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Abstract.

The Chen-Stein method of Poisson approximation has been

used to establish theorems about comparison of two DNA or protein se-
quences. The most useful result for sequence alignment applies to align-
ment scoring with no gaps. However, there has not been a valid method to
assign statistical significance to alignment scores with gaps. In this paper
we extend Poisson approximation techniques using the Aldous clumping
heuristic to a practical method of estimating statistical significance.
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1. INTRODUCTION

Since the invention of rapid gene sequencing tech-
niques in the mid-1970’s, new genetic sequences from
a wide range of organisms have been determined.
The DNA sequences have been placed into interna-
tionally available databases since about 1984. Fig-
ure 1 gives the growth of the DNA sequence data in
GenBank, the database funded by NIH. The DNA
Data Bank of Japan (DDBJ), the EMBL Data Li-
brary, and GenBank are collaborating and virtu-
ally equivalent databases. The doubling time for
the DNA data is approximately 2 years. In addi-
tion there are protein sequence databases where the
amino acid sequences of genes are stored. These se-
quence databases are an important resource for bio-
logical sciences. New sequences are quickly entered,
making the databases very dynamic. Not only are
the sequences themselves stored but basic biological
information about the sequences and relevant refer-
ences are included as well.

All new DNA or protein sequences are compared

' to the appropriate sequence databases to find se-
quences that are “close” in a sense to be made pre-
cise later. These searches have become central to
the practice of modern molecular biology, and they
are based on ideas from evolution. The evolutionary
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process usually proceeds by utilizing existing genes.
If mutation of a current gene gives a selective advan-
tage, then that mutation has an increased chance of
being fixed in the population. Thus all or part of a
protein sequence in one organism might appear as
all or part of another protein sequence in the same
or another organism; knowing this relationship be-
tween a new sequence and an already studied se-
quence can give valuable clues as to the function of
the new sequence. Many important discoveries have
resulted from sequence database searches. A simi-
larity between the human cancer related viral v-sis
oncogene product and platelet-derived growth factor
(Doolittle et al., 1983) gave valuable insight into how
the cancer was regulated. The sequence similarity
was great with a stretch of 50—60 identical amino
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acids. Other similarities are just as important but
less dramatic at the sequence level. Cystic fibrosis
is a recessive genetic disease carried by about 2—15 of
the Caucasian population. Recently the gene of the
most prevalent allele for the disease was cloned and
sequenced (Riordan et al., 1989). A database search
showed that the gene product is similar to a fam-
ily of related protein sequences that bind ATP and
are involved in the transport of small hydrophilic
molecules across the cytoplasmic membrane. While
the similarity was weaker, it allowed a structure and
function of the gene product to be proposed.

A nice, well-studied example is the family of
hemoglobin sequences, which are used to illustrate
the ideas developed in this paper. Hemoglobin is a
protein of red blood cells that binds oxygen. This
molecule is very important as larger organisms (ani-
mals) cannot obtain oxygen simply by diffusion from
the air. A similar molecule is found in all verte-
brates and in many invertebrates. The most prim-
itive globin is a protein of about 150 amino acids
and is utilized in insects, worms and some fish.
In higher (more recently evolved) organisms there
are two kinds of globins that apparently came from
gene mutations and duplications. The two globins,
«a and B, appear in a complex of four globin se-
quences, two a-globins and two S8-globins, that com-
prise the hemoglobin molecule in higher vertebrates.
In addition, there is apparently another evolution-
ary sequence of events leading to the y-globin used
in embryos and to the §-globin found only in adult
primates. There is even a hemoglobin-like protein
expressed in plants. Thus this is a well-studied and
varied family of proteins that can test our ability to
understand the results of database searches.

The outline of the paper is as follows. Sequence
comparison will be reviewed. The dynamic pro-
gramming comparison algorithms in Section 2 are
motivated by the biology just discussed. Each
comparison results in a score that is the basis of
determining possible similarity. Then the known re-
sults for assigning statistical significance to the com-
parison scores are discussed in Section 3. The sta-
tistical distribution of scores depends critically on
certain parameters of the algorithm. Some of the
most useful results are motivated by the Chen—Stein
method of Poisson approximation. In Section 4 this
method is extended by the Aldous clumping heuristic
to a practical method of estimating statistical signif-
icance for the most useful part of the algorithm pa-
rameter space. The model is tested on simulated data
in Section 5. A numerical method is presented in
Section 6 to estimate the two parameters of Poisson
approximation, and the quality of approximation is
studied. The technique is applied to a database
search using a globin sequence. Finally, in Section 8

data from a database search are used to test the
model and to improve the parameter estimates.

2. ALGORITHMS

In this section we present the basic dynamic
programming algorithms used to compare genetic
sequences. See Waterman (1984) for a review.
Two nondynamic programming algorithms, FASTA
(Lipman and Pearson, 1985; Wilbur and Lipman,
1983) and BLAST (Altschul et al., 1990), for rapid
database searches are very well known and widely
used. Both these algorithms are faster than the
quadratic algorithms presented below, and both can
be considered heuristics for the comparison score we
compute here using dynamic programming (Pearson,
1991). Thus the statistical methods we present can
be used for these rapid search techniques, and in the
case of BLAST are already an integral part of the
algorithm.

Let us set the stage. Given are two sequences
X =x1Xg-- X, and y = y1yg - - - y, Over a finite alpha-
bet. For DNA the alphabet has 4 letters; for protein
sequences it has 20 letters. Later the letters will be-
come random; for now they are deterministic. There
is a scoring function s(x, y) for aligning letter x with
letter y. Not only do letters change ( y is “substituted”
for x) but they are inserted or deleted (an indel). For
example, let

+1, x=y,

s(x,y) = [_M’ x4y,

and score indels by —§. The alignment

ATAGC
AAGCC

scores 2 — 3u. The score can be changed with appro-
priate indels:

ATAGC-
A-AGCC

scores 4 — 25. Which is preferable depends on the
value of (1, §). Our problem is to compute the global
alignment score S(X, y) = maximum alignment score
over all alignments of x and y. Alignment score can
be computed from specifying the k aligned letters 1 <
h<ig<-+<p<nandl<ji<jo<:--+<jr<m,
for k > 0, so there are a total of

=00 =("3")

alignments. In the alignments above, £ = 5 and 4,
respectively. See Figure 2. Instead of maximizing
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Fic. 2. Global alignment with k = 17.

over this exponential number of alignments, S(x, y)
can be computed in O (nm) steps.

Define
Sij = S(x1x2- - Xi, y1y2 - yj)s
with So, ; = —4j and S; o = —8i. Then the recursive
step of the algorithm is

Si'j =max{S,~_1,j ——6,S,~.,-_1—8,

1)
( Si—1j-1+ sy}

The score is found by S, , = S(x,y). The algorithm
is derived from considering the three ways an align-
ment can end,

Xi - Xi

-y Y
and assuming that the other letters are optimally
aligned. In Table 1 we present a small example of
sequence alignment with

+11 = ’
s(x,y) = [_1 i#yy

and § = 1. The two optimal alignments are shown
by the two boxed patterns in the matrix in Table 1
and are

GATC--AATTCGCA
TATCTTAA--CGCC

=

—1 y

F1G. 3. Local alignment of intervals I and J.

and

GATCAATT--CGCA
TATC--TTAACGCC"

Such alignments where all letters from each se-
quence are in the alignment are called global align-
ments. Next we turn to local alignments, where in-
tervals of x and y are optimally aligned. See Figure
3. Actually local alignment is

n+1 m+1
(2 )5 )
global alignment problems since, for example, there
are (;) +n+1lintervals x;x; 1y ---x; with1 <i < j <n
including the empty interval. Our objective function
is H(x,y):

H(x,y) = max{0; S(xix; 41 Xj, VeYk+1-* V)
l<i<jsnl<ks<l<m}
= max{0; S(/, J):1 Cx, J Cy}.

The quantity 0 comes from the empty intervals and
getting S(®, @) = 0. There is a nice recursion for this
quantity, too. Define

H, j = max{0; S(x -+ xi, yr -+ y)):
1<k=<il<i<j)

TaABLE 1
Global alignment

- T A T € T T A

A C G C C

- 0 -1 -2 -3 -4 -5 —6 -7 -8 -9 —10 —11 —12
G -7 -8 -9 -8 -9 -10
A -5 -6 -7 -8 -9 -10
T -3 4 5 -6 -7 -8
c -1 -2 -3 -4 -5 -6
A 1] 0o -1 -2 -3 —4
A 1 2] 1 0 -1 -2
T o 1] 1] 0 -1 -2
T 1 ol o] o -1 -2
c 1] o] 1] o 1 o
G o o of 2] 1 o
c -1 -1 1 1| 3] 2
A o o o o 2| 2]




370 M. S. WATERMAN AND M. VINGRON

TABLE 2
Local alignment (a) optimal alignments and (b) declumped matrix with second-best alignment

(a)

- TATCTTAACGCC
-00000O0O0OO0OO0OOTO0DO
G0OO0OO0OO0OO0OOOOOOT100
A0o0[1]J00 00110000
TO10[2]1 11000000
CO0O0O0T1[3]2]1]0 010 11
AO0O010[2]2 1[2]1 0000
AO0O0T10[1]1 1 2[3]2100
TO 102 1]2]2 1[2]2 100
TO 1011 2[3]2]1]1 100
C0O0O0O0212 2 1(|2]1 21
GO0OOOOT1 1111 1[3]21
C00O0O010UO0GO0TO0?Z2 2[4]3
A0OO010000O0T1T1T1T133

to be the best score of any intervals ending at x; and
y;j or 0 if no such alignment scores positive. The al-
gorithm begins with H; ; = 0ifi - j = 0. Then

H;,j =max{H;,_1;—8 H; j_1—3,
(2 Hi_1,j-1+s(, j), 0}

just as in (1) except for the initial conditions and 0 in
the recursion. We find

Hx,y) = Jmax H; ;.

1<j=<v

The local algorithm is known as the Smith—
Waterman algorithm (Smith and Waterman, 1981).
See Table 2 for an example of this algorithm with
s(x,y)=1,x =y,s(x,y) = -1, x#yand § = 1. The
optimal alignments are

ATC--AATTCGC
ATCTTAA--CGC

and

ATCAATT--CGC
ATC--TTAACGC"

The nonuniqueness of optimal alignments is typ-
ical. In fact around a high-scoring alignment there
are many intersecting alignments that are optimal or
near-optimal and differ in small details only. Some-
times it is of biological interest to debate these small
details but usually we are only concerned if there
are any other high-scoring alignments that are not
too dependent on the first alignment. Motivated by
this we define a clump of alignments to be the set of
alignments sharing at least one pair of aligned letters

(b)
- T GCC
- 00 000
GO0o 100
A0 Of 000
T O 1 0 00
cCoo 01 1
AO0O 0.0 0
A0O 100 0
T O 1 ‘0 0
T O 1 00
cCoo 151.
GoO0oO :0:.0
cCo0o0 L Q;
A0O

with a given alignment. When calculating H order
@, j, H;, j) by > as follows: (i, j, H;, ;) > (k, 1, H,;) if

H; j > Hg,,
or H,"j =Hk'1 and i+j <k+]1,
or Hij=H;, i+j=k+landi<k.

The optimal alignment first output ends at (i, j, H;, ),
which is largest under >~. We pick one of the align-
ments ending at (i, j) with score H; ;. Then we de-
clump by removing the effect of all alignments in the
clump; H ; is the matrix computed by not allowing
any aligned pair in the output alignment. Let (k, [) be
the upper-left position of aligned letters in the align-
ment. Then

H = H,;

l,j=

wheni <korj <,
and

lel =maX{0, H:—l,l ""8, Hl:,[—l _8}.

" The remainder of the row (%, j),! < j, can be com-

puted term by term until Hy, ; = Hy ;. Then there is
no need to continue, as the recursion will now always
return Hy, ; = Hy ; for the rest of the row. Declump-
ing continues by switching from row to column until
the effects of the alignment clump are removed. This
is much cheaper in time than just redoing the entire
matrix. The K best clump scores can be found in this
manner: H(l) > H(2) > e > H(K)

The results of the local alignment in Table 2 are
now analyzed by the declumping algorithm. As be-
fore, s(x,y) = +1if x = y; s(x,y) = =1 if x #y; and
§ = 1. The two optimal alignments are

ATCTTAA--CGC
ATC--AATTCGC
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and

ATC--TTAACGC
ATCAATT--CGC’

There are several next-best alignments of score 2.
The first is shown in Table 2, with the entries
changed by declumping the best alignments outlined.
The first local alignment after declumping is also out-
lined:

AT
AT.

In biology indels larger than one letter often ap-
pear, and they are likely to be the result of one event
rather than the sum of one-letter events. Thus it is
desirable to score such indels as one event. Compu-
tational efficiency can be obtained for the gap penalty
—g(k) = —a — Bk for an indel of k letters. The first
letter costs o + B, and each succeeding letter costs
B. Three recursions are required: E, F and H. Set
E;,j=F,j=H,;j=0ifi.j=0. Then the recursion
due to Gotoh (1982) is

E;j =max{H;;_1— (¢ +B), Eij—1- B,0},
E,j =max{Hi—1,j - (a+ﬁ)v F}—l.j —ﬂvo}v
H; j =max{H;_1,;_1+50,y;), Ei, F;;,0}.

For declumping, all three matrices must be recom-
puted, stopping in a row or column when all these
agree with the earlier matrices.

3. DISTRIBUTIONAL RESULTS

Now take random“sequences X =X1X2--X,, Y
=YYy ---Y,, where X; and Y; are iid. Given a scor-
ing scheme

1,

s(x,y) { Zu

with 4 > 0 and § > 0, our interest is in the random
variable H(X,Y). When we do database searches
‘with a new sequence X there are tens of thousands
of database sequences Y, so with no biological simi-
larity we will see large-deviations behavior. Before
moving to a study of what scores should surprise us,
it is instructive to ask about the growth of score with
sequence length. This is motivated by the variety of

sequence lengths in the database.
First we consider global alignment scores. Let

Sn =S(Xl"'Xanl"'Yn)
and observe that

Sntm = Sp +SXn41-- Xotm Yag1--- Yoim)

moreover, S(Xn+1** Xn4m» Yns1-+Yoim) equals Sy
in distribution. The theory of subadditive sequences
implies that the following limit exists:

E(Sy,)

3) a(u,8) = lim ]E(i)- = sup .
1

n>o0 pn n> n

In fact Kingman’s subadditive ergodic theorem
(Kingman, 1973) applies, giving

Sn .
4) a(un,8) = lim — a.s. andin L;.
n—->oo n

When £ = oo and § = 0, S, is the length of
the longest common subsequence of X1 Xz --- X, and
Y1Ys---Y, and a(oo, 0) is the Chvatal-Sankoff (1975)
constant. Unfortunately, even for P(X; = 0) =
1- P(X; =1) € (0, 1) the constant is unknown.

Now S, < H(X1-+-X», Y1 --+Y,) = H,, so that

%]

n
"5_”5_
n n

=1,

= |

and the asymptotic growth of H, is “caught” between
a(u, 8)n and n. In fact it is not too surprising and can
be proved that, when a(u, §) > 0,

P(nlirrolo% = a(u,S)) - 1.

Moreover, when a(u, 8) < 0 it can be proved that H,
grows like a constant time log(n). When a(u, 8) <0,
there is a constant b such that, for all ¢ > 0,

® P(a-ob< A

gt < @+ b) -1,

and H,/log(n) — 2b is conjectured to hold. Having
divided the growth of H, into linear and logarithmic
regions, it should also be noted that {(u, §):a(u, 8) =
0} defines a line in [0, co]? separating {a < 0} from
{a > 0}. Of course (oo, 0) and (0,0) € {a > 0} while
(00, 00) € {a < 0}. Thus there is a phase transition
between linear and logarithmic growth in [0, co]2. A
graph of the parameter space with the phase transi-
tion curve appears in Figure 4. These results appear
in Arratia and Waterman (1994).

Moving back to biological motivation for a moment,
recall that we wish to find aligning intervals that
have more similarity than random sequences. It is
not productive to use (u,8) € {a > 0} since even if
there are such intervals they will be surrounded by
or even obscured by alignments that have only ran-
dom sequences aligned. In the linear region, it is
not penalized just to wait for another well aligned
pair because the penalty for poorly aligned pairs and
indels is too low. Thus we are motivated to use log-
arithmic penalties. For a discussion of the effects of
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parameter choice on biological sequence alignment
see Vingron and Waterman (1994).

Just where does the logarithmic region come from?
A simple heuristic can be given and later made rig-
orous. Take u = 8 = oo and let

p=PX =Y7).

Then Z; ; = 1if a match of length k starts at X; and
Yi (Zij = UXiXiv1- - Xivk—1 =Y;¥j 1 Yjipp1D)
and, neglecting end effects,

]E(Z Zij) = nzpk.
iJ

If the longest match occurs about once, take

1=n2pk

and solve for k, obtaining
k = 2logy,,(n).

Aldous has formulated the Poisson clumping
heuristic which we use as the basis of our calcu-
lation of alignment p-values. The heuristic is em-
ployed in cases where occurrences happen in clumps
and where the distribution of the number of clumps
is approximately Poisson. The approximation is to
locate the clumps according to a Poisson process
and then assign iid clump sizes to the locations.
Aldous formalizes this approximating process as a
mosaic process. '

Our use of Poisson approximation is not rigorous;
for the full range of parameters where we believe and
provide evidence that Poisson approximation holds,
we are unable to give a theorem. Special cases have
been proved, however, and to this end we give two

theorems on Poisson approximation by the Chen-
Stein method as they appear in Arratia, Goldstein
and Gordon (1989). It is not the purpose of this pa-
per to give careful proofs of all results, but these the-
orems allow easy proofs of some important results
and moreover provide a nice guide for our intuition
in other situations.

Define the total variation distance between two
random variables U and V by

1£U) = LWV)I| = 2sup |PU € A) —P(V € A)|,
A

where the sup is over all subsets of the reals. The
bookkeeping is done in the following way. There is a
finite or countable index set I. For each @ € I, U, is
a Bernoulli random variable and

pe =PWU, =1) > 0.

Set

W=ZU¢,

ael

and assume

A=EW) =" ps €(0,00).

ael

Take Z to be Poisson()). For each a € I we have a set
B, c I with«a € B, tobe a set of indices where 8 ¢ B,
implies U, and Uy are independent. Then define

b1=z Z DPaDp

ael BeBy
and
be=3 ) P
ael a#£BeBy
- where

Pop = ]E(UaUﬂ)-
The following theorem gives error bounds on the
approximation of W by a Poisson random variable Z.

THEOREM 1. Let W = Y, _, U, be the number of
occurrences, and let Z be Poisson with0 <A =EW =
EZ < 0o. Then

1—e*

IEW) = L@ < 201 + bo) (——) = 2061 +bo)

and

1—e*

[POW = 0) — ™| < (b1 + bo) (~——) < (b1 +bo).
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There is a process version of the theorem that
proves to be very useful in our application.

THEOREM 2. Let Z = {Z,},c; be an independent
Poisson process with Z, of mean p,. The total varia-
tion distance between Z and U = {U,}q < satisfies

IL(Z) — LA)|| < 4(b1 + b2).

The length of the longest head run R, in n inde-
pendent coin tosses is closely related to the longest
matching between two sequences. First we set a test
length ¢ so that runs of length ¢ occur with small
probability. While it seems that counting these runs
should give a Poisson random variable, the clumping
or overlapping of the runs makes this idea fail. Given
arun of length ¢, there is a geometric number of runs
in a clump. Instead we count the clumps by counting
the leftmost ¢-run in each clump. The iid sequence
Vi,Va,...has p=P(V; = 1) = 1 = P(V; = 0) € (0, 1).
The index set is {1,2,...,n}. The leftmost run of
length ¢ has indicator

Up=WVs---V,,
and for « > 1 we declump by requiring V,_; = 0:
U, = (1 - Va—l)VaVa+1 Va+t—1-

As above, the sum of indicators is

n—t+1
W= Y U.
a=1
Note that
{Ry <t} ={W =0}
and

A= (1) =EW) = p'{(n =1 - p) + 1}.
So if we obtain a Poisson A, (t) approximation for W,
P(R, > t) ~ 1 —exp[ — A (0)].

To obtain bounds for the approximation set B, = {8 €
I: | — B| < t}. It follows that by < A2(2t +1)/n+ 2Ap*
and b = 0. To have an interesting approximation,
we need A bounded away from 0 and oo, which holds
if and only if # — log;,,(n) is bounded. In this case
by = 0(log(n)/n) - 0 as n — oo.

Extending this result to sequence matching is done
by setting I = {(i, j):1 <i <n, 1 < j < m}. The de-
clumped random variables U, = Uy, j, are defined by

U,j=UXiXit1 Xigc1=Y¥p1 Y1),

ifi or j = 0, and otherwise by

U;=1{X;~1#Y;_; and
XiXig1 Xigio1=Y;¥j 01 Y1}
The dependence set for a = (i, j) € I is
B,={(,jhel:li—i'|<tor|j—j|<t}
For this situation,
by < (n—1t+1)(m —t + 1)(2t + 1)2p'
and

A=Anm(®) =p{(n+m—2t=1)+(—1)(m—1)(1-p)}.

Therefore t = log; /p(nm(l — p)) +c will keep A be-
tween 0 and oco. When n = m, A is approximately p°.
Therefore we can derive bounds on

|P(Hp,m < 1) — exp(— A, m(®))],

providing a Poisson approximation for pure matching
between two sequences of lengths n and m.

Several extensions of these results have been
made. For the longest match between two random
sequences where the fraction of identities is 8 > p,
see Arratia, Gordon and Waterman (1990). There,
no indels are allowed, only mismatches. The ballot
theorem is used for a much more complicated depen-
dence structure. Neuhauser (1994) extends those re-
sults to cover a fraction of indels. While these are
mathematically nontrivial results, they fall far short
of covering our general random variable H,.

The most useful analytical result in this area cov-
ers the case § = oo so that there are no indels. The
scoring function must satisfy E(s(X, Y)) < 0 for ran-
dom letters X and Y. A widely used scoring func-
tion on amino acids that fulfills the criterion is the
PAM250 matrix (Dayhoff, Barker and Hunt, 1983).
Let p € (0, 1) be the largest root of

1-E(M~%D) =o0.

Then
H,
lim ———- — 1,

logl/ p(n )
with probability 1. This was proved by Arratia,
Morris and Waterman (1988) and generalized for
more general scoring by Karlin and Altschul (1990),
who presented the following Poisson approximation.
Let t = log,,,(nm) + c. Then

P(H(X,Y) > t =logy,,(nm) +c)

© ~ 1 — exp(—ynmp'),
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where y is found by numerical solution of an
equation.

4. THE MODEL

Above, reasons were given to restrict attention to
algorithm parameters in the logarithmic region. In
the logarithmic region, the expected score per letter
is negative, and positive-scoring local alignments are
rare events. Certainly, positive-scoring local align-
ments occur in clumps, and we even have an algo-
rithm to declump. In coin tossing we take the left-
most run of length ¢ and no runs overlapping that
clump of t-runs. In sequence matching we take an
alignment ending at (i, j) and no alignments inter-
secting that alignment. Neuhauser (1994) follows
this approach of Waterman and Eggert (1987) when
studying Poisson approximation of alignments with
indels. Our model is to follow the Aldous clumping
heuristic (Aldous, 1989). Alignment clumps are laid
down by a Poisson process, and each alignment clump
is assigned an independent clump size. The num-
ber of clumps with scores larger than a test value
t = (center +c) has a Poisson distribution with mean
An,m (). We will apply this in the form

P(at least one score exceeds ¢)

=1 — P(no score exceeds ¢)

=1-—e"

To relate this to alignment, set

W (t) = number of alignment clumps of score
greater than or equal to 7.

W(t) can be calculated by applying the declumping
algorithm until H;, < ¢.

Our goal is to show that equation (6) fits well in the
entire logarithmic region. We will estimate the pa-
rameters y and p in that equation, where ¢ = center
+ ¢ = logy,,(mn) + c. In carrying that formula over
to the logarithmic region, we implicitly make several
assumptions. We want to identify and then test the
following three assumptions:

(A1) W(z) is approximately Poisson distributed [with
mean A, ,(t) = E(W(@))].

(A2) EW@) =7vp'.

(A3) 7 = ymn.

These three assumptions are sufficient to approxi-
mate the significance of alignments with gaps. As-
sumption (A1) is used to estimate the significance of
optimal and suboptimal scores; (A2) allows us to in-
terpolate the mean of the Poisson in the tail where
simulations rarely yield sufficient data to estimate
E(W(¢)). Assumptions (Al) and (A2) together mean

that the empirical distribution function of optimal
scores less than ¢ is approximated by exp(—7p'); (A3)
allows us to normalize scores for sequences of differ-
ent length from only knowing y and p.

5. TESTING THE MODEL

All our tests rely on simulated alignment scores ob-
tained for sequences with iid letters for some given
letter distribution. In the remainder of the paper we
will study protein sequences with the alphabet of 20
amino acids. For our protein sequence simulations
we will use the amino acid distribution of McCaldon
and Argos (1988). The scoring matrix and gap penal-
ties are chosen in the logarithmic region. To test
(A1), we collected scores of suboptimal alignments
for many (between 1,000 and 10,000) alignments of
sequences of length n = m = 900 with PAM250 and
g(k) = 12 + 3k. Then, for given threshold ¢, the
number of clumps that score above ¢ is counted. The
quality of the approximation depends strongly on the
threshold chosen. Generally the higher the thresh-
old, the better is the empirical distribution approx-
imated by a Poisson. Figure 5 shows data for dif-
ferent thresholds. Those thresholds for which the
approximations look very good are at approximately
the t > 80 level and higher in the distribution func-
tion, as can be seen from the first value in the bar
diagrams. The high quality of the Poisson approxi-
mation for large ¢ is exactly what we need to assign
the statistical significance of large scores.

We use m = n = 900 in our simulations while pro-
tein sequences are often smaller than this. For pa-
rameter estimation discussed in the next section, re-
peated declumping is necessary. The larger values of
m and n allow enough “area” for declumping to give
us a large number of nonoverlapping alignments. We
tested other pairs of lengths, such as m = n = 400
and m = 200,n = 800. The results are essentially

t=80 t=90
1 1
0.8 0.8
0.6 0.6]
0.4 0.4
0.2 mmm 0.2 m
0 mm 0 h
0 2 4 6 0 2 4 6
t=95 t=100
1 1
0.8 0.8
0.6 0.6,
0.4 0.4
0.2 m 0.2
o - UL
0 2 4 6 0 2 4 6

Fic. 5. Poisson approximation.
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simulation

o
©
T

o
©
T

AAAAAAAAA declumping

———————— direct

Prob(alignment scores less than H)
© © o o o o
N (4] o [$)] [«2] ~
—r T ~

g

g

o

°
=

0 10 20 30 40 50 60 70 80 90
score H

FiG.7. Comparison of fits for estimates made from n = 900 length
sequences.

the same. As computation time is proportional to mn,

it is best for our declumping estimates to minimize -

boundary effects with m = n.

Testing (A2) was done by accumulating subopti-
mal solutions from 10,000 comparisons and counting
the number above a threshold ¢ with PAM250 and
g(k) = 12 + 3k. The logarithm of the resulting curve
is shown in Figure 6. The regression line is based on
the interval [35, 60]. For r larger than 75 the data
are sparse.

Assumption (A3) implies that log(\(z)) derived
from sequences of different length should give par-
allel lines with the parameter settings of Figure 5,
PAM250 and g(k) = 12+ 3k. While this holds in gen-
eral, boundary effects seem to be responsible for cer-
tain limitations in the validity of this assumption.
For example, the slopes (of the logarithm shown in

Figure 6) derived from the simulations of n = m =
900 long sequence pairs and from n = m = 1,000
long sequence pairs are —0.1995 and —0.1972, re-
spectively. For short sequences of length 300, it is
—0.2043. It is thus easy to normalize the parameters
derived from sequence pairs of lengths 900 each to a
600-by-600 comparison. However, applying these pa-
rameters to short sequences will lead to significant
error. Figure 7 illustrates the effect of normalization
for different lengths on the estimation of statistical
significance.

6. PARAMETER ESTIMATION

By testing the validity of our assumptions we have
presented two different ways of estimating y and p.
These methods estimate the parameters assuming
a certain scoring scheme [s(x, y) and a gap penalty
function] and a certain letter distribution. For our
examples we use PAM250 and g(k) = 12 + 3k.

The obvious method is to apply the algorithm in
equation (2) many times to statistically independent
sequences and to calculate the empirical distribution
function of optimal alignment scores, that is, the frac-
tion of alignments with score less than . The Poisson
clumping heuristic suggests that the probability for
an alignment to score less than or equal to ¢ is given
by exp(—ymnp"). After appropriate transformation
[log(—log(data))], the empirical distribution function
is expected to form a straight line. In fact, linear re-
gression gives a correlation coefficient above 0.99. It
is then straightforward to estimate the parameters
y and p, and we call this method of derivation direct
estimation.

Yet the true power of the theory sketched above
comes to bear in the second method, which we call
declumping estimation. Instead of many optimal
alignments, from a few comparisons we calculate
Hay, Hg), ..., Hy) using the declumping algorithm
described above. The crucial observation is that the
mean A of the Poisson can be estimated from this
data set as the average number of H(; exceeding a
threshold . Based on the theory, these data can
be fitted by a function of the form ymnp’. Simula-
tions show that plotting the empirical data on a log-
arithmic scale leads to an almost perfect straight line
(Figure 6). Estimation of y and p is then straightfor-
ward. As we will demonstrate, both approaches pro-
vide almost equally good estimates of statistical sig-
nificance, thus supporting, by their agreement, the
assumptions on which they are based.

For the direct estimation we usually run 1,000 se-
quence alignments before deriving y and p. Given
that each alignment takes time quadratic in the
sequence length, this may take a very long time.
The declumping estimation on the other hand can
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be done from 10 comparisons, collecting approxi-
mately 300 suboptimal solutions for each pair. For
sequences of length 900 this computation can be done
in 1.5 minutes on a Sun SPARC 10. This brings the
estimation of the parameters for alignment signifi-
cance into the realm of interactive computing. De-
clumping estimation, however, does not produce re-
liable results when done on short sequences. This
probably is due to the fact that a small comparison
matrix will soon be exhausted when taking out too
many clumps, and independence between the clumps
will be lost.

7. TESTING THE APPROXIMATION

Using the parameters derived by either of the
above methods, we predict the distribution function
of optimal alignment scores. To test the quality of
the approximations given by our two methods, we
derive the empirical distribution function from ex-
tensive simulations. First we tested the no-gap case.
There the agreement between the empirical distribu-
tion function and either direct or declumping simula-
tion is extremely good. There is hardly any difference
throughout the range of the distribution function (not
only in the tail). Both in terms of the agreement of
the parameters and in overall approximation quality,
our results are essentially the same as those obtained
analytically by Karlin and Altschul (1990).

For Figure 7, parameters were derived from se-
quences of length 900 each. The rightmost group
of three distribution functions shows declumping
and direct estimation compared to the empirical dis-
tribution function. Notice that approximating the
empirical distribution function by direct estimation
amounts to fitting a double exponential. This in it-
self is not a test of the method. For the declumping
estimation, however, the parameters for the approx-
imation are derived from totally different data, and
all three curves agree remarkably well. The other
groups of curves in Figure 7 illustrate the quality of
the normalization for length and thus prove our point
with respect to both declumping and direct estima-
tion. We normalized the parameters derived from a
900 x 900 comparison to approximate 600 x 600 and
300 x 300 comparisons. Only in the latter case is
there some deviation between the empirical distri-
bution function and the approximation.

These Poisson approximation methods also pro-
vide the approximate distributions of the suboptimal
scores Hyy > Hgy > -+ > Hgy > --- (Goldstein and
Waterman, 1992):

k-1 i

: (ymnp')’
P(Hg < t) = exp(—ymnp") E . i
J:

1

o ©o o o o
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— :
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Prob(alignment scores less than H)
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Fi1G. 8. Estimates of the distribution function of the optimal Hy,
and suboptimal (Hgy and Hg,) scores.

Figure 8 demonstrates the quality of approximat-
ing the significance of suboptimal solutions; y and
p were derived by direct simulation for sequences of
length 300. The empirical distribution is based on
4,000 comparisons of random sequences, collecting
the best, second-best and third-best solutions. The
precision of the approximation is extraordinary.
Our assumptions are guided by the idea that in
the logarithmic region the statistical behavior is es-
sentially similar to the no-gap case. We therefore
also want to show how the method fails in the linear
region. It was pointed out before that direct esti-
mation without length normalization is nothing but
fitting an empirical distribution function with a dou-
ble exponential, which may be deceptively easy. It
is therefore not surprising to find that, even in the
linear region, one can approximate an empirical dis-
tribution function using direct estimation. However,
applying the length normalization, the approxima-
tion fails totally. Similarly, attempting declumping

-estimation in the linear regions, one quickly finds

that the logarithm of the number of clumps above
a threshold does not form a straight line, and it is
impossible to fit a mean of the form yp’.

8. DATABASE SEARCHES

Several new challenges arise when a query se-
quence is used to search a database. There are of
course a wide variety of sequence lengths, families
of closely related sequences and even duplicated se-
quences. Certainly, real protein sequences do not
have iid letters. The model has been fitted using
sets of sequences of identical length and with iid let-
ters. The tests were made with other such sets, some-
times with length changed. While this is encour-
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aging, it remains to test the model on real protein
databases. i

To remove the effects of duplicate sequences we use
Newat, a protein database put together about 1986
by R. Doolittle (1981) to have one representative from
each protein family. Most duplicate sequences have
thus been removed, and the database has N = 1,358
sequences.

The most optimistic approach to our problem is to
estimate (y, p) from simulation of random sequences
of length n = 900. However, when we compare our
query sequence of length m with the N database se-
quences, we get score H; for a sequence of length
ni, i =1,..., N. These H; are not identical. Recall
that

P(H; <t) = exp(— ymn; p'),

so that the distribution functions of the various
scores are not identical. Later this will be looked
at again, but now just perform the probability inte-
gral transform:

T; = exp( — ynimp™)

and 7; is distributed as U (0, 1). Ordering T3y > T(g) >
-+ > Ty, We note that E(T(,')) =i/(N + 1). Denoting
H; as the score H in

Ti) = eXP(—}’ﬂ(i)mPH'*),

we “expect”

(- ese(oname™)

to fall on an approximately straight line. To increase
resolution we take a log-log transformation moving
log nm; to the left-hand side:

l
(——log(—log(N—_l_l)) +log nym,—logy — H;" log p) .

To illustrate this transformation, we take the de-
clumping estimates from Figure 7 applied to iid se-
quences of length n = 300, there shown in cdf
form, and apply this log-log transformation. The re-
sults are presented in Figure 9. In Figure 10, the
data points come from the log-log transformation ap-
plied to scores obtained by comparing human alpha
hemoglobin to the Newat database. In Figure 10a, y
and p are estimated from length n = 900 sequences
by direct estimation, and in Figure 10b they are esti-
mated by declumping estimation. Ideally they would
cluster around the solid line drawn at 45°. Some

outliers have been removed to make the difference
more striking. The slope p looks about right and
y is too large. This gives conservative p-value esti-
mates for a real database, which are actually quite
good.

The observation that protein sequences do not
have iid letters leads us to simulate sequences
with the same first-order Markov statistics as the
database sequences. In Figure 11 we see that the
difference between our (p, y) fit and the data is al-
most identical to that in Figure 10. The lack of sen-
sitivity of score distribution on biological sequence
higher-order dependencies was noted early (Smith,
Burks and Waterman, 1985). There is an effect but
it is numerically insignificant here.

This returns us to the central question about the
above lack of fit. The length 900 = m = n se-
quences used to estimate p and y are far longer than
those used on most of our comparisons. Recall the
Poisson mean A = ymn;p'. If we interpret ymn; to
be the area that clumps can be placed in, then it is
plausible that shorter sequences have an effective
area smaller than the factor y would indicate. To
test this idea, we simulated sequences of length 142
(that of alpha hemoglobin) and 350 (about the me-
dian database sequence length). The improved fit is
shown in Figure 12.

Recall that in the Introduction the globin family
of proteins was introduced. We used significance es-
timates derived from the last estimates of y and p
discussed above to evaluate the output of a PIR1
database search done with the sequence of human
« hemoglobin. There were 25 sequences unrelated
to globins that ranked higher in score than leghe-
moglobin, a distantly related plant globin. When
instead the ranking is done according to estimated

14 16 18 20

-log(-log(j/(N+1)))+log(mn)

12

10 12 14 16 18 20 22
-logfy)-Hlog(p)

Fic. 9. Declumping estimation (n = 900) fit to length n = 300
sequences.
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Fic. 11. Estimation with Markov sequences.

statistical significance which accounts for sequence
lengths, only 10 nonglobins rank higher than leghe-
moglobins.

Notice that we have fit the distribution of database
scores without looking at the data itself, but just us-
ing our model and the statistical (letter) composition
of the database. It is worth looking at the prob-
lem of fitting y and p from the results of a database
search using maximum likelihood estimation (MLE).
In Mott (1992) a four-parameter extreme value dis-
tribution is fit by MLE to the scores from a database
search using a Smith—Waterman algorithm. The ex-
treme value distribution was used earlier (Arratia,
Gordon and Waterman, 1986) for sequence matching
and is another side of Poisson approximation. Other
early approaches to fitting database scores to esti-
mate statistical significance appear in Smith, Burks
and Waterman (1985); Coulson, Collins and Lyall
(1987); and Collins and Coulson (1990).

6 8 10 12 14 16 18 20
-log(y)-Hlog(p)

F16. 12. Estimation using m = 142 and n; = 350.
Recall that, if the model is true,
P(H; < 1) = exp( — ymn; p')
and has density function
f(t) = mn; log (%) p'exp(—ymn;p'), i=1,...,N.

We will assume the sequences are all independent.
The likelihood of H; - - - Hy is

N
L=T]] (mnip”" log (%)exp(—ymmp”‘))

i=1

- (me(2))(110)

N
-p¥i=1 H;exp (—ym > nip”“)

i=1
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and

N
logL = log (ym)N + Nloglog (—;) + Zlogni

i=1
N N
+(2H,~)10gp - ymEmpH‘.

The derivative with respect to y is

dlogl. N N
=—-m) np",
3}/ 4 i=1

so 0L/oy = 0 gives
N
leNzlnipH‘ '

We will go on with the MLE, but let us apply this to
the result of Figure 10. The value of p there looked
good while y was too large. Using that estimated p*,
we compute

Y=

_ N
m YN ni(p)H

and recompute the ordering T(;y < --- < Tw), giving
the results in Figure 13. This is very much better
than both Figure 10 and Figure 12. Returning to
MLE estimation,

<)

dlogl >N H N N, Hp*

—ym n; )
ap p plogp ,; p
so dloglL/dp = 0 implies

N N N "
7 Hi + 77— — iHip™ =0,
PP T e

10 12 14 16

-log(-log(V/(N+1)))+log(mn)

8

6 8 10 12 14 16 18 20
-log(y)-Hlog(p)

FiG. 13. Correcting y by MLE.

ol
=
—_
=3
E
I
=
o
A
Z,
o
g
© 1
©0
6 8 10 12 14 16 18 20
-log(y)-Hiog(p)
Fic. 14. MLE estimated parameters.
which with
N
(8) YT —n N T 0
(m 2i-1 ""pHi)

comprise the MLE equations.

Solving the MLE equations gives y and p for Fig-
ure 14. While Figure 13 appears to be a better fit, the
likelihood L for Figure 13 is exp{—9, 971} and that for
Figure 14 is exp{—9, 953}.

9. DISCUSSION

A common practice for assigning statistical signif-
icance is by simulation. A random sample of scores
is created by comparing pairs of random sequences.
After computing the mean and standard deviation
of the sample, an alignment score from comparing
biological sequences is reported as the number of
standard deviations above the mean. Essentially the
alignment score is normalized to give a z-value so
that there is an assignment of significance using the
normal distribution. This is incorrect. The tails of
the normal converge to 0 very rapidly (quadratic in
the exponent) in comparison to the distribution func-
tion we study (linear in the exponent). This means
that the normal assumption will give p-values that
are too small.

In our section on database searches we looked at
the collection of p-values 1 — exp(—ymn; p¥), one p-
value for each sequence comparison. Of course this
is a test of N hypotheses, and in the larger context of
the search no individual p-value is correct. Instead
we feel it is appropriate to rank the importance of an
alignment score by the p-values since matches with
long sequences can yield larger scores simply due to
sequence length. The other alternative is to consider
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the database one sequence of length Ef‘; ,hi and com-
pute a p-value for matching the search sequence with
this long artificial sequence. This amounts to rank-
ing by score size without considering sequence length
n;. This in fact is what Karlin and Altschul recom-
mend in their treatment of the no-gap case. This
practice is conservative but of less use in evaluat-
ing those important cases on the boundary of sta-
tistical significance. This list of matches ranked
by individual p-values is often different from rank-
ing by score and, we feel, more biologically informa-
tive.

We approached estimation of y and p in two dis-
tinct ways. Both the direct and declumping esti-
mates use simulated sequences to estimate y and
p. Then the estimated y and p are applied to the
results of a database search. In contrast, MLE uses
the set of scores from a database search to obtain the
estimates of the parameters y and p. It is perhaps
remarkable that these two approaches are in such
_good agreement.

The database Newat that we used has one repre-
sentative of each sequence family, in contrast with
the usual protein databanks. MLE could be degraded
by having multiple members (not independent) of a
family. Also, it is likely that within a database, sets
of independent sequences exist with different values
of p. Understanding of these topics could profit from
further investigation.

10. PROGRAMS

Programs for local alignment and p-value esti-
mation can be obtained by anonymous ftp from
hto-e.usc.edu.
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