances will no
doubt be made, but is overdue.

Asreading LePage and Billard (1992) makes clear,
research activity and enthusiasm for bootstrap un-

" doubtedly remains strong. But will it remain as

strong in the future as it has over the past few years?
There are reasons for doubt.

Recent work [see, e.g., the papers by Wu (1990), Tu
(1992) and Politis and Romano (1994)] on distribu-
tion estimation using subsample values of a statis-
tic has served as a reminder of the fact that boot-
strap is in essence a modern expression to old ideas
and has seen a rekindling of interest in alternative
resampling-based procedures. One wonders whether
this interest admits to the notion that hard work
done to establish valid bootstrap inference might
well have been focussed on establishing properties
of other methods as well. Sometimes these other
procedures may be consistent under weaker condi-
tions, which are easily checked (Politis and Romano,
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1994), although they may not be fully automatic
in that they require specification of resample size,
which may be practically difficult. The paper by Tu
(1992) shows how, with hard work, versions of these
methods may be obtained which yield second-order
accuracy. Although general resampling procedures
of this kind are currently rather undeveloped by com-
parison with bootstrap, interest in their applicabil-
ity endorses an important point. The bootstrap may
have radically altered much of how statistical infer-
ence may be performed, but it has not completely dis-
placed previous ideas of statistical inference, such as
jackknife, in which it has its roots.

Recent years have seen also the emergence of very
significant work on likelihood-based nonparametric
inference. Some of this work is summarised by
Efron and Tibshirani [(1993), Chapter 24]. Em-
pirical likelihood and bootstrap likelihood (Owen,
1988; Davison, Hinkley and Worton, 1992) compete
with bootstrap in many circumstances and may be
valid under weaker conditions. Recent work by Hall
and Chen (Chen, 1993; Chen and Hall, 1993) indi-
cates the great potential scope of empirical likelihood
and suggests that in accuracy terms nonparametric
likelihood may be a strong competitor to bootstrap.
These nonparametric likelihood methods are rooted
firmly in classical statistical ideas, such as profile
and partial likelihood, and have shown how classi-
cal likelihood-based procedures for construction of
confidence regions, hypothesis tests and so on may
be successfully adapted to the distribution-free con-
text. The very term “bootstrap,” rightly or wrongly,
evokes qualms with many, as producing something
out of nothing. Many will feel on firmer ground with
nonparametric likelihood.

8. CONCLUDING REMARKS

In this paper we have attempted to give a criti-
cal snapshot of recent research activity on bootstrap
and related procedures. As summarized by Efron
and LePage (1992) in their introduction to LePage
and Billard (1992), we can really discern three main
strands of activity within bootstrap research:

1. First, there is work devoted to exploration of the
limits of applicability of bootstrap. The boot-
strap idea, especially when linked to inventive-
ness, can be adapted to tackle most problems.
These are the really fundamental consistency
questions, and the answers are encouraging,
even if the versions of bootstrap that emerge are
in many cases still rather cumbersome and less
simple than we might have hoped.

2. Second, identification of conditions under which
bootstrap is valid has renewed interest in other

procedures, such as generalised forms of jack-
knife, which may be valid under weaker con-
ditions, or at least conditions which are easier
to check. Much remains to be done to estab-
lish versions of these methods which both will
be practical and will demonstrate higher-order
accuracy.

3. Third, there is work which examines higher-
order accuracy properties of bootstrap methods
and explores how this accuracy can be har-
nessed to the task of producing accurate statis-
tical inference in an automatic way. This work
includes questions relating to implementation
and choice of the “correct” procedure for a given
problem.

Progress on 3 has been greatest, but for the in-
dependent data case only. There is still much to be
done under 1 and 2. Efron and LePage (1992) note
that the goal of producing highly accurate confidence
intervals by bootstrap seems to be moving toward a
practical solution. The implication is clear. Even
for this relatively narrow goal, the bootstrap is not
quite established as part of the standard statistical
armoury.

So what should be the final conclusion? Efron’s
realization of the scope for use of resampling ideas,
especially when combined with modern computing
power, has certainly had a significant impact on
much of statistical thought, but relatively little on
statistical practice. Nonparametric bootstrap inves-
tigations are regularly used to supplement more
standard statistical analyses in simple problems of
error estimation, but there the story often ends. The-
oretical study of bootstrap has been undertaken with
great energy, for a whole range of problems. Much
of this work has shown the bootstrap approach to be
a potentially powerful one, but it is not one that has
been much embraced in practice outside the indepen-
dent sample setting. Our contention is that this is a

consequence to be expected of the sophisticated na-

ture of bootstrap procedures required to cope reliably
in most settings and of the predominantly theoretical
flavour of most bootstrap research. But the bootstrap
can cope reliably and provide useful methodology in
many statistical problems, sophisticated as well as
simple. Provided research activity keeps sight of the
need for practicality, in a way that has sometimes
been absent, with further development the bootstrap
ought to realize its potential as much more than a
stab in the dark.

REFERENCES

ATHREYA, K. B. (1987). Bootstrap of the mean in the infinite vari-
ance case. Ann. Statist. 15 724-731.



394 G. A. YOUNG

ATHREYA, K. B. and Fus, C. D. (1992). Bootstrapping Markov
chains. In Exploring the Limits of Bootstrap (R. LePage and
L. Billard, eds.) 49-64. Wiley, New York.

BERAN, R. (1987). Prepivoting to reduce level error of confidence
sets. Biometrika 74 457—468.

BERAN, R. and DUCHARME, G. R. (1991). Asymptotic Theory
for Bootstrap Methods in Statistics. Les Publications CRM,
Montréal.

BICKEL, P. J. and FREEDMAN, D. A. (1981). Some asymptotic
theory for the bootstrap. Ann. Statist. 9 1196-1217.

BRETAGNOLLE, J. (1983). Lois limites du bootstrap de certaines
fonctionelles. Ann. Inst. H. Poincaré 19 281-296.

BROWNSTONE, D. (1992). Bootstrapping admissible linear model
selection procedures. In Exploring the Limits of Bootstrap
(R. LePage and L. Billard, eds.) 327-344. Wiley, New York.

CHEN, S. X. (1993). On the accuracy of empirical likelihood confi-
dence regions for linear regression model. Ann. Inst. Statist.
Math. 45 621-6317.

CHEN, S. X. and HALL, P. (1993). Smoothed empirical likelihood
confidence intervals for quantiles. Ann. Statist. 21 1166-1181.

DanieLs, H. E. and Young, G. A. (1991). Saddlepoint approxi-
mation for the studentized mean, with an application to the
bootstrap. Biometrika 78 169-179.

DATTA, S. and McCorMICK, W. P. (1992). Bootstrap for a finite
state Markov chain based on i.i.d. resampling. In Exploring
the Limits of Bootstrap (R. LePage and L. Billard, eds.) 77-97.
Wiley, New York.

DAvISON, A. C. and HINKLEY, D. V. (1988). Saddlepoint approx-
imations in resampling methods. Biometrika 75 417-431.

DavisoN, A. C., HINKLEY, D. V. and WoRTON, B. J. (1992).
Bootstrap likelihoods. Biometrika 79 113-130.

DE ANGELIS, D., HALL, P. and YouNgG, G. A. (1993a). A note on
coverage error of bootstrap confidence intervals for quantiles.
Math. Proc. Cambridge. Philos. Soc. 114 517-531.

DE ANGELIS, D., HALL, P. and YouNng, G. A. (1993b). Analytic
and bootstrap approximations to estimator distributions in
L! regression. J. Amer. Statist. Assoc. 88 1310-1316.

DE ANGELIS, D. and Young, G. A. (1992). Smoothing the boot-
strap. Internat. Statist. Rev. 60 45-56.

DiAconis, P. and EFRON, B. (1983). Computer-intensive methods
in statistics. Scientific American 248 116-130.

DiCiccio, T. J., MARTIR, M. A. and Young, G. A. (1992a).
Analytical approximations for iterated bootstrap confidence
intervals. Statistics and Computing 2 161-171.

DiCiccio, T. J., MARTIN, M. A. and YOuNG, G. A. (1992b).
Fast and accurate approximate double bootstrap confidence
intervals. Biometrika 79 285-295.

DiCiccio, T. J., MARTIN, M. A. and YOUNG, G. A. (1994). Ana-
lytic approximations to bootstrap distribution functions using
saddlepoint methods. Statist. Sinica 4 281-296.

EFRON, B. (1979a). Bootstrap methods: Another look at the jack-
knife. Ann. Statist. 7 1-26. .

" EFRON, B. (1979b). Computers and the theory of statistics: think-
" ing the unthinkable. SIAM Rev. 21 460—480.

EFRON, B. (1982). The Jackknife, the Bootstrap and Other Resam-
pling Plans. SIAM, Philadelphia.

EFRON, B. (1987). Better bootstrap confidence intervals (with dis-
cussion). J. Amer. Statist. Assoc. 82 171-200.

EFRON, B. (1992). Jackknife-after-bootstrap standard errors and
influence functions (with discussion). J. Roy. Statist. Soc. Ser.
B 54 83-127. i

EFRON, B. and LEPAGE, R. (1992). Introduction to bootstrap. In
Exploring the Limits of Bootstrap (R. LePage and L. Billard,
eds.) 3-10. Wiley, New York.

EFRON, B. and T1BSHIRANI, R. (1986). Bootstrap methods for stan-
dard errors, confidence intervals, and other measures of sta-
tistical accuracy (with discussion). Statist. Sci. 1 54-96.

EFRON, B. and TIBSHIRANI, R. (1993). An Introduction to the Boot-
strap. Chapman and Hall, New York.

HALL, P. (1988). Theoretical comparison of bootstrap confidence
intervals (with discussion). Ann. Statist. 16 927-985.

HaLL, P. (1992a). The Bootstrap and Edgeworth Expansion.
Springer, New York.

HALL, P. (1992b). Efficient bootstrap simulation. In Exploring the
Limits of Bootstrap (R. LePage and L. Billard, eds.) 127-143.
Wiley, New York.

HaLL, P., DiCiccio, T. J. and RoMaNoO, J. P. (1989). On smooth-
ing and the bootstrap. Ann. Statist. 17 692-704.

HaLL, P. and MARTIN, M. A. (1988). On bootstrap resampling
and iteration. Biometrika 75 661-672.

HaLL, P., MARTIN, M. A. and ScHUCANY, W. R. (1989). Better
non-parametric bootstrap confidence intervals for the corre-
lation coefficient. J. Statist. Comput. Simulation 33 161-172.

KUnNscH, H. R. (1989). The jackknife and the bootstrap for general
stationary observations. Ann. Statist. 17 1217-1241.

LaHIRI, S. N. (1992). Edgeworth correction by ‘moving block’ boot-
strap for stationary and nonstationary data. In Exploring the
Limits of Bootstrap (R. LePage and L. Billard, eds.) 183-214.
Wiley, New York.

LEGER, C., PouiTis, D. N. and RoMaNoO, J. P. (1992). Bootstrap
technology and applications. Technometrics 34 378-398.
LEPAGE R. and BILLARD, L. (eds.) (1992) Exploring the Limits of

Bootstrap. Wiley, New York.

Liu, R. Y. and SINGH, K. (1992). Moving blocks jackknife and
bootstrap capture weak dependence. In Exploring the Limits
of Bootstrap (R. LePage and L. Billard, eds.) 225-248. Wiley,
New York.

LoH, W. (1987). Calibrating confidence coefficients. J. Amer.
Statist. Assoc. 82 155-162.

MAMMEN, E. (1992). When Does Bootstrap Work? Asymptotic
Results and Simulations. Springer, New York.

MARRON, J. S. (1992). Bootstrap bandwidth selection. In Explor-
ing the Limits of Bootstrap (R. LePage and L. Billard, eds.)
249-262. Wiley, New York.

MARTIN, M. A. (1990). On bootstrap iteration for coverage cor-
rection in confidence intervals. J. Amer. Statist. Assoc. 85
1105-1118.

NoREEN, E. W. (1989). Computer-Intensive Methods for Testing
Hypotheses: An Introduction. Wiley, New York.

OWEN, A. B. (1988). Empirical likelihood ratio confidence inter-
vals for a single functional. Biometrika 75 237-249.

OWEN, A. B. (1991). Empirical likelihood and small samples. In
Computing Science and Statistics. Proceedings of the 22nd
Symposium on the Interface (C. Page and R. LePage, eds.) 79—
88. Springer, New York.

PouiTis, D. N. and RoMANO, J. P. (1991). The stationary boot-
strap. Technical Report 365, Dept. Statistics, Stanford Univ.

Porrtis, D. N. and RomaNo, J. P. (1992a). A circular block-
resampling procedure for stationary data. In Exploring the
Limits of Bootstrap (R. LePage and L. Billard, eds.) 263-270.
Wiley, New York.

PouiTis, D. N. and RoMANO, J. P. (1992b). A general resampling
scheme for triangular arrays of ¢-mixing random variables
with application to the problem of spectral density estimation.
Ann. Statist. 20 1985-2007.

Pouitis, D. N. and RoMaNoO, J. P. (1994). Large sample confi-
dence regions based on subsamples under minimal assump-
tions. Ann. Statist. 22 (4).

RoMANO, J. P. (1988). On weak convergence and optimality
of kernel density estimates of the mode. Ann. Statist. 16
629-647.

SCHENKER, N. (1985). Qualms about bootstrap confidence inter-
vals. J. Amer. Statist. Assoc. 80 360-361.

SILVERMAN, B. W. and Young, G. A. (1987). The bootstrap: to
smooth or not to smooth? Biometrika 74 469—479.



BOOTSTRAP: MORE THAN A STAB IN THE DARK? 395

SINGH, K. (1981). On the asymptotic accuracy of Efron’s bootstrap.
Ann. Statist. 9 1187-1195.

Tu, D. S. (1992). Approximating the distribution of a generalized
functional statistic with that of jackknife pseudo values. In
Exploring the Limits of Bootstrap (R. LePage, and L. Billard,
eds.) 279-306. Wiley, New York.

WESTFALL, P. H. and YOuNG, S. S. (1993). Resampling-Based
Multiple Testing: Examples and Methods for p-Value Adjust-

Comment
Rudolf Beran

G. Alastair Young’s essay states as its theme: “We
will discuss reasons why, though a theoretical suc-
cess, the bootstrap may be judged to have been a
less spectacular success in recent years than many
might have expected or than should be possible.” Ex-
pectations are a personal matter, not widely shared.
Young’s specific concerns include the following:

(a) “...bootstrap procedures which have been devel-
oped to handle more complex problems, such as
those involving dependent data, are generally not
automatic in that they require choice of some
form of design parameter” (Section 3).

(b) “Patch-ups of the basic bootstrap involving de-
vices such as modification of resampling size,
while understood theoretically, suffer still from
a lack of practicality” (Section 4.2).

(c) “Published applications of the bootstrap are now
numerous...” but the latest discoveries of boot-
strap theory have not made their way into such
data analyses (Section 3).

(d) “Researchers have succumbed too much, per-
haps, to the temptation to devote their efforts
to squeezing even better performance from the

. bootstrap. . .rather than focusing their efforts on
more fundamental issues concerning basic relia-
bility of the approach” (Section 3).

(e) “Schenker (1985) illustrates the poor small-
sample performance of procedures, which have
asymptotic justification, when constructing
[bootstrap] confidence intervals for a population
variance” (Section 3). “Only recently has atten-
tion been paid to the practically crucial question
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of providing the user with some means of assess-
ing how well-determined, or accurate, the boot-
strap estimator is” (Section 4.2).

(f) “...there is still much theoretical analysis of boot-
strap required before we can be confident of its
value. Second, there is need for readily accessi-
ble software” (Section 6).

(g) “The very term ‘bootstrap,” rightly or wrongly,
evokes qualms with many, as producing some-
thing out of nothing. Many will feel on firm-
er ground with nonparametric likelihood” (Sec-
tion 7).

Let us examine these assertions more closely.
Statement (a), that the bootstrap is not automatic, is
surely true, more deeply than Young discusses. Data
does not follow a statistical model. Random variables
are a mathematical construct, as are stationary time
series and more complex models. The goal of statis-
tical theory is to analyze procedures in hypothetical
situations that mimic aspects of data. Even the most
complete theory is easily misapplied. The first part
of statement (f) founders on this reality. The use
of bootstrap or other statistical procedures, like the
use of surgical instruments, is an empirical business
that offers no guarantees or refunds. This does not
preclude success in skilled hands.

Statement (b) hastens to judge a very active topic.
The modification of bootstrap resampling size has re-
ceived closer scrutiny in recent technical reports by
D. Politis and J. Romano and in a prominent invited
lecture by F. Gotze at the 1993 Annual Meeting of the
IMS. The study of the wild bootstrap and generalized
bootstrap is likewise moving ahead rapidly, for in-
stance, in work by E. Mammen. Each of these strate-
gies handles examples where simple bootstrapping
fails. Early numerical results support the theory.

Statement (c) can be set against the prehistory of



