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Monte Carlo Likelihood in Genetic Mapping

E. A. Thompson

Abstract. Monte Carlo likelihood is becoming increasingly used where
exact likelihood analysis is computationally infeasible. One area in which
such likelihoods arise is that of genetic mapping, where, increasingly, re-
searchers wish to extract additional information from limited trait data
through the use of multiple genetic markers. In the genetic analysis con-
text, Monte Carlo likelihood is most conveniently considered as a latent
variable problem. Markov chain Monte Carlo provides a method of obtain-
ing realisations of underlying latent variables simulated under a genetic
model, conditional upon observed data. Hence a Monte Carlo estimate of
the likelihood surface can be formed. Choice of the latent variables can be
as critical as choice of sampler. In the case of very few individuals observed
in each pedigree structure, such as occurs in homozygosity mapping and
affected relative pair methods of genetic mapping, multilocus segregation
indicators are defined and proposed as the latent variables of choice. An
example of five Werner’s syndrome pedigrees is given; these are a subset of
the 21 pedigrees on which homozygosity mapping has recently confirmed
the location of the Werner’s syndrome gene on chromosome 8. However,
multilocus computations on these pedigrees are impractical with standard
methods of exact likelihood computation.

Key words and phrases: Importance sampling, latent variable frame-
work, Monte Carlo likelihood, Markov chain Monte Carlo Metropolis—
Hastings algorithms, segregation indicators and grandparental gene
origins, homozygosity mapping and gene-identity-by-descent, linkage

analysis, genetic mapping.

1. INTRODUCTION TO LINKAGE ANALYSIS

Monte Carlo likelihood is becoming increasingly
used where exact likelihood analysis is computation-
ally infeasible. One area in which such likelihoods
arise is that of genetic mapping, where the location
in the genome of genes influencing a given trait is to
be inferred. With modern molecular genetics tech-
niques, individuals can be typed for a wide variety
'of DNA markers of known location in the genome.
These DNA markers can be chosen to be highly poly-
morphic; there are several different alleles (types
of genes) that an individual may have. The genes
at these DNA marker loci segregate in a Mendelian
way (Mendel, 1866); each individual has two genes
at the locus, one a copy of a randomly chosen one of
the two in his father, and the other a copy of a ran-
domly chosen one in his mother. Segregation of genes
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from different parents to a child, and from a parent
to different children, are independent. These simple
50/50 probabilities underlie all of genetics, but in con-
sidering the joint segregation at several genetic loci,
or the pattern of single-locus segregations on an ex-
tended family, computations can rapidly become very

- complex, principally because not all the relevant in-

355

formation can be observed.

Genetic loci A and B that index segments of DNA
on the same chromosome are “linked”; the segrega-
tion of genes at the two loci is not independent. Ifthe
maternal gene at locus A in a father segregates to a
child, it is more probable that the gene that segre-
gates at the adjacent locus B is also the father’s ma-
ternal gene. Similarly for the father’s paternal gene,
and similarly also for genes segregating from the
mother. This dependence can be expressed through
the “recombination fraction” r (A, B) between the two
loci. The probability that genes at loci A and B seg-
regating from one parent to the child have different
grandparental origins is r (A, B). In fact, the value of
arecombination fraction between two loci depends on
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Fig. 1. Segregation and linkage in a small family. There are three
loci, A, B and C as shown in Figure 2a. The grandparents have
genotypes at each locus as shown; their multilocus haplotypes are
unknown. The multilocus haplotypes of the parents are known,
the father’s from the data on his parents, the mother’s by default
since she carries two identical alleles at each of the three loci. Each
child receives an agbgcg chromosome from its mother, regardless of
recombination events. There are eight possible chromosomes from
the father, the full list (and probabilities) being given in Table 1.

numerous factors, most importantly on the sex of the
parent. This fact can be incorporated into analyses,
but, for simplicity, will be ignored in the current re-
view. The biological phenomenon underlying recom-
bination is a “crossover” between the two parental
chromosomes in the formation of the offspring chro-
mosome. There will be a recombination between loci
A and B if there is an odd number of crossover events.

The genotype of an.individual at a locus is the pair
of alleles carried at that locus. For example, consider
an individual who is genotype ajas at locus A and b1 b2
at locus B. There is no information in this notation as
to which allele derives from which parent, nor which

alleles are on the same chromosome. In fact, the indi-
vidual may have two-locus genotype either a;b1/asbe
or aybg/agh1, the pairs separated by “/” designating
the alleles on the two chromosomes. The alternative
arrangements are alternative phases; the alleles on a
single chromosome (e.g., a1b1) constitute a haplotype.
The term multilocus genotype will be used to refer to
the unordered pair of haplotypes carried by an in-
dividual, that is, it includes a specification of phase.
The set of single-locus genotypes (here a;as at locus A
and b by at locus B) can correspond to many different
multilocus genotypes (here aiby/asbs or a1bs/ash;).
Consider now three genetic loci on a chromosome
(Figure 1). Arecombination has taken place between
two loci, if the genes segregating to the offspring de-
rive from different chromosomes in the parent (i.e.,
from different grandparents). The genetic (map) dis-
tance between two loci is the expected number of re-
combinations between them and hence is additive
(Haldane, 1919). However, the data provide infor-
mation only on recombination frequencies between
loci (Fisher, 1922). This pattern is related to map
distance, but also depends on the pattern of interfer-
ence between the two chromosome segments (A, B)
and (B, C). Interference is the name given to the bi-
ological phenomenon that a crossover at one point
on a chromosome affects the chance that crossovers
occur at other points in the vicinity. Under an as-
sumption of no interference, recombination events
in the two segments are independent, and the joint
segregation probabilities at the three loci is shown
in Table 1.. In practice, interference exists, particu-
larly where the loci are close together and recombi-
nation fractions between them are small. However,
the amounts of data required to estimate levels and
patterns of interference seldom exist in human ge-
netic studies. In genetic mapping, the objective is to
detect linkage, to infer locus order and to place loci

TABLE 1
Haplotype probabilities for offspring in Figure 1

Grandparental

Paternal Recombination origin indicators*

haplotype In (A, B) In (B,C) Wpa Wpe Wpe Probability
aibicy no no 0 0 0 FA—rA—ry)
aybico no yes 0 0 1 %(1 —ry)re
arbacy yes yes 0 1 0 %rlrg
aibacy . yes no 0 1 1 %rl (1—-r9)
aghbicy yes no 1 0 0 %rl(l —rg)
aghicy yes yes 1 0 1 grirs
agbycy no yes 1 1 0 %(1 —ryre
a2b26‘2 no no 1 1 1 %(1 - r1)(1 —rg)

*For a definition of segregation indicators W, we see Section 4.
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on a chromosome by estimating recombination frac-
tions between them. For such purposes, interference
can safely be ignored.

Now in mapping a genetic disease, marker types
will be available for some individuals in a pedigree in
which the disease is segregating. Disease or relevant
quantitative trait data will be available also for some
members of the pedigree. However, first, not all in-
dividuals will be observed; some will be unavailable,
particularly ancestors. Second, the genes underlying
the trait phenotypes may not be precisely clear; for
example, for a recessive disease, two copies of the dis-
ease allele are needed to express the trait, but those
who do not express it may have one copy of the dis-
ease allele or none; that is, there is no 1-1 correspon-
dence between phenotype and genotype. Third, even
where single-locus marker genotypes are observable,
the haplotype or phase information is not. As com-
mented above, one set of single-locus genotypes can
correspond to many different multilocus genotypes.
Thus in computing a likelihood, for a given locus or-
der and set of recombination fractions, a huge sum
over all the possible configurations of haplotypes is
required. With the increasing availability of DNA
markers, there is an increasing potential for map-
ping traits with more limited trait data or more com-
plex modes of expression. For example, traits may be
subject to environmental effects, may be age depen-
dent or may result from genetic effects at several loci,
which may or may not interact in producing a pheno-
typic effect and may or may not be linked. However,
more markers, and marker loci with more alleles, and
traits observable for perhaps a more limited subset
of the pedigree members, all compound the compu-
tational difficulties, since the number of possible un-
derlying configurations of genes on all the relevant
members of the pedigree increases vastly.

Two further terms require definition at this point.
The first is the lod score used in the detection of

linkage between two loci, normally a trait locus

and a marker locus. This is the log-likelihood ra-
tio of the likelihood maximised over a recombina-
tion frequency, 0 < r < 1, to thelikelihood under the
“null hypothesis” of independent segregation, r = %
The second is the location score, which is the log-
likelihood as a function of position of a presumed
trait locus against a fixed map of genetic markers.
For mapping a disease trait, the method of loca-
tion scores is often used (Lathrop et al., 1984). The
marker map is taken as known, although in prac-
tice there may be considerable uncertainty even as
to the map order of marker loci. The disease locus
is then mapped against this fixed background; the
advantage of this approach is that there is only one
varying parameter in the likelihood; the location of
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Fi1G. 2. Chromosome maps, showing notation for recombination
between adjacent markers. (a) the general case of three loci, dis-
cussed in Section 1; (b) the multilocus case; (c) the three loci used
in the example of Section 5.

the disease locus determines all the recombination
fractions. The null hypothesis presumes the same
marker map, with the trait locus being unlinked. A
multipoint lod score may refer to a location score,
but more typically refers to a log-likelihood ratio be-
tween alternatives in which recombination fractions
between all loci, and even locus order, are also al-
lowed to vary (Figure 2b). For historical reasons, lod
scores have typically been given using logs to base 10,
while location scores have used logs to base e. While
important in interpreting the applied literature, this
difference obviously has no statistical relevance and
will be ignored in this paper.

There are many further aspects of linkage analy-
sis and many alternative approaches to localising the
genes responsible for a genetic disease. A much fuller
description of standard statistical methods in link-
age analysis may be found in the text by Ott (1991).

Thus, with the increasing desire to examine mul-
tiple markers, and markers with multiple alleles,
a major limitation of linkage analysis has become
the practical and theoretical bounds on the computa-
tional feasibility of likelihood evaluation. Many pro-
grams and program packages have been written; the
best algorithms for exact likelihood evaluation are
based on the method of Elston and Stewart (1971).
With this algorithm, computing times increase expo-
nentially with pedigree complexity, numbers of alle-
les and numbers of loci modelled. One of the most
powerful and versatile packages is the LINKAGE
program (Lathrop et al., 1984). In some quite stan-
dard recent applications, a single run of this program
may take several months (Schellenberg et al., 1992a).
For an ongoing study, with continuing data collection,
this is not acceptable.

Potential solutions include improvement of the
programs, improvement of the computational algo-
rithms, or a radically different approach to likeli-
hood assessment. Recently Cottingham, Idury and
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Schéffer (1993) have shown that fairly standard com-
puter science programming procedures can improve
performance of the LINKAGE program by an order
of magnitude. However, improved computers and
programs cannot compete with the exponentially in-
creasing demands due to increasing complexity of
data available on traits and DNA markers.

Due to the infeasibility or impracticality of exact
likelihood computation, approximate methods are of-
ten used. Whereas pairwise analyses of a disease
gene with a single marker are often computationally
feasible, but lacking in power, computation of multi-
point location scores can be computationally infeasi-
ble. A compromise is provided by interval mapping
(Lander and Green, 1987). If all markers are fully
informative and typed on all individuals, then the
likelihood of a given location of the disease locus de-
pends only on the data at the two flanking markers.
Alternatively, computations may be carried out using
only the data on two (presumed) flanking markers,
to simplify computation. Even this three-locus com-
putation can be computationally very intensive, but
has greatly increased power over separate pairwise
analyses of the disease with each marker.

Curtis and Gurling (1993) have recently proposed
an approximation method that extends the interval
mapping idea, by accounting for information from
more distant markers when closer ones are uninfor-
mative. For practical purposes, these methods may
be excellent, but without some method of direct eval-
uation this is impossible to assess. One approach
which provides such an assessment is Monte Carlo
likelihood, in which exact computation of likelihood
ratios is replaced by Monte Carlo estimation.

2. MONTE CARLO IN LINKAGE ANALYSIS

Monte Carlo estimates of integrals or expectations
are not new, either in general (Hammersley and
Handscomb, 1964) or in genetic linkage analysis.
One of the earliest uses of Monte Carlo in linkage
analysis was that of Thompson et al. (1978), who
proposed use of an elod, or expected lod score, in as-
sessing the potential information in a given pedigree
structure for purposes of detecting linkage. In that
case, data were simulated on small pedigrees, under
some proposed linkage and trait parameter values,
and the mean lod score (at the same parameter val-
ues) evaluated. Elods became quite widely used in
the 1980’s, but suffered from the defect that what was
really required was an elod conditional on observed
trait data. Ploughman and Boehnke (1989) and Ott
(1989) separately resolved this problem, producing
Monte Carlo methods for simulating marker data
conditional on trait data, provided that posterior
trait genotype probabilities could be computed for

all members of the pedigree. For simple but perhaps
large pedigrees this is often feasible, and thus it be-
came possible to assess the potential power of a link-
age study, knowing the trait data available for study.

The statistical problems involved in fitting genetic
linkage models to trait data Y on a set of related in-
dividuals may be viewed as latent variable or “miss-
ing data” problems. Were the underlying multilo-
cus genotypes (pair of haplotypes) of all individuals
observable, likelihood computation and parameter
estimation would be trivial, but only the trait data
(phenotypes) and single-locus marker genotypes of
some individuals are observed. We denote by X the
underlying genotypes, recombination events and/or
other unobserved indicators of the patterns of genes
segregating in pedigrees. The observed trait and
marker data will be denoted by Y, and, where nec-
essary, we separate Y into its trait T and marker M
components. The vector 6 will denote the complete
set of parameters underlying a genetic model, while
r will denote a recombination fraction.

The likelihood is

LO) = P(¥) =)  P(Y.X)

@ X
=) _ P |X)PX).
X

Although the summation may be infeasible, we sup-
pose that the latent variables X are chosen in such a
way that each term of the expression is easily com-
puted. Then equation (1) may also be written

Po(Y) = ) | Po(Y | X)Po(X) = Eo P (Y | X),
X

where the expectation is over X-values, with proba-
bilities according to the “prior” Py(X). This expres-
sion of the likelihood as an expectation was noted by
Ott (1979), who also noted as a personal communica-
tion from Lange that

Po(Y)=]Eoo<Po(YIX) Pa(x)).

Py, (X)

the implication of this importance sampling formula
being that realisations could be simulated at 6,
which might be easier or more effective than sim-
ulating at 6. The problem with these early Monte
Carlo likelihoods, as with the early Monte Carlo elod
estimates, is that sampling of genotypes X is not con-
ditioned on the data Y. Thus, on a large pedigree,
the vast majority of realisations X provide minute
(or even zero) likelihood contributions.

This situation was changed dramatically by the ex-
plosion in use of Markov chain Monte Carlo (MCMC)



MONTE CARLO LIKELIHOOD IN GENETIC MAPPING 359

methods, for these provide for simulating from

PyXY)
Py (Y)

(see Section 3). These methods include the Gibbs
sampler (Geman and Geman, 1984) and the Metropo-
lis algorithm (Metropolis et al., 1953). Sheehan,
Possolo and Thompson (1989) used a Gibbs sam-
pler to sample from the posterior distribution of geno-
types X given phenotypes Y on a pedigree, for a sin-
gle diallelic Mendelian locus. Lange and Matthyse
(1989) used a Metropolis algorithm to estimate the
probability distribution of potential lod scores on a
pedigree, conditional upon trait data. For proof of the
irreducibility of their Markov chain, they required a
diallelic trait locus and no marker phenotypes, and
thus addressed very similar design assessment ques-
tions to those of Ploughman and Boehnke (1989).
However, the MCMC approach is potentially far more
widely applicable, allowing simulation of underlying
genes conditional on a variety of partial phenotypic
information.

Monte Carlo estimates of likelihoods soon followed.
Thompson and Guo (1991) used the form

L(9) _ Py (Y) _E (Po(X.Y) Y)
LO) P "\ PXY| )

which will be pursued further in this paper. Lange
and Sobel (1991) used a slightly different form, es-
timating likelihoods, rather than only likelihood ra-
tios. The likelihood for linkage at a given recombi-
nation fraction is proportional to

PX|Y)=

(2)

3) Po(T | M) = Eo(Ps(T | X) | M.

In general terms, there are two main differences be-
tween equations (2) and (3). The latter provides a
likelihood at each particular hypothesis 6, and hence
the likelihood ratio relative to an hypothesis of no

linkage, for which the likelihood can be evaluated ex- -

actly. The former, through simulation at a given 6o,
provides a likelihood ratio approximant, as a func-
tion of 6, in the sense of Geyer and Thompson (1992).
For values of 6 close to 6y, equation (2) provides a
functional form for the local likelihood surface. The
question of obtaining a likelihood surface approxi-
mant over a wide range of hypotheses will be ad-
dressed below.

A different Monte Carlo approach was taken by
Kong et al. (1992). This uses the form of the likeli-
hood (2), but generates samples by simulating suc-
cessively over loci (sequential imputation); see Fig-
ure 2b. Sampling of genotypes at locus k is condi-
tional upon the phenotypes at loci 1, ...,k and pre-
viously realised genotypes at loci 1,...,k — 1; the

method requires exact computation of probabilities
at only a single locus at a time.

3. METROPOLIS-HASTINGS ALGORITHMS
AND MONTE CARLO LIKELIHOOD

In Monte Carlo approaches to complex problems
with many latent variables, the key is simulation
conditional upon data; that is, in the notation of the
previous section, from

P, (YD)

With well-chosen latent variables X, the numerator
of this expression is readily evaluated, but the de-
nominator is

L(8o) = Po,(Y) = ) _ P, X, Y)
X

(4) POO(XlY)=

and this summation is often infeasible. The denom-
inator is, in fact, precisely the likelihood whose ex-
act evaluation is impossible, necessitating the Monte
Carlo estimation.

Metropolis—Hastings algorithms are Markov chain
Monte Carlo methods designed to meet this need,
providing realisations (approximately) from a dis-
tribution known up to a normalising constant
(Hastings, 1970). For each X a “proposal distribu-
tion” ¢ (-, X) is defined. Then, if the process is now at
X, the next value is generated as follows:

1. Generate X* from the proposal distribution

q( ) x)'
2. Compute the Hastings ratio

h = q(X’X*)P%(X* |Y) — Q(X,X*)PGO(Y, X*)
Q(X*’X)POO(X | Y) q(X*1X)P90(Y’ X) ’

Note that # can be computed without knowledge
of Pgo (Y)

3. With probability A* = min(1,4) the process
moves to X* and with probability (1 — #*) it re-
mains at X.

The distribution (4) is an equilibrium distribution
of the Markov chain just defined. Provided g(-,-)
is chosen so that the chain is ergodic, running the
chain provides (after a sufficient number of steps for
convergence) realisations from the distribution (4).
The algorithm of Metropolis et al. (1953) is a spe-
cial case; if ¢X*,X) = ¢(X,X*) the Hastings ratio
reduces to the odds ratio of the proposal state X* ver-
sus the current state X. The Gibbs sampler (Geman
and Geman, 1984) is also a special case, in which the
proposal distribution is the conditional distribution
for changing one element of X conditional on current
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values of the others, in which case the Hastings ra-
tio reduces to 1 and there is no rejection step. How-
ever, the fact of no rejection step is not necessarily ad-
vantageous; the Gibbs sampler can make only small
changes in X.

In the genetic context, the latent variables X have
normally been taken to be the underlying multilocus
genotypes (the pairs of haplotypes) carried by each
individual in the pedigree, sometimes with some ad-
ditional variables. This makes for easy evaluation of
Py, (X, Y) but not for easy sampling of the large space
of possible X-values. Single-site updating MCMC
algorithms such as the Gibbs sampler are in some
ways ideally suited to pedigree analysis; the very lo-
cal dependence pattern of transmission of genes from
parents to offspring makes local conditional distri-
butions easy to sample from. However, such local
updating methods can be very slow to sample the
space of underlying latent variables X effectively, and
for multiallelic loci the Gibbs sampler need not be
irreducible. Conversely, if large changes in X are
proposed, the Hastings ratio can be impossible to
compute, and the many constraints in the feasible
genotypic patterns on pedigrees mean that almost
all proposals have zero probability.

There are various approaches to resolving this
problem. For a single multiallelic locus, Sheehan
and Thomas (1993) use importance sampling, with
0/1 weights, running a Gibbs sampler for a mod-
ified genetic model, for which the Gibbs sampler
is irreducible. Sobel and Lange (1993) use multi-
ple Metropolis steps and rejection sampling on the
larger latent-variable space of Lange and Matthysse
(1989). Lin (1993) made great progress toward in-
creasing the practicality of MCMC methods in mul-
tilocus linkage analysis, using Metropolis-coupled
samplers (Geyer, 1991a), model modifications in the
auxiliary samplers and a form of “heating” in the
Metropolis—Hastings steps, to ensure irreducibility
(Lin, Thompson and Wijsman, 1993) and to improve
mixing of the chain. These strategies result in a
sampler that can sample multiallelic genotypes effi-
ciently on a large pedigree. In principle, this method
extends to arbitrary numbers of linked markers, but
the huge space of possible genotypic configurations
that then arises may render the sampler ineffective.

Returning now to equation (2), the likelihood ratio
is (Thompson and Guo, 1991)

L) _ Py(Y) -E (Po(Y,X) Y)
L6o) Py (Y) Py, (Y, X) '

The MCMC sampler produces dependent realisa-
tions X(), I =1,...,N (approximately), from
Py, (X | Y) which may be used in a Monte Carlo esti-

mator of the likelihood ratio (2):
1 K ( P(Y,X())
(5) L ( )
N ; Py, (Y, X(1))

In genetic mapping examples, often there will be
data on many independent pedigrees, and it is in-
efficient not to use this known independence in es-
timating the likelihood ratio. Let (Y?,X®) denote

the data variables Y® and latent variables X on
pedigree i,i =1,...,k. Then

LO) 1 Li®) 5 P(Y?)
um_an_n%WM

Po(Y(’) X(t)) ¥
- ]—[ %\ g, (YD, XO) :

Thus estimation is most efficiently done for each
pedigree, the estimate of L;(8)/L;(6) being

(6)

Ni @ X
e 1 (Po(Y X (l)))

N; =\ Py (YO, XO()) )

where N; is the number of Markov chain Monte Carlo
realisations on pedigree i. This separate estimation
has practical advantages beyond computational effi-
ciency. As first noted by Fisher (1936), heterogene-
ity in the likelihoods provided by different pedigrees
may indicate genetic heterogeneity, although varia-
tion should not be overinterpreted. As discussed in
the example of Section 5, there may also be other
aspects of the probabilities Py, (X | Y) that are of in-
terest on a pedigree-by-pedigree basis.

These estimators (5) and (7) work well if 6 is close
to 6y, but, in comparing alternative genetic models,
it is rarely only the local characteristics of the like-
lihood surface that are of interest. To overcome this
problem, chains may be run at a set of parameter
combinations, 6y, 61, 0, ..., 0k, spanning the range
between the two hypotheses of interest, 6y and 6. An
importance sampling approach allows one to use all
the samples in a combined estimate of log-likelihood
differences along the chain 6y, 61, 62, ..., 0k (Geyer,
1991b). An intuitive way to view this approach is
as follows. Assume N; realisations are taken from
chain P (- | Y). Rather than retaining the chain
parameter value corresponding to each realisation,
the collection of realisations are “pooled”, and the
pooled sample is regarded as a sample size £ ;N; from
the weighted average of the distributions indexed by
o, ..., 0k, that is,

N;Py.(Y,X)

1 i i Po, (Y,
Nj — LO)
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Then the unknown L(6;) are estimated by consid-
ering the version of (5) when sampling is from this
“mixture distribution.” This reduces to solving the
equations

PB (Y’ X*)
L®;) = 4
) ’ ; (z,’;o NPy, (Y, X*)/L(ol))

for j=0,...,K,

where the summation is over the total combined
sample of realisations X*. If this procedure is imple-
mented, every realisation contributes to the estimate
of L(0)) for all j in accordance with the appropriate
importance sampling weights (Geyer, 1991b).

Good choice of K and of §;, i =1, ..., K, is unfortu-
nately often a matter of trial and error, although pos-
terior assessmentis straightforward. For the method
to have worked, the realisations X* obtained under
each 6; must have nonnegligible probability under
at least one other §,. The matrix of mean posterior
probabilities that realisations under each model 6;
derive from each other model 6, is a useful simple
diagnostic. More technically, near-degeneracy of the
Hessian required in the evaluation of the estimated
covariance matrix of the Monte Carlo likelihood esti-
mates (Geyer, 1991b) indicates an inadequate choice
of the set of models.

Another question is choice of the latent variables
X. The most straightforward implementation of the
Monte Carlo likelihood in linkage analysis is to use
the multilocus genotypes of individuals as the la-
tent variables X. Alternatively, one could expand the
space further and use both the genotypes and also in-
dicators of the grandparental origins of genes (Lange
and Matthysse, 1989). However, this results in a
huge space of latent variables, which is difficult to
sample effectively using MCMC methods.

Some methods of evading this problem have been
mentioned above, but an alternative approach is to
limit the space of latent variables X. Note that the
requirements on X are only that P;(Y, X) should be
very quickly computable. Now P, (Y, X) is normally
computed as Py(Y | X)Py(X). Thus any X for which
these two factors can be readily computed will suf-
fice. In some cases, exact integration of some of the
latent variables is possible; Thompson (1994b) dis-
cusses the example of a mixed model for a quanti-
tative genetic trait in this context. In the context of
linkage analysis, the approach of Kong et al. (1992)is
also directed toward partial exact computation that
will reduce Monte Carlo variance.

In this paper, we propose an alternative reduction
of the space of multilocus genotypes of individuals,
that has proven effective in linkage analysis exam-

ples where only a few individuals are observed on
each pedigree.

4. HOMOZYGOSITY MAPPING; ALTERNATIVE
LATENT VARIABLES

Due to uncertainties as to whether an unaffected
individual carries a disease gene, the computations.l
difficulties of linkage analysis on extended pedigrees
and the costs of typing large numbers of individu-
als, there have been many approaches toward bas-
ing linkage analyses on a small number of observed
(usually affected) individuals.

It was first pointed out by Smith (1953) that indi-
viduals affected with rare recessive diseases provide
information for linkage analysis, even without any
marker or phenotype data on other relatives. For a
recessive disease, affected individuals are homozy-
gous at the disease locus; that is, they carry two
copies of the same allele. For a rare disease, many
affected individuals are so through being the off-
spring of consanguineous marriages, thus receiving
two copies of the disease gene identical-by-descent
(IBD) from a recent common ancestor of the two par-
ents. In this case, the affected individual is likely to
be homozygous also at closely linked markers, and
this homozygosity provides evidence for linkage. The
evidence lies in an excess of homozygosity around
the disease locus, over that expected. Inbred indi-
viduals have higher than average levels of homozy-
gosity due to gene-identity-by-descent (GIBD), but
unrelated inbred individuals will be homozygous at
independent segments of the genome. The shared
affected status of the individuals will cause shared
homozygosity in the neighbourhood of the disease lo-
cus. The scope of “homozygosity mapping,” which
is simply linkage analysis using data only on unre-
lated inbred affected individuals, was extended by
Lander and Botstein (1987). With a dense map of
highly polymorphic DNA markers, a small number

" of affected individuals can provide substantial infor-

mation for mapping a recessive disease gene.

A second rather similar idea underlies methods of
linkage analysis based on affected pairs (or small
sets) of relatives (Weeks and Lange, 1988; Bishop
and Williamson, 1990). It has long been recognised
that the majority of information for mapping a dis-
ease gene lies in the marker types of affected indi-
viduals. For some diseases, moreover, onset may be
delayed or uncertain, so that it is not known whether
unaffected individuals carry the disease gene. By re-
stricting attention only to individuals known to have
the disease, more efficient designs and robust anal-
yses of linkage can be performed. Both in the case
of homozygosity mapping (in pedigrees where there
may be several affected individuals) and in affected
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relative set methods, phenotype and marker data
are available on only a few individuals. However,
there may be numerous other individuals defining
the pedigree relationships. Computation of a multi-
locus linkage likelihood on the pedigree may be im-
possible, due to the large amount of missing data on
a potentially complex pedigree. Thus we now pro-
pose an alternative definition of latent variables X
(Section 2) that will permit Monte Carlo estimation
of the likelihoods.

Linkage analysis is the analysis of cosegregation
of genes at different loci, from parents to offspring.
If two loci are tightly linked, there is a high proba-
bility that if the individual receives a grandmaternal
[grandpaternal] allele from his mother at one locus,
he will do so also at the adjacent one, and similarly
for the gene received from his father. Let W,,; = 0 if
the maternal allele received by the child at locus / is
of grandmaternal origin, and W,,, = 1 otherwise, and
let W,, be similarly defined for the paternal allele.
Then, at any locus /,

PWpu =0)=P(Wu =1)=P(Wy, =0)

)
=PWu=1=3,

and at two adjacent loci /; and I

P(Wmll = Wmlg) = P(Wplx = WPIZ)

(10) = (1-r( 1)),
where r =r(l1,02),0 <r < %, is the recombination
fraction between the two loci.

Then for a given segregation i, the recombination
events are determined.by segregation indicators W,
j =1,...,L, where W;; is 0 or 1 as the origin of
the segregating gene at locus j is grandmaternal or
grandpaternal, respectively. That is, we shall take
the indicators W = {W;;} as the latent variables X in
the Monte Carlo likelihood framework of Sections 2
and 3.

The prior probabilities of W are straightforward.
However, for implementation of a Metropolis algo-
rithm, recall that relative values of Py (W,Y) are
required, or P, (Y|W). The binary indicators W =
{W;;} of grandparental origins of genes in each given
offspring individual, at each locus readily determine
the multilocus gene-identity-by-descent (GIBD) pat-
terns in the observed individuals. This is done sim-
ply by following the descent paths of genes from the
founders to the observed individuals. An efficient
algorithm is easily implemented to update these de-
scent paths, and hence the resulting GIBD pattern
in observed individuals, when a W;; is flipped. For
the simplest case of homozygosity mapping of one
individual in each pedigree, the GIBD pattern is L
binary indicators, specifying whether or not the W;;

TABLE 2
Probability ratios of segregation indicators Wij:
P(Wij=1|W_gp)=P(Wy =1|W;;_1, W ;u)
P(Wij=0|W_g)=PWi; =0|W 1, W)
W_ij) denotes all elements of W other than W;;

Wi -1 Wi j+1 P(Wij =1|W_gj))/P(W;j =0| W_gj))
1 ]. (1— j_l)(l—rj)/rj_lrj
1 0 (l—rj_l)rj/rj_l(l—rj)
0 1 rj_l(l—rj)/(l—rj._l)rj
0 0 r_,-_lrj/(l—rj_l)(l—rj)

result in the individual having two genes IBD at lo-
cus j, j =1,..., L. The probability of a genotype ho-
mozygous for an allele with frequency g is g2 or ¢, as
the individual is not or is IBD at the locus. The proba-
bility of a heterozygous genotype is 0 if the individual
is IBD, and is 2¢192 otherwise, where ¢; and ¢; are
the two allele frequencies. In general, the number of
possible GIBD patterns in a set of observed individ-
uals can be large, but it is only the pattern at each
locus separately that affects the phenotype probabili-
ties. The conditional probability of phenotypic obser-
vations for several individuals is also more complex
than for a single observed individual, but can be eas-
ily determined provided only a very few individuals
are observed on each pedigree (Thompson, 1974).
The space of W-values is also easy to sample from.
The simplest algorithm uses a Metropolis proposals
to change the grandparental origin of the gene at a
random locus in a random segregation. The prob-
ability ratio for the proposed change in W depends
only on the indicators at adjacent loci for the same
segregation (Table 2), this then being weighted by
the appropriate conditional probability of phenotypic
observations Py, (Y | W). This sampler is clearly irre-
ducible: if a given pattern of GIBD in the observed
individuals is compatible with the data, then so also
is any pattern with fewer genes constrained to be

IBD and hence of the same allelic type.

In some situations, it may be possible to reduce
the space of latent variables still further. For exam-
ple, for homozygosity mapping for single affected in-
bred individuals, the latent variables could be taken
simply as GIBD indicators in the affected individual.
This then provides a very small space of X-values,
and easy computation of Py(Y | X). Computation of
Py(X) is harder, but could be achieved, for example,
using the recursive algorithms of Thompson (1988).
(In fact, this recursive algorithm was used to provide
exact GIBD pattern probabilities to provide a deter-
ministic check of some of the Monte Carlo results
of the following section.) However, this extreme re-
duction of the space of X-values decreases the appli-
cability of the framework. Using W, the indicators
of grandparental origins in all segregations, as the
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latent variables provides a framework that can be
extended to cases of several affected individuals in
an inbred pedigree or, more generally, to small sets
of observed relatives in an arbitrary pedigree.

5. HOMOZYGOSITY MAPPING FOR
WERNER’S SYNDROME

Werner’s syndrome is a very rare recessive genetic
disease of premature aging. It has recently been
mapped to chromosome 8 using outbred affected rel-
atives (Goto et al., 1992), and this linkage has been
confirmed by analysis of a set of inbred affected indi-
viduals (Schellenberg et al., 1992b) in 21 small pedi-
grees of Japanese and Caucasian origin. We exem-
plify the above methods with an analysis of a subset
of the latter data; a set of five pedigrees each with
one affected individual. Three of the affected indi-
viduals are the offspring of first-cousin marriages,
one is the result of more complex inbreeding (Fig-
ure 3), and the last is the offspring of a marriage
between first cousins once removed. The inbreed-
ing coefficients (the prior probability of IBD genes at
each locus) of the five affected individuals are 0.0625,
0.0625, 0.0625, 0.10938 and 0.03125. The five pedi-
grees chosen for analysis are of Caucasian origin,
and the frequency of the disease allele is assumed
to be 0.004. Although for any given affected indi-
vidual the posterior probability of gene-identity-by-
descent is high [approximately f/(f + 0.004) for an
affected individual with inbreeding coefficient f1, the
probability that all of the 35 pedigrees now sampled
contain affected individuals due to gene-identity-by-
descent is small. Thus there are affected individuals
who are heterozygous at markers across the region
in which the gene is inferred to be.

Two markers were of significance in the published
linkage reports. These are D8S87 and ANK: the re-
combination fraction between them is about 0.07. At
DB8S87 there are five alleles, with frequencies rang-
ing from 0.1 to 0.4 in Caucasians. At ANK there are
two high-frequency alleles (0.44 and 0.50) and three
rarer marker alleles. Among the five pedigrees cho-
sen for analysis there is one affected individual het-
erozygous at D8S87 and one heterozygous at ANK.
Originally ANK and D8S87 were thought to be flank-
ing markers, but the likely order is now thought to be
(WS, D8S87, ANK) with recombination between WS
and D8S87 somewhere between 0.01 and 0.05. Data
on and information on these markers were provided
by Dr. Ellen Wijsman (1993).

Markov chain Monte Carlo runs to estimate like-
lihood ratios between alternative recombination val-
ues were set up as described in the previous sections.
Segregation indicators W;; were assigned for each lo-
cus, for each segregation in each pedigree. A random

Fic. 3. Complex pedigree for Werner’s syndrome analysis: the fi-
nal individual in the pedigree is affected; marker data are avail-
able only on thisindividual. The three founder individuals marked
can contribute genes to both parents of the affected individual; the
individual can receive two homologous genes that are identical-by-
descent from any of these three founders.

W;; was selected for proposed change from 0 to 1, or 1
to 0. The consequences of the proposed change were
determined in terms of the founder genes present in
the affected individual. Note that not all founder
genes must be traced; for the pedigree of Figure 3,
at any given locus, only the six genes of the three
founders shown can provide two identical-by-descent
copies to the observed descendant. The probability
of the data Y under the proposed change in W is
then also easily determined, and the Metropolis pro-
posal is accepted or rejected. At each step, (whether
the change was accepted or not) complete-data likeli-
hood ratios (6) were accumulated, for the pedigree in

. question, at a preselected set of alternative 9-values.

Sampling was performed on the entire set of segre-
gation indicators on all pedigrees; larger pedigrees
thus receive an appropriately larger proportion of the
Metropolis proposals.

Table 3 shows the five recombination values used
for sampling and likelihood ratio evaluation in seven
runs each of 100,000,000 Metropolis steps. Average
Metropolis acceptance probabilities ranged from 0.07
(for 8;) to 0.82 (for 65). The log-likelihoods (summed
over the five pedigrees) estimated from each of the
runs are shown in Figure 4 (broken lines). Each of
these seven runs took only 2.5 hours on a DEC3100
workstation (or 15 minutes on a DEC Alpha 300).
Additionally, two longer runs were made at the pa-
rameters 6, of Table 3; these are the values currently
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TABLE 3
Models used for Monte Carlo runs and likelihood estimation

rws, s87 rsg7, ANK Run length Runs
61 0.01 0.1 108 2
6o 0.05 0.1 108 1
03 0.05 0.2 108 1
64 0.1 0.2 0
05 0.5 0.5 108 3
6o 0.04 0.07 10° 2

believed. Likelihood ratios at 64, ..., 05 relative to
8 were estimated and are shown as dotted lines in
Figure 4. These runs, each of 1,000,000,000 Metropo-
lis steps each took about 23.5 hours on a DEC3100
workstation. Additionally, Figure 4 shows a com-
bined estimate (solid line) from the seven shorter
runs. This estimate is produced by a method analo-
gous to the mixture formula of Geyer (1991b) treating
the surface from each run as a single realisation. The
combined estimate of v; = log, L(6;), j = 1,...,5, is
given as the solution of

p) — L(j; s) )
11 exp(—vy) XS:(Z, L(iqry; s) exp(viq))
for j=0,...,5,

where s and ¢ index the separate runs, L(¢;; s) is the
(relative) likelihood estimate at 6; provided by run
s and 6y, is the simulation parameter value used in
run ¢.

Figure 4 shows that, although there is variabil-
ity in the log-likelihood, particularly relative to the

more distant 85, even these five pedigrees provide ev-
idence for linkage, despite the fact that two of the af-
fected individuals are heterozygous at one of the two
markers. The log-likelihood for linkage [(0.04, 0.07)
or (0.05, 0.1) relative to (0.5,0.5)] is about 9.0; using
logs to base 10, this would be a “lod score” of about
3.9. Generally, the likelihood estimate tends to be
biased upward at the simulation value used for each
run, but in these long runs this effect is not large.

Each run was started at a configuration W in which
none of the affected individuals has two genes identi-
cal by descent at any of the loci. This is convenient in
that the configuration is then automatically compat-
ible with the phenotypic data; it will tend to bias the
results against linkage if the runs are too short. As
with all Markov chain Monte Carlo, it is difficult to
know whether the runs are long enough, but the sym-
metries of the example do provide some diagnostics.
The gene descent configuration of the sampled indi-
vidual can be scored by the founder genes present,
not simply by whether the genes at a given locus
are identical by descent. By symmetry the states
corresponding to the four genes of the founder cou-
ple (Figure 3) should occur equally frequently. With
tight linkage, very long runs may be required for all
possible combinations of founder genes at the differ-
ent loci to be realised in the affected offspring in-
dividual; some have very small probability. How-
ever, those having substantial probabilities, which
are known by symmetry to be equal, are realised
with approximately equal frequency even in much
shorter runs.

Expectations other than likelihood ratios can, of
course, be estimated from the same Monte Carlo
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Fic. 4. Log-likelihood for linkage parameters estimated by Markov chain Monte Carlo; for further details of the curves, see text.
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TABLE 4
Posterior gene identity by descent probabilities; based on run of
1,000,000,000 total Metropolis realisations; run at
recombination fractions (0.04, 0.07)

Metropolis Locus 1 Locus 2 Locus 3
Pedigree steps WS D8S87 ANK
1 156,256,383 0.793300  0.000000  0.126347
2 156,220,489  0.990610  0.960410  0.783383
3 156,254,166  0.937433 0.725601  0.000000
4 312,515,364  0.984823 0.909241 0.707956
5 218,753,598  0.956829  0.911231  0.662862

runs. In the context of homozygosity mapping, one
expectation of interest is the posterior probability of
gene identity by descent of the affected individuals
at each of the loci. These can be estimated very sim-
ply by scoring each Metropolis step. Table 4 shows
the estimates resulting from one of the two runs of
1,000,000,000 steps. Note that the first individual is
heterozygous at D8S87 and the third at ANK, and
that pedigrees 4 and 5 have more segregations and
hence accumulate more Metropolis steps. Tight link-
age to a locus at which the individual is heterozygous
decreases the probability of gene identity by descent,
and homozygosity for a very rare allele (e.g., the WS
disease allele) gives much higher posterior probabil-
ity of gene identity than does homozygosity at a com-
mon marker allele such as those at ANK.

For comparison with exact results, an additional
set of runs were made, fixing rgg7, ANk to be 0.07 and
simulating at rws sg7 = 0.1, and computing likeli-
hood ratios relative to

rws,ss7 = 0.01, 0.04, 0.05, 0.2, 0.5.

The log-likelihood results from two runs, each of
1,000,000,000 Metropolis steps agreed to at least
three significant figures. Except for log-likelihoods
relative to rws ss7 = 0.5, where there were small
differences, the results also agreed with exact com-
putations obtained both from the LINKAGE pack-
age (Wijsman, 1993) and using the algorithm of
Thompson (1988). (Earlier findings, that results for
"the complex pedigree of Figure 3 were less accu-
rate, were found to be due to an inadequately doc-
umented limitation in using the makeped prepro-
cessing program of the LINKAGE package on pedi-
grees with multiple loops.) Moreover, these were re-
sults from single simulation values rys ss7 = 0.1,
not close to rws, sg7 = 0.5. With more intermediate
values, or with better mixing samplers (e.g., Geyer
and Thompson, 1994), this difference could be eas-
ily eliminated. It is also worth noting that a short
check run of only 1,000,000 steps (taking 80 seconds)
provided qualitatively similar results, correct to one
significant figure in most cases; again it was only

for log-likelihoods relative to rws ss7 = 0.5 where
there were bigger discrepancies. Also, the short run
gave almost exactly the same Metropolis acceptance
rates for the proposals on each pedigree (to within
0.001) as for the long runs, and very similar (to within
0.01) posterior probabilities of GIBD at each locus for
each pedigree. Reliable qualitative results can be ob-
tained quite quickly.

6. DISCUSSION

Genetic linkage mapping using highly polymor-
phic DNA markers is becoming increasingly used to
localise the genes responsible for a wide variety of
human genetic disease. As the human marker map
becomes clearer and more detailed, the challenge to
use it tolocate disease genes increases. The computa-
tional problems involved in multipoint linkage likeli-
hoods are immense, particularly when there is much
missing data on the pedigree. Many statistical prob-
lems remain in the area of human genetic mapping.

Monte Carlo likelihood provides an approach when
exact likelihood computation in infeasible, particu-
larly in problems of complex dependent highly struc-
tured data, such as arise in genetic analysis. There
are many ways to set up the Markov chain Monte
Carlo that provides estimates of likelihood ratios. In
this paper we have focussed on one particular formu-
lation that seems to have promise in cases where a
very few individuals are observed on each of a num-
ber of possibly large pedigrees, the individuals pos-
sibly being observed for a number of DNA markers.
However, no one framework will provide a univer-
sal solution to the Monte Carlo estimation of likeli-
hoods arising in the genetic mapping and analysis
of complex traits. The example of the rare recessive
Werner’s syndrome pedigrees is intended as an illus-
tration of what is possible in the area of Monte Carlo
likelihood, not as the unique solution.
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