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Statistical Issues in Constructing High
Resolution Physical Maps

David O. Nelson and Terence P. Speed

Abstract. One of the great success stories of modern molecular genetics
has been the ability of biologists to isolate and characterize the genes re-
sponsible for serious inherited diseases like Huntington’s disease, cystic
fibrosis and myotonic dystrophy. Instrumental in these efforts has been
the construction of so-called physical maps of regions of human chromo-
somes.

A major goal of the Human Genome Project is to construct physical maps
of the entire human genome. Such maps will reduce the time and expense
required to isolate and study interesting chromosomal regions by many
orders of magnitude. This article describes what physical maps are and
how they have been used, and it outlines some of the statistical issues
involved in making them.
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niques, combinatorial optimization.

1. INTRODUCTION

One of the great success stories of modern molecu-
lar genetics has been the ability of biologists to isolate
and characterize the genes responsible for serious in-
herited diseases like Huntington’s disease, cystic fi-
brosis and myotonic dystrophy. These efforts have
been massive in scope and expense, involving many
years of labor by miultiple laboratories. Much of this
effort has involved determining with some precision
where genes of interest reside on a chromosome, and
then constructing a so-called physical map of the re-
gion to guide subsequent biochemical analyses.

One major goal of the Human Genome Project

(Olson, 1993) is to reduce the time and expense re- .

quired to isolate and study regions of biological in-
terest by constructing physical maps of the entire
* human genome. Such maps could then be used by
other molecular biologists. Not only would gene-
finding be assisted by such maps. Isolating and
cloning an interesting chromosomal region is a neces-
sary first step in nearly any research project involv-
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ing a molecular analysis of chromosomes. As Wal-
ter Gilbert noted at Human Genome II, when the
Human Genome Project is complete, isolating a re-
gion or gene will become a semester project instead
of a decade’s work. Biologists will be able to con-
centrate on the more interesting and difficult task of
understanding how the approximately 100,000 genes
buried in our chromosomes conspire to make us hu-
man beings.

In this article we will concentrate on issues
involved in constructing high-resolution physical
maps. In the following sections we will:

¢ explain in more detail what physical maps are
and why they are necessary;

o describe current methods for constructing phys-
ical maps;

o describe in some detail how the group at
Lawrence Livermore National Laboratory’s Hu-
man Genome Center (LLNL) are going about
constructing a high resolution physical map of
human chromosome 19.

For another, complementary discussion of statistical
issues in physical mapping, see Balding (1994).

2. DNA, GENES AND MAPS

The genetic complement of a human being (a “hu-
man genome”) consists of 23 pairs of chromosomes
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Fig. 1. Typical diagram of a part of a double strand of DNA.

(Watson et al., 1987). Each chromosome is com-
posed of a single large molecule of DNA, as well as
other supporting structures. Each molecule of DNA
is itself composed of two complementary polymers
called strands, bound together by hydrogen bonds
between the monomers in the two strands. Each
strand is composed of a long sequence of four differ-
ent monomers containing bases denoted by A, T, G
and C. The instructions and data necessary to trans-
form a fertilized egg in utero into a developed human
being are encoded in the sequence of bases making up
the two complementary strands of the DNA in each
of the zygote’s 23 pairs of chromosomes.

The strands are called complementary because the
configuration of hydrogen bonds between the bases
ensures that, under normal conditions, base A in one
strand is only paired with base T in the other strand.
Likewise, base G in one strand is only paired with
base C in the other strand. Thus, a portion of a
DNA molecule is often diagramed as in Figure 1. The
short vertical lines represent the hydrogen bonds be-
tween the strands, and the horizontal arrows repre-
sent bonds between the monomers within a strand.
The bonds between the monomers are drawn as ar-
rows because each strand has a direction, and the
messages encoded in the bases are to be read from
the 5 end to the 3’.end of a strand. (This notation
for the ends of a strand of DNA is standard and is
based upon molecular labeling conventions.) Most
messages are coded in the form of genes, which are
sections of DNA containing instructions for the syn-
thesis of proteins.

Each of the 23 human chromosomes differs in size,

and the total number of pairs of bases in one set of -

23 chromosomes is approximately 8 x 10°. The Hu-
. man Genome Project is an ambitious (some would say
audacious) “.. .international effort to develop genetic
and physical maps and determine the DNA sequence
of the human genome and the genomes of several
model organisms” (Collins and Galas, 1993).

What are physical maps? The answer is not as
precise as one would like. To understand this, we
must first understand something about recombinant
DNA techniques as well ‘as current limitations in
how regions of DNA can be analyzed by molecular
geneticists. [See Brown (1990) for a readable intro-
duction to recombinant DNA techniques and genetic
analysis.] The twin overriding facts of life are the
following:

e Current methods of chemically analyzing sub-
stantial stretches of DNA require a sample con-
taining a large number of identical molecules,
typically produced by recombinant DNA ampli-
fication.

o However, the maximum size of a region that can
be amplified by current techniques is orders of
magnitude smaller than even the smallest hu-
man chromosome.

For example, the size of the longest contiguous frag-
ment of DNA that can be reliably amplified by a re-
combinant DNA process called cloning (see below)
ranges from around 4 x 10% to 1 x 10, depending on
the vector and host. Similarly, the longest stretch
of DNA that can be reliably amplified by a purely
chemical technique known as polymerase chain re-
action (PCR) is approximately 1 x 102 bases (Navidi
and Arnheim, 1994). In contrast, the 22 human au-
tosomes range in size from around 3 x 108 bases for
chromosome 1 down to about 5 x 107 bases for chro-
mosome 21. Because of this mismatch in sizes, pro-
ducing enough DNA to permit biochemical analyses
currently requires a process called cloning, in which
the following steps are performed:

e A large number of identical chromosomes are
broken randomly into fragments by one or more
of a class of enzymes known historically as re-
striction enzymes.

e Individual fragments of appropriate size are
incorporated by biological or chemical mecha-
nisms into the DNA of host organisms such as
E. coli or yeast.

e The individual hosts are separated from each
other and allowed to grow into colonies, with
the fragment in each host being replicated along
with the DNA of the host during cell division
(mitosis).

In this way, the natural DNA replication machin-
ery of the host organism is exploited to replicate the
fragment along with the host’s chromosomes. After
enough mitoses, each host colony can be harvested.
The result of this process is a library of cloned chro-
mosome fragments, where each fragment is present
in large enough quantities to permit isolation and pu-
rification of the fragment and subsequent biochemi-
cal analyses. Unfortunately, the library contains no
information about the relative positions of the frag-
ments along the chromosome. Physical maps are
data structures which provide the necessary infor-
mation to enable the order and distance among frag-
ments to be deduced. Hence, they are essential if
a collection of overlapping cloned chromosome frag-
ments (a contig) is to be treated as though it were a
contiguous region of DNA.
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Sometimes the ordering information about a contig
is exactly that: the relative order of the cloned frag-
ments themselves. In this case, the physical map is
intimately related to the clone library from which it
arose. However, this need not be the case. Olson et
al. (1989) propose a “common language” for physical
mapping based on the notion of a sequence-tagged
site, or STS. An STS is a small sequence of DNA
that occurs precisely once in the human genome and
can be reliably assayed by PCR. In their proposal, a
physical map would consist of a linear sequence of
STS’s, along with the instructions necessary to con-
struct reliable assays for each STS. In this case, the
map would not be tied to a particular set of clones,
but could be used to order any subsequently gener-
ated library. The needed resolution, or distance be-
tween STS’s, would depend on the average size of
cloned fragments to be ordered: “The main practi-
cal requirement is that the resolution should be high
enough to make regeneration of cloned coverage of
any region straightforward” (Olsen et al., 1989). In-
deed, even if a physical map is constructed for a par-
ticular library, one can then create a map of STS’s
from the ordered library to produce an STS map for
subsequent general use.

As the above paragraph indicates, the critical re-
quirement for an STS map to be useful is that
the distance between neighboring STS’s be suitably
matched to the average size of a cloned fragment:
the larger the cloned fragments, the farther apart
the STS’s can be. Not surprisingly, then, most of the
maps published to date which use STS techniques
are for libraries containing very large fragments (see
Section 2.1). .

In summary, the main purpose of a physical map
is to enable a set of DNA fragments to be treated as
though it were a contiguous stretch of a chromosome.
Currently published physical maps provide order in-
formation for a particular set of clones. These maps
typically contain STS’s, which can, in principle, be
used to generate contigs from other libraries. How-
ever, the density of STS’s in these maps is such that
they require large cloned inserts. Despite that, an
ultimate goal is to produce a detailed set of abstract
landmarks which can be maintained in a database
and not be associated with any particular library
at all.

Finally, knowing the order among clones also al-
lows one to construct another kind of map, known as
a restriction map, which can in turn help verify the
ordering information. (See Figure 9 for an example
of a restriction map.) Restriction maps document
the order and distance along the genome between
sequences of DNA known as restriction sites. A re-
striction site is the location of a sequence, typically
four to six bases long, where a particular restriction

enzyme will cut the DNA. Different enzymes recog-
nize and cut different sequences. The distances be-
tween restriction sites in a cloned segment of DNA
can be determined by digesting the cloned segment
with the enzyme and observing the sizes of the re-
sulting pieces by a process known as gel electrophore-
sis. Since overlapping cloned segments must share
restriction sites, ordering information can be used
to generate restriction maps, and conversely, re-
striction maps can be used to validate orderings.
Restriction maps can also be vital in identifying
features known as polymorphisms, as we shall see
below. (Polymorphisms are regions of DNA which
tend to be different in different individuals.)

2.1 Constructing Physical Maps

In this section, we describe in more detail some
of the issues involved in constructing a large-scale
physical map. Some early efforts to explore these
issues include those by Coulson et al. (1986), Olson
et al. (1986) and Kohara, Akiyama and Isono (1987).
Constructing a map of a chromosome, or of a large
region on a chromosome, can be broken down into
several basic steps:

1. create a library of cloned fragments as described
above;

2. produce a data “fingerprint” for each cloned frag-
ment;

3. use the information in each fragment’s finger-
print to assemble a physical map of the region
of interest.

By fingerprinting a clone, we mean performing one
or more experiments on that clone, the results of
which depend in some way on the underlying DNA
sequence. Hence, the results of these experiments
can help identify or characterize the clone. Cloned
fragments which overlap, that is, share a portion
of the genome, may produce fingerprints more simi-
lar to one another than clones which do not overlap.
We then use the similarity between fingerprints as a
measure of similarity between clones.

Differences between maps and map-making meth-
ods boil down to making different choices in these
steps. For instance, in STS-content maps (Green and
Green, 1991), a “fingerprint” consists of an enumer-
ation of the STS’s contained in a cloned fragment.
Hence two clones overlap whenever they share an
STS, but may very well overlap without sharing any
STS’s, if the resolution is too coarse. On the other
hand, in the high resolution map of chromosome 19
being produced by LLNL, a fingerprint is a list of ob-
served fragment sizes resulting from a complicated
digestion of the cloned fragment. In this situation,
statistical methods are used to compute a posterior
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probability of overlap, given the data from the finger-
print. (We will describe LLNLs approach in much
more detail in Section 3.) Let us now look at each of
the steps enumerated above in a little more detail. .

2.1.1 Producing a library of cloned fragments

From the point of view of subsequent analyses, a
library is just a “random” sample of overlapping DNA
intervals. However, the choices made at this step are
critical in determining the subsequent uses to which
the map can be put.

Molecular cloning requires that the DNA to be
cloned (the insert) be joined to another DNA molecule
(the vector) that can replicate in host cells. This join-
ing is carried out in vitro and the resulting recom-
binant DNA molecules are then introduced into the
host cells. Common hosts include the bacterium E.
coli and baker’s yeast S. cerevisiae. Vectors which are
used with E. coli include naturally occurring genetic
elements known as plasmids, of which pBR322 is per-
haps the most well known, and bacteriophages (bac-
terial viruses) such as the phage A. The LLNL library
we discuss below consists of cosmids, hybrid vectors
which replicate like plasmids but can be packaged in
vitro into A coats. There are also naturally occurring
yeast plasmids, but more important are yeast artifi-
cial chromosomes, or YAC’s, which consist of the in-
sert joined to a specially designed piece of DNA which
functions as a synthetic yeast chromosome.

The importance of all of this is that different hosts
and methods of incorporation can vary widely in the
average size, the variability in size and the subse-
quent stability of the incorporated fragment, as in
the following examples:

e YAC’s in yeast may have DNA fragments rang-
ing from about 0.1-1 x 10° bases in length.

e Cosmids in E. coli may have fragments ranging
from about 3.5-4.5 x 10% bases in length.

e YAC’s are much more prone than cosmids to

chimerism, where two or more fragments are:

combined in the same clone.

e Some host strains can exhibit cloning bias, pref-
erentially amplifying fragments from certain re-
gions of the genome over others.

How important each of these characteristics is de-
pends on how the map will be used. One can see
that, as far as efficiency of coverage is concerned, the
order-of-magnitude difference between the size of an
insert in YAC’s and other methods make YAC-based
libraries appealing. However, YAC-based maps have
their weaknesses, too.
maps are, by themselves, too coarse-grained for
many purposes, such as sequencing. Consequently, if
the map is to be used to guide a large-scale sequenc-

For instance, YAC-based"

ing effort, individual YAC’s must themselves be sub-
cloned into smaller pieces of a size suitable for se-
quencing. In addition, the high rate of chimerism in
YAC libraries can create considerable complications
in map assembly. On the other hand, YAC-based
maps have proved immensely useful in guiding the
construction of higher resolution maps. For instance,
Baxendale et al. (1993) and Hoheisel et al. (1993)
have produced cosmid-based maps of the Hunting-
ton region (2 x 108 bases) and the S. pombe genome
(1.4 x 107 bases), respectively. In both of these cases,
they had a preexisting YAC map to guide the con-
struction of a higher level map. One can imagine that
the other “first-generation” YAC-based maps, such as
those described by Bellarme-Chantelot et al. (1992),
Chumakov et al. (1992), Foote et al. (1992) and
Cohen, Chumakov and Weissenbach (1993), will
prove similarly valuable in guiding and focusing ef-
forts toward higher resolution maps of regions of in-
terest, including whole human chromosomes.

2.1.2 Producing “fingerprint” data for each clone

Recall that, given a library of clones, our task is to
determine the ordering relationships between them
so they can be treated as though they were a sin-
gle, contiguous piece of DNA. In most cases, one can
imagine this task proceeding in two logical steps:

e analyze each clone to produce a vector of data
which depend on its DNA content;
o then use this information to assemble contigs.

We now examine some of the kinds of data produced
in mapping projects. Most types of data record the
result of probing clones for the presence of particu-
lar sequences of DNA. Such probing is usually car-
ried out by PCR, restriction digestion or a process
called hybridization, a kind of chemical analogue of
the process of aligning strings of letters so they match
(Hames and Higgins, 1985). In a hybridization ex-
periment, the similarity between two single strands
of DNA (a probe and a target) is measured by observ-
ing the extent to which the two single strands can
form a duplex of complementary base-pair sequences
at a particular temperature, pH and so forth. Gen-
erally speaking, strands which are perfectly comple-
mentary will remain bound into a duplex at measur-
ably higher temperatures than strands containing
base-pair mismatches. By measuring the amount of
probe that sticks to a target, one can (imperfectly)
estimate whether or not a probe and a target share
DNA.

Some data represent events that should happen
at most once in the genome. For instance, one can
assay clones for the presence of an STS. Because of
the uniqueness of the sequence represented by the
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STS, if two clones both test positive for the STS, then
we can conclude (barring experimental error) that
the two clones overlap. Let us call this kind of data
unique sequence data. Other data represent events
that can happen more than once in the genome. For
instance, we can assay clones for the presence of a
particular small sequence like GGAATTCC. For any
given clone, barring experimental error, the sequence
either will or will not appear. However, as the se-
quence is likely to occur by chance in many different
places in the genome, we cannot conclude that two
clones overlap simply because they both test positive
for this sequence. Such an event does provide some
evidence for overlap. Let us call this kind of data
repetitive sequence data. Finally, we can digest the
clone using one or more restriction enzymes and ob-
serve the sizes of the resulting fragments. Again,
the two clones will both contain a fragment of size &
whenever they both have two consecutive restriction
sites that are k bases apart. In this case, some experi-
mental error is inevitable, as fragment sizes can only
be measured with a relative error of several percent
at best. As with the repetitive sequence data, two
clones containing a fragment of a given length pro-
vides some positive evidence that the clones overlap,
but is by no means conclusive proof.

Other types of data include combinations of the
above approaches., For instance, Stallings et al.
(1990) describe an approach in which fragments
from restriction enzyme digestions are hybridized by
repetitive sequence probes. The fact that two clones
both contain a fragment of size ¥ which contains a
repetitive sequence provides more compelling evi-
dence that the two clones overlap than either event
by itself. )

2.1.3 Assembling contigs and obtaining closure

Once we have data on individual clones, we use
that data to assemble the clones into contigs. How
we go about that depends to a great extent upon the
type of data we have. In the case of constructing
maps from unique sequence probes such as STS’s,

the problem is largely algorithmic. We must find an
ordering of STS’s and an associated configuration of
clonal overlaps that is consistent with the data.

Ifthere were no errors, this problem could be easily
solved by testing whether an incidence matrix sum-
marizing the data has the “consecutive ones prop-
erty” An example will make things clear. Consider
the overlap configuration in Figure 2. The horizontal
lines represent clones, and the vertical arrows rep-
resent STS’s. Given this configuration, we can con-
struct an incidence matrix describing which unique
sequence probes are positive for which clones. This
matrix will have a 1 in row i and column j if clone i
contains unique sequence j, and a 0 otherwise. Such
a configuration would produce the incidence matrix
on the left-hand side of (1):

STS’s STS’s

abcde baedc

1 11001 1 11100

(1) Clones 2 01000 = 2 10000
3 10011 3 01110

4 00010 4 00010

5 00100 5 00001

If we permute the columns of the matrix on the left-
hand side of (1) into the order (b, a, e, d, ¢), we will
produce the matrix on the right-hand side of (1). In
this permuted matrix, all the ones in each row ap-
pear consecutively. If we visualize each row of ones
as a clone, this permuted matrix shows us an over-
lap relationship which is consistent with the data.
Note that not all overlaps are captured by the ma-
trix. For instance, in our example, clones 4 and 5
overlap, but this fact is hidden from us by a lack of
unique sequence probes in the overlap region. Such
cryptic overlaps are quite common. However, it is
the best we can do with the data at hand, as the den-
sity of probes in the example is too coarse to detect
all overlaps.

An incidence matrix like the incidence matrix in
our example has the consecutive ones property for
rows if its columns can be permuted so as to make

Y

Y Y

FiG. 2. Sample overlap configuration with STS'’s.
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all the ones in each row appear consecutively. The
matrix on the left-hand side of (1) has the consecu-
tive ones property for rows, as seen by its permuted
version on the right-hand side of (1). It is immedi-
ately clear that (a) incidence matrices corresponding
to error-free probings of clones with unique sequence
probes have the consecutive ones property; (b) the
permutation operation corresponds to finding an or-
dering of STS’s consistent with the data; and (c) the
structure of the permuted matrix provides a consis-
tent overlap configuration for the clones.

It is easy to determine if a matrix has the con-
secutive ones property. Booth and Lueker (1976) de-
scribe linear-time algorithms for determining if a ma-
trix has the consecutive ones property. Furthermore,
their algorithms also provide a compact description
of all possible consistent permutations in the form of
a PQ-tree. Hence, the problem is completely solvable
in linear time when the data are error free.

Unfortunately, real datasets are never error free.
Because of occasional experimental failures, fre-
quent clone chimerism, mislabeling, PCR or hy-
bridization error, measurement error and so forth,
real data sets of any size will inevitably contain some
erroneous entries. In this case, the relationship be-
tween consistent orderings and the consecutive ones
property is destroyed, and the problem of map as-
sembly from unique sequence data ceases to be well
posed. One can continue to use approaches based
on PQ-trees, but now one must use heuristics to
search for a nearby matrix which has the consecutive
ones property. Instead, the problem is typically re-
cast as a combinatorial optimization problem: search
through the space of all linear orderings of the objects
(probes or clones) to find one that minimizes some
user-defined penalty function. The underlying data
structure is the same: an incidence matrix of clone—
probe hits. The differences now lie in what is being
ordered (rows for clones or columns for probes), how
the penalty function is defined and the search tech-
nique used to generate new permutations.

In nearly all published algorithms, the penalty
function is defined to be the sum of pairwise discrep-
ancies between adjacent objects. In this case, the
problem is formally identical to the traveling sales-
man problem (Lawler, 1985) on a complete graph.
The nodes on this graph correspond to the objects to
be ordered, either clones or probes. An edge between
nodes a and b is weighted by a measure d(a, b) of the
discrepancy between objects a and b. The goal is to
find a path visiting every node exactly once which
minimizes the sum of the discrepancies along the
edges in the path. Despite this formal similarity,
most efforts to date do not exploit the considerable
body of research in efficient solution techniques for
the traveling salesman problem [see Newberg (1993)

for an exception]. Perhaps this is because simpler
heuristics have proved successful on problems en-
countered to date.

For example, Mott et al. (1993) order probes by
defining the discrepancy between probes a and b as

Number of clones positive for a and b

d(a,b)=1-— — .
(@.b) Number of clones positive for a or b

They then use simple reordering rules to generate
new permutations and simulated annealing to de-
termine whether or not to accept the newly gener-
ated permutation. Once probes have been ordered,
clones are then ordered with respect to the probes
by an algorithm that maximizes a measure of fit be-
tween the probe data for that clone and the list of
ordered probes. This approach has proved success-
ful in constructing maps of the Huntington region
(Baxendale et al., 1993) and genome of the fission
yeast S. pombe (Hoheisel et al., 1993). In addition,
they also describe a different, heuristic ordering pro-
cedure which attempts to edit the clone—probe ma-
trix to restore consistency. In addition to the work of
Mott et al. (1993), Cuticchia, Arnold and Timberlake
(1992) describe efforts to construct maps from simu-
lated clone—probe matrices via simulated annealing.
In this case, clones were ordered using the ¢; dis-
tance between the rows of the clone—probe matrix as
a measure of discrepancy.

The combinatorial optimization approach to find-
ing an optimal ordering described above is based on a
simple, two-part strategy: compute a measure of dis-
crepancy between all pairs of objects, and then search
through the space of all orderings for a satisfactory
solution. An assumption underlying this is that the
data-collection process is largely independent of the
map assembly process. Palazzolo et al. (1991) de-
scribe an entirely different, “directed” approach, in
which the overlap information gathered at step n di-
rects the experimental procedure at step n + 1. The
method proceeds roughly as follows, on a library of

"N clones:

1. Begin with all N clones unlabeled.
2. Repeat the following until all clones are labeled:

(a) Choose an unlabeled clone at random; call
this clone a “seed” clone.

(b) Create STS’s from the two ends of the seed
clone, and use them to find all clones that
overlap the ends of the seed clone; call this
set S.

(c) If one or more clones in § is already labeled,
merge contigs by relabeling all the clones in
S, as well as the seed clone, with the small-
est label among the labeled clones in S.

(d) If no clone in S is labeled, add a new contig
by labeling all the clones in S, as well as
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the seed-clone, with the next available contig
number.

When complete, all N clones will be labeled with a
contig number. Note that, as described, no mention
is made of ordering probes or clones. However, evolv-
ing maps of contigs can be created and maintained as
the process evolves. PQ-tree approaches can be used
to edit and validate the evolving contigs. Merged con-
tigs whose incidence matrices do not possess the con-
secutive ones property are symptomatic of an error,
which can be localized and corrected. This approach,
the success of which depends critically on the abil-
ity to do large numbers of high-accuracy probings
economically, has been used successfully to map the
S. pombe genome in cosmids by Mizukami et al.
(1993).

Finally, recall that the clones in any library can
be considered as a random sample of segments from
some underlying genome. Hence, the map will ac-
tually consist of a collection of contigs separated by
oceans of DNA not covered by any clone. As noted
by Lander and Waterman (1988), for a library of N
clones of average length L taken from a genome of
length G, the expected proportion of the genome left
uncovered is approximately exp(—NL/G). The above
approaches provide an ordering, but do not unam-
biguously define contig boundaries.

Now let us examine how maps such as Bellarme-
Chantelot et al. (1992) and Stallings et al. (1992)
have been assembled from repetitive sequence data,
restriction fragment data or a combination of the two.
In this situation, one can follow the same basic pro-
gram as above: use the data to obtain a similarity
measure between clones; then order and assemble
the clones into contigs using some optimization ap-
proach. However, in this situation the random, yet
repetitive nature of the data lends itself to a prob-
abilistic interpretation and to statistical approaches
to detecting and evaluating potential clone config-
urations. Unfortunately, because of the complexity
of the underlying models, most current efforts con-
fine statistical decision making to detecting pairwise
overlap and then retreat to combinatorial heuristics
to assemble the map.

Statistical approaches to detecting pairwise over-
lap, as described by Michiels et al. (1987), Brans-
comb et al. (1990), Balding and Torney (1991), Fu,
Timberlake and Arnold (1992) and others, all be-
gin with a probability model for the data-generating
process, given an overlap configuration between two
clones. Most then compute an integrated likeli-
hood ratio or posterior probability of overlap, which
they use as a similarity measure,. although Fu,
Timberlake and Arnold (1992) cast the problem as
a hypothesis-testing problem. The approach de-

scribed by Balding and Torney (1991).has been used
in Bellarme-Chantelot et al. (1992) and Stallings
et al. (1992), while the approach first outlined in
Branscomb et al. (1990) will be discussed in detail in
Section 3.

Alizadeh et al. (1993) and Nelson, Speed and Yu
(1994) describe different statistical approaches to
evaluating overlap configurations involving more
than two clones. Nelson, Speed and Yu (1994) re-
cast the the problem of determining overlap as a
Bayesian decision problem and examine solutions
from an information-theoretic point of view. Alizadeh
et al. (1993) examine the case of error-free data gen-
erated by repetitive probes against constant-length
clones. They propose methods to evaluate overlap
configurations among many clones. Unlike the STS
case, there is no simple mapping between a configu-
ration of clones and a permuted version of the clone—
probe matrix. Probes will occur more than once along
the genome, and part of the problem is to infer a
probe ordering where each probe may occur more
than once. In this way, the problem once again be-
comes one of combinatorial optimization. Alizadeh
et al. (1993) describe efficient algorithms for ap-
proximating the relative likelihood of any sequence
of probes, given a particular overlap configuration.
They then use techniques developed for the travel-
ing salesman problem to guide the search through
the space of clone overlap configurations.

2.1.4 Other issues

"As one can surmise from the size of the genomes
and libraries involved, constructing a map of a large
region or chromosome is a major, multiyear project.
As a consequence, such efforts are often preceded by a
considerable amount of analysis and simulation, de-
signed to determine the feasibility, the duration, the
cost and the likelihood of success of various mapping

. approaches.

Suppose the goal of a mapping project were to cover
P percent of a chromosome in X or fewer cosmid con-
tigs. Project managers will pose questions like the
following.

“We can eonstruct a system that will detect fifty
percent overlap reliably. However, constructing a
system that will detect ten percent overlap reliably
will be much harder to accomplish and be more ex-
pensive per fingerprint to use. On the other hand,
maintaining large libraries is also expensive. How
many more clones will I need to analyze if I use a
cheap, fifty percent overlap detector rather than an
expensive, ten percent overlap detector?”

“After we finish we will have around K contigs.
We will have to close the gaps between these contigs
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by very expensive methods. How many of the gaps
between contigs are actually cryptic overlaps that we
will be able to close with one well-selected probe, and
how many are real?”

“Suppose we have to stop after we have analyzed
5,000 clones (using whatever method we have cho-
sen). How close to completion will we be? In other
words: How many contigs will there be? What will
be the average size of a contig? How much of the
genome will be covered?”

Of course, the answers to these questions depend
on the strategy used to construct the map. Lan-
der and Waterman (1988) addressed these questions
for libraries constructed by repetitive sequence fin-
gerprinting of random clones. The models used
were similar to those derived by Feller (1948) and
Smith (1957) for analyzing the behavior of Geiger
counters. Several authors, using several different
approaches, have produced results allowing one to
predict progress in constructing STS-content maps
(Arratia et al., 1991; Barillot, Dausset and Cohen,
1991; Ewens et al., 1991; Grigoriev, 1993; Tor-
ney, 1991). Finally, Zhang and Marr (1993) and
Nelson and Speed (1994) have produced results al-
lowing one to predict progress in directed mapping
projects.

2.2 Finding the Gene for Myotonic Dystrophy

To gain some appreciation of the work involved in
isolating a gene, and the role that physical maps play,
let us look at the sequence of events leading up to the
discovery of the gene associated with myotonic dys-
trophy (“DM”). Myotonic dystrophy (Harper, 1979)
is the most common form of adult muscular dystro-
phy, with prevalence estimates ranging from 2 to
14 cases per 100,000 individuals. The disease al-
lele is strongly associated with a wide range of disor-
ders, from myotonia and other neurological defects
to cataracts. The age at onset and disease sever-
ity can also vary widely: some individuals remain
asymptomatic as adults, while others present severe

"symptoms at birth.

As early as 1983, the locus for DM had been
mapped by linkage analyses to chromosome 19. Six
years later, Korneluk et al. (1989) published an anal-
ysis of markers which localized the DM gene to a
10-centimorgan region on the long or g-arm of chro-
mosome 19, denoted by 19q, between the DNA exci-
sion repair gene ERCC1 and marker D19S50. Two
years later, Tsilfidis et al. (1991) further localized
the DM locus to a 2-centimorgan stretch on the band
of 19q designated 19q13.3 by finding a recombina-
tion event in a pedigree which placed a polymorphic
marker D19S51 just distal to the DM locus. Assum-

ing that 1 centimorgan corresponds, on average, to
1 x 10° bases of DNA, this finding localized the DM
locus to a 2 x 108 region on chromosome 19 which was
flanked by known markers: ERCC1 and D19S51.

Up to this point, efforts to isolate DM had been fo-
cused on finding flanking markers close enough to
make molecular analyses feasible. The next step
would be to construct a high resolution physical map,
consisting of (1) a set of overlapping cosmid and YAC
clones which would span the region between the two
flanking markers, coupled with (2) restriction maps
of the region. These maps could then be used to iso-
late and analyze potential genes in the region.

By the end of 1991, as the result of an inten-
sive international effort, the region was completely
cloned and mapped, and a putative defect was ob-
served (Aslanidis et al., 1992). The putative defect
was a length variant observed in one of the restric-
tion fragments among affected members. [For a de-
tailed description of the mapping effort, see Bux-
ton et al. (1992), Jansen et al. (1992) and Shut-
ler et al. (1992).] Shortly thereafter, Brook et al.
(1992) published evidence of the molecular basis of
the length polymorphism: an unstable expansion of
a three-base repeat (CTG) at the 3’ end of a new gene.
Within a month Mahadevan et al. (1992) published
results indicating that the unstable region was in
an untranslated region of the gene. By the end of
1992, the gene containing the repeat had been iden-
tified as a type of protein kinase and completely se-
quenced (Mahadevan et al., 1993). Finally, by the
end of 1993, diagnostic probes for DM had become
commercially available, even though the mechanism
by which the mutation resulted in a DM phenotype
remained unknown. The mechanism remains un-
known today.

Note that most of the time and effort involved in lo-
cating and characterizing DM was spent finding suit-
able markers bracketing a small enough stretch of
DNA to make molecular analysis feasible, and much
of the subsequent effort involved constructing phys-
ical maps of the localized region. Once such an in-
frastructure was in place, isolating and character-
izing candidate genes could proceed quickly. This
division of labor is not unusual: see Baxendale et
al. (1993) and The Huntington’s Disease Collabo-
rative Research Group (HDCRG, 1993) for details
concerning the corresponding search for the gene for
Huntington’s disease. Once produced, high resolu-
tion physical maps provide the infrastructureneeded
to enable efficient (1) discovery of new polymorphic
markers that more tightly bracket the region of in-
terest, (2) screening for genes using other libraries
of candidate gene sequences called cDNA’s and (3)

sequencing of candidate genes.

Thus, high resolution physical maps provide a crit-
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ical resource to molecular geneticists interested in
understanding our genetic makeup.

3. CONSTRUCTING A PHYSICAL MAP OF
CHROMOSOME 19

The previous section provided an overview of phys-
ical mapping approaches, efforts and issues. Let us
now look more closely at one particular project. In
this section, we describe aspects of LLNLs current
effort to produce a high resolution physical map of
chromosome 19. Figure 3 shows a diagram of the ba-
sic steps. Further details may be found in Carrano et
al. (1989). Chromosome 19 is one of the smaller hu-
man chromosomes, containing approximately sixty
million bases of DNA. The map is based on cosmids,
with each insert approximately forty thousand bases
long. Hence, around 1,500 clones would cover the
chromosome, if laid end-to-end. However, since the
cloned inserts are randomly cut from the chromo-
some, many more than 1,500 clones are needed to
ensure nearly complete coverage of the chromosome.
Consequently, the high resolution map is being con-
structed from more than 10,000 clones from several
different cosmid libraries. Despite the fact that we
are using several libraries, we will describe the pro-
cess of map construction as though the clones were
derived from a single library.

LLNL is taking a “bottom-up” approach to building
their map. The main steps include the following:

1. creating DNA fingerprint data for each clone by
restriction digestion and electrophoresis;

2. computing the posterior odds of overlap between
each pair of clones, based on the similarity be-
tween the pair of fingerprints for the two clones;

3. using these posterior odds values to assemble
initial contigs.

After constructing initial contigs by this method,
other methods must be used to close the gaps be-
tween contigs and to associate known markers with
contigs.

3.1 Creating Fingerprints

LLNL began its chromosome 19 mapping effort
by spending many months analyzing concurrent
efforts by other laboratories at constructing large-
scale physical maps. In addition, Branscomb and co-
workers performed extensive computer simulations
designed to optimize their fingerprinting strategy
(Branscomb et al., 1990). As a result of these simula-
tions and analysis, they chose a bottom-up approach
to fingerprinting based on restriction digestion: cut-
ting up the clone with enzymes and measuring the
sizes of the resulting fragments. The method dif-
fers from normal restriction digestion in one very
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Fi1G. 3. Main steps in constructing the map of chromosome 19.

important respect. In ordinary restriction digests,
the fragments from the digest partition the clone. In
other words, the sum of the sizes of the fragments
equals the size of the clone. In LLNLs method, on
the other hand, the fragments eventually visualized
by a fingerprint are a subset of fragments produced
by a two-step multienzyme restriction digest. To see
how this happens, let us examine the experimental
protocol in a little more detail.

The digestion process proceeds as outlined in Fig-
ure 4. The first step is a complete double digestion

. with two six-base restriction enzymes, EcoRI and

BglII. The result of this first step is a collection of
fragments tagged on both ends with a fluorochrome
dye. The DNA from this first digestion is then sepa-
rated into three aliquots. Each of the three aliquots
is further digested completely with a different four-
base restriction enzyme: Hinfl, Haelll or Ddel. As
a result of this second digestion, each fragment from
step 1 has been further digested in each aliquot into
a number of subfragments, only one or two of which
contain color linkers and hence will be visible. The
visible fragments are just those between one of the
six-base recognition sites cut in step 1 and one of the
four-base recognition sites cut in step 2. Of course, if
a fragment from step 1 contains no four-base recog-
nition site between its two six-base sites, the entire
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FiGg. 4. Creating fingerprints using multiple restriction digests.

fragment will be visible. The three aliquots are then
combined into a single solution called a DNA prep for
subsequent electrophoresis. Hence, each fragment
produced by step 1 results in at most six visible frag-
ments in the final sample.

DNA fragments are currently visualized by elec-
trophoresis on ABI373 sequencers, resulting in a list
of detected fragment sizes for each clone. Because of
limitations in the size standard used and the speed
of electrophoresis, only fragments with sizes between
30 and 540 bases will be detected. Each sequencer
run currently produces fingerprint data on up to 48
separate DNA preps: two different DNA preps can be
loaded in each of 24 lanes. In addition to the two DNA
preps from cloned inserts, each lane also contains a
standard prep containing fragments of known sizes
(a size standard). Detecting three different preps

in a single lane is possible because the ABI373 is a
four-dye-per-lane sequencer, designed to detect up to
four separate sequencing reactions simultaneously
in each lane, with each reaction using a different col-
ored fluorochrome dye. Hence, if the three preps were
produced with three different dyes, the reactions will
be able to be captured concurrently.

Peaks are detected by a combination of Ilo-
cally developed software and software provided by
the sequencer manufacturer, Applied Biosystems,
Incorporated (ABI). The initial signal extraction soft-
ware is currently provided by ABI. It produces a vec-
tor time series

{(Xo(k), X1(k), Xe )k =1,..., 6,000]

for each lane, with approximately 10 vector samples
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F1G. 5. Resulting signal for one clone from an electrophoresis run.

taken per minute. The two component series X; and
X, contain sampled fluorescence intensities for the
two DNA preps, while the series X contains sam-
pled fluorescence intensities for the size standard.
The laser-induced fluorescence intensities are mea-
sured 25 centimeters downstream from where the
DNA prep is loaded into the gel. Thus the time se-
ries measures time to passage for a fragment, rather
than distance traveled in a fixed amount of time, as
is the case with radioactivity-based measurement of
electrophoresis. Finally, the time series has already
been backgrounded and run through a linear filter to
extract the three components. The graph in Figure 5
shows a typical component time series.

LLNL’s current approach to peak detection breaks
the analysis into two steps: finding peaks and esti-
mating fragment length. The present software ex-
amines each component series independently to ex-
tract the locations of peaks corresponding to DNA
fragments. LLNL has tried a number of approaches
to extracting peak locations from signals like that
shown in Figure 5. No method has proved entirely
successful (Nelson et al., 1989). The current (moder-
ately successful) approach assumes the series can be
‘modeled as an AR(1) series contaminated by outliers
(here the peaks are the outliers). It relies on robust
filtering algorithms provided by S-PLUS (Statistical
Sciences, Inc., 1991).

The approach proceeds in three steps. First, an
AR(1) model is fitted to the series using a generalized
M-estimator. Second, a model-based “filter-cleaner”
is applied to the series to classify each data point
as “normal” or “outlier.” Finally, peak locations are
found by locating large local maxima in the portion
of the series classified in step 2 as “outlier.” See Sta-
tistical Sciences, Inc. (1991) for details on the filter-
ing algorithms.

The process just described produces a list of
peak locations {kj, kg, ...}. To be useful for compar-
ison between inserts, these peak locations must be
translated into a standard coordinate system. The
size standard in each lane is used for this coordinate
transformation. LLNL’s current size standard con-
sists of a collection of fragments of known size, con-
structed by digesting pBR322 and SV40 with Haelll.
The standard coordinate system is constructed by
associating the peak locations of the size standard
with known fragments between 30 and 540 bases in
length and performing a monotone spline interpo-
lation (Fritsch and Carlson, 1980). The result is a
function which associates a standardized fragment
length /; with each peak location k;.

Although it is known that fragments of the same
length may vary in their elution time by up to 3%,
the same fragment will migrate at approximately
the same rate under standardized conditions. In-
deed, experiments suggest that LLNL has been able
to transform the host vector fragments to the stan-
dard coordinate system with a precision of +1 base
out to 400 bases.

3.2 Detecting Overlap

The result of fingerprinting the library is a list of
standardized fragment lengths {/;} for each clone in
the library. The next step is to compare all pairs of
clones for overlap. For a library of n clones, we com-
pare the fingerprints of all (3) pairs of clones, result-
ing in a separate comparison vector D for each pair of
clones. This comparison vector details which integer
fragment lengths occurred in each clone. Based on
the comparison vector, we then compute the posterior
odds of overlap, given the data D, by Bayes’ rule, as
suggested by Michiels et al. (1987) and Branscomb
et al. (1990).

To create a comparison vector D from a pair
of standardized fragment length lists, LLNL cur-

- rently constructs a bipartite graph describing a

best match between pairs of fragment lengths, one
from each clone, differing by no more than one
base. This graph is then used to decide which
fragment lengths have occurred in each finger-
print. As mentioned above, the resulting inte-
ger fragment lengths / can range from 30 to 540
bases. We choose a subset of these potential frag-
ment sizes to use as data for detecting overlap.
For the purposes of this discussion, let us assume
the fragment sizes actually used to detect over-
lap run from Ny to N; bases, where 30 < Ny <
N; < 540.

The comparison vector D, corresponding to a com-
parison of clones A and B, consists of a sequence
(dny> dNg+15 - - - » dy,) of comparison outcomes, where
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Fi1G. 6. Typical configuration where two clones overlap.

each comparison outcome is of the form

00, if a fragment of length /

is observed in neither clone,
10, if a fragment of length /

is observed in clone A only,
01, if a fragment of length /

is observed in clone B only,
11, if a fragment of length /

is observed in both clones.

d =

Here 1 and 0 represent the presence and absence of
a fragment, respectively.

We can approximate the probability of the above
comparison outcomes for a given fragment size / by
arguing as follows. A fragment of length / occurs
whenever a six-base restriction site and an appropri-
ate four-base restriction site are / bases apart. If the
restriction sites involved in the digestion process are
distributed across the genome in a roughly uniform
manner, then v, the average number of fragments
generated along an M-base stretch of the genome,
should be roughly proportional to M; thatis, v =~ aM
for some «. Let us further suppose that the pres-
ence or absence on the gel of fragments of differ-
ent lengths are approximately mutually independent
events. Then the probability of seeing no fragments
of size [ in a region of length M is approximately

1-m)" ~ exp (-\ M),

where 7; is the probability that any single fragment
(in the size range) is of length /, and the fragment
intensity A, is defined by A; = ma. Of course we do
not expect the assumptions leading to this probabil-
ity to be more than approximately valid, if that, but
they do lead to a simple and tractable model and,
furthermore, one whose utility can be evaluated.
Consider then the situation diagramed in Figure
6, in which clone A has length L;, clone B has length
Lo, the two clones overlap by an amount 6 and the
intensity for fragments of size / is »;. We immediately
compute the probabilities of the above comparison

outcomes in terms of g = exp(—2;) as

poo(8) = ghrtiz=9,

po1(0) = gL1(1 —qt2~?),
p10(6) = g*2(1 —g*179),
p11(0) =1 — gl — gl2 4 gLi+tLa—6,

(2)

3.2.1 The simple trinomial model

For the current discussion, let us assume further
that all clones are the same length L, and all frag-
ment lengths have the same intensity A. Without
(any more) loss in generality, we may also choose
a coordinate system in units of G/L, where G is
the length of the genome, so that all clones have
length 1 and A becomes a per-clone intensity. To sim-
plify discussion further, let us call potential fragment
sizes “probes,” mimicking the vocabulary used in hy-
bridization experiments.

Under these conditions, for any two given clones A
and B, we can reduce the comparison vector D by
cross-classifying each of the n probes according to
which of the clones they hit, forming a fourfold ta-
ble of counts:

B
0 1
0
3) A noo o1 no+ ’
1 nip ni1 nit,

nio ni1 n

where 1 means that a clone contains a probe, and 0
means that a clone does not contain a probe. The
joint distribution for the cells in this table will de-
pend upon the proportion 6 of overlap between clones
A and B. Since we assumed the probes were indepen-

. dent, for any 0 € [0, 1], the data in the fourfold table

follow a multinomial distribution with probabilities

B
0 1
A 0 poo(®) po1(6) q
1 r10(6) p1(®) 1-g¢g
q 1-¢g 1
In this case, (2) reduces to
poo(8) = q2~°, po1(0) = q(1—¢*~°),

p10® =q(1—q'°%), pu®) =1-29+4>"°.
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We see that, for all 9, po1(0) = p10(@). Hence, the
data in the fourfold table can be reduced without loss
of information to a trinomial (ng, n1, n2), where ng =
neo, n1 = no1 + n1o and ng = n11. In this case, the
component probabilities reduce to

po(®) = poo(8) = q27¢,

4 P1(6) = 2po1(6) = 29(1 - ¢'~°),
p2(6) = p11(0) =1 —2q + 47",

Furthermore, unless p = g = %, no further reduction
is possible without some loss of information. Let us
abuse notation a bit and call this trinomial vector D
as well.

We need to decide whether any two clones A and
B overlap based on their trinomial data D, and then
use those decisions to build contigs. Our approach
to deciding overlap and contig building is to con-
sider the proportion of overlap 8 to be a random
variable and compute the posterior odds of overlap
Pr6 > 0| D)/Pr(6 = 0 | D) for every pair of clones.

Now, to compute the posterior odds of overlap for
any pair of clones, we notice that

Pr@ > 0)

Pr(6>0|D) Pr(D|6>0)
“Pr@=0)’

Pr(¢=0|D) Pr(D|6=0)

and Pr(9 > 0)/Pr(@ = 0) is the same for all pairs of
clones. Therefore, we need only to compute the ratio
Pr(D | 6 > 0)/Pr(D | & = 0) for each pair of clones.
Also, since

Pr(D |6)dP(6 |6 >0)

Pr(D |6 > 0) = o

and (¢ | & > 0) ~ Uniform(0, 1], the computation re-
duces to determining the integrated likelihood ratio

_Pr(D|6>0) ('Pr(D|6=1)
® L) =5p1e=0) " J Pr(DIo=0)"

for each pair of clones. Recalling that D = (ng, n1, ng)
is distributed as a trinomial with probabilities given
by (4), for this simple case (5) becomes

1 2-—6"n0 1-69m
q 1-¢q
wor = [ ] H]
o L ¢2 1-¢q
1_2q+q2—9 nz
1-2g+42

(6)

3.2.2 Toward more realistic assumptions

The above description of the simple trinomial
model made a number of simplifying assumptions:
equal-length clones; equal intensities; and perfect
fragment size detection. We may need to relax some
of these assumptions to produce a usable method for
overlap detection. In this paper, we will confine our
attention to examining the effects on L(D) of relaxing
assumptions about equal intensities and perfect de-
tection.

Different intensities. So far we have assumed that
each probe is a stationary process with intensity A,
so that the probability of hitting a region of size L
is 1 — exp(—AL). However, the graph in Figure 7,
showing the proportion of fingerprints with positive
probes for each fragment size between 30 and 462
bases, indicates that this value is not constant over
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the range of available fragment sizes, ranging from
about 0.05 to about 0.25. This graph was produced by
analyzing over 10,000 fingerprints. The conspicuous
spikes in the graph are the fragment sizes associated
with the cloning vector, which should appear in every
fingerprint, and which we ignore.

Given an estimate for the A; associated with each
fragment size /, it is easy to incorporate differing in-
tensities in an expression for L(D). However, in this
case the comparison vector D described in Section 3.2
cannot be summarized as a trinomial. The expres-
sion for L(D) in (6) becomes a product of ratios over
each of the potential fragment sizes:

2-6 1-6
1—
0 yig=00y 4% yla=10voy "9
@ 2-6
1_2ql +q,

: —do
(d =11 1-2g +¢q;

where g, = exp(—A;).

Fragment size detection error. In reality, peak de-
tection (and hence fragment size detection) is far
from perfect. The first author performed an exper-
iment at LLNL to evaluate how often peaks were
missed. We wanted to estimate two sets of parame-
ters: m;o, the probability of mistakenly finding a frag-
ment of length ! when none was there, and 7;;, the
probability of correctly finding a fragment of length !
when one actually is there. For this experiment, the
values [ ran from 30 bases to 462 bases.

We obtained a convenience sample of 40 clones, cre-
ated for a prior quality analysis experiment. Each
clone had been fingerprinted from three to five times.
We first used a clustering algorithm to cluster peaks
from different samples from the same clone into a
collection of putative real peaks. This produced a
data set consisting of a 433 x 40 matrix of counts,
where each row corresponds to a fragment size from
30 to 462 bases, and each column corresponds to a
clone. We modeled the distribution of the count for
fragment length [ for clone j, denoted by Yj;, as

Binomial(n;, my), if clone j
contains no fragment of length /,

Binomial(n;, 7;1), if clone j
contains a fragment of length /,

8 Y~

where n; is the number of samples for clone ;.
One can reformulate the problem as a missing
data problem and estimate the {m,} and {m;1} us-
ing the EM algorithm (Dempster, Laird and Rubin,
1977). The complete data would consist of a vec-
tor X, Y) := (X1, Xo, ..., X40, Y1, Ya,..., Yy) for each
fragment length /. The elements of X are indepen-
dent, identically distributed Bernoulli random vari-
ables, where X ; takes on the value 1 whenever clone

J actually has a fragment of length /. The elements
of Y are independent of each other, and each (Y; | X)
is distributed as in (8).

With this setup, the complete data are distributed
as an exponential family, and we observe only Y.
Hence, the maximum likelihood estimates for our pa-
rameters are quite simple:

~ _ 2 YiX;

~ . =Zij(1—Xj)
Zj”jxj’

n 9
T T nA-X)

where we have, as usual, elided the /. To complete
the EM algorithm, we must compute expected val-
ues for the sufficient statistic (TY;X;, ¥n;X;), condi-
tional on Y and the current values for 7; and ng:

]E[;Y,Xj |Y] =Pr(Xx=1| Y);Y~,
E[;njxj |Y:| =Pr(x=1| Y);nj;

and Pr(X = 1|Y) can easily be computed by Bayes’
rule, given a value for the prior probability Pr(X = 1).

We used the histogram in Figure 7 to estimate
the prior probability of finding a fragment for any
length ! and estimated the probabilities {79, 7)1 | | =
30, ...,462} as described above. Figure 8 shows a
lowess-smoothed estimate of the error rates m;p and
1 — ;3. From this we clearly see that the false pos-
itive rate (o) is relatively constant over /—a little
higher for the shorter fragments, a little lower for the
bigger fragments. However, the false negative rate
(1 — ;1) begins to grow after about 300 bases. In any
event, it is clear that fragment size detection is far
from perfect.

Perhaps the simplest way to address the problem
of errors, other than ignoring it completely, is to con-
struct a model with the following:

o a fixed probability my of falsely calling a peak;

e a fixed probability 1 — 73 of dropping an exist-
ing peak;

e independent errors among different frag-
ment sizes.

In light of the graph in Figure 8, these assumptions
seem reasonable if we confine our attention to frag-
ments less than about 300-350 bases long. In this
situation, however, the expressions for L(D) are no
longer simple functions of ¢ as in (6) and (7).

The new component probabilities for the compar-
ison vector D depend upon the error probabilities
7w = (mg, 1), as well as 6 and, in the case of differing
intensities, the specific intensity A,. These compo-
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nent probabilities can be expressed as

po®.m) | (1-m)? (-70)(1-1) (A-mp)?
p10,m) | = | 2mo(1-mp) mo(l-m)+m1(1-mp) 2mi(1—my)
©) P26, 72 oMy 72
e
2q(1—q1'9)
1-2g+¢2-°

Here the dependence of g on [ in the case of differ-
ing intensities has been suppressed. Note that this
reduces to (4) when 7y = 1 — 7; = 0. Incorporating
errors produces the following general expression for
L(D | n):

L(D |x)
_/ pio@, ) pi(0, )
10  Jo 4200 P00, ) t1a=10vor Pr(0,7)
' pe®.m)

{l1d =11} pl2(0’ 77)

which reduces in the obvious way for the trino-
mial case.

To estimate 7y and 71, we could perform a similar
analysis on the 433 x 40 matrix described above, ex-
cept that we would confine our attention to fragment
sizes under 350 base pairs and insist that 7;; = my,
for / = 30,...,350 and k£ = 0, 1. However, such an
approach. would be limited by, among other things,
the adequacy of the clustering algorithm to identify
matching peaks. Instead, we used restriction data

generated during the mapping process to estimate
o and 7.

Once preliminary contigs have been assembled by
methods like those outlined above or in Section 3.3,
they can be verified by constructing a complete re-
striction map of the contig. To build a restriction
map of a contig, each clone in the contig is digested
by a restriction enzyme such as EcoRI. The resulting
digested clone is then electrophoresed on an ABI362
GeneScanner. As outlined by Lamerdin and Carrano
(1993), the ABI362 can resolve fragments from about
350 bases long to over 22,000 bases long with a rel-
ative error of less than 3%. This wide range and
accurate resolution ensures that, except for extraor-
dinary situations, virtually all of the fragments pro-
duced by a six-base enzyme such as EcoRI will be

resolved.

The result is a list of fragment sizes for each clone.
The clones and their fragments are then laid out and
permuted and so that identical fragments from over-
lapping clones are aligned vertically, as shown in
Figure 9. The resulting map provides an estimate
of the size of each clone in the contig, as well as the
amount of overlap between any two clones in the con-
tig. These maps complement our posterior odds data
about pairs of clones, and can help us evaluate our
assumptions and estimate unknown parameters. To
this end, we extracted data of the form {(8, no, n1, n2)}
for 680 overlapping clones taken from a restriction
map of 117 clones encompassing a region of chro-
mosome 19 known as the D19S11 region, and used
this data to compute maximum likelihood estimates
for .
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FiG. 9. Example of a restriction map.

The mean clone length was 40 kilobases. The 60
for each overlapping pair was determined by dividing
the amount of overlap by the mean clone length of all
clonal inserts in the map. To determine the fragment

.lengths we would use as probes, we chose fragment
lengths under 350 bases which had a hit probability
between 0.1 and 0.3, resulting in 240 probes with an
average hit probability of 0.18. Thus our data looked
like {(6;, nio, ni1, ni2) | i =1, ..., 680}, where

(ni01 nii1, ni2) ~ Trinomial(2401 PO(O:', JT), pl(oiv 7T),
p2(6i, )

and the p;(6;, 7) are defined as in (9). The resulting
maximum likelihood estimates were 7 ~ 0.03 and
71 ~ 0.05.

Evaluating L(D). We have described several alter-
native expressions for the integrated likelihood ratio

L(D) [equations (6), (7) and (10)]. We must evalu-
ate L(D) (3) times, where n is the size of the library.
In the case of chromosome 19, we have r ~ 10,000,
resulting in approximately 5 x 107 integrations, the
vast majority of which will be less than 1. To speed
up this evaluation process, LLNL screens all 5 x 107
pairs of clones by computing L(D) for the simple tri-
nomial model described in (6). Only those pairs with
sufficiently high value for this simple model are fur-
ther evaluated using the full model [equation (10)].
Even with this screening procedure, computing a
value for L(D) for all 5 x 107 pairs takes a weekend’s
worth of effort by more than 20 workstations.

3.3 Assembling Contigs

LLNL currently assembles clones into an initial
set of contigs by a sequential merging algorithm de-
signed by Thomas Slezak of the center’s Informatics
group. This algorithm is similar to a hierarchical
clustering algorithm known as single-linkage clus-
tering (Mardia, Kent and Bibby, 1979, page 370). Re-
cal] that, with merging hierarchical algorithms, one
begins with each clone belonging to its own individ-
ual cluster. At each step in the algorithm, one merges
the two clusters that are the most similar into a new,
larger cluster. Differences between algorithms boil
down to differences in what it means for two clusters:
to be similar. With single linkage clustering, the sim-
ilarity between cluster A and cluster B is defined to
be the maximum similarity between all pairs (a, b) of
clones, where a € A, b € B. The eventual amount of
clustering is defined by a similarity threshold: clus-
tering stops when no two clusters have a similarity
measure that exceeds that threshold.

LLNLs clustering algorithm uses log posterior
odds as a similarity measure between clones. As in
single-linkage clustering, merging stops when the log
posterior odds drops below a user-defined threshold.

As the log posterior odds and log L(D) differ only by a

constant, the algorithm actually uses log L(D) as its
similarity measure. However, Slezak has extended
the basic algorithm described above in a number of
ways to take advantage of the biological context in
which the clustering is taking place. Most important
of these extensions is the construction and mainte-
nance of minimal tiling paths for each cluster. These
minimal tiling paths provide a best guess of a min-
imal overlapping set of clones which span the clus-
ter. When two clusters are selected to be merged,
their respective tiling paths are examined. If the
tiling paths of the two clusters cannot be consistently
merged, then the merge of the two clusters is disal-
lowed. On the other hand, if the two tiling paths are
consistent, the two clusters are merged and the tiling
path for the combined cluster is computed from the
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tiling paths of the two merged clusters. Here, “con-
sistency” is defined in a very weak sense, involving a
heuristic measure of similarity between tiling path
members. When the clustering stops, the algorithm
has produced a set of contigs and a set of minimal
tiling paths for each contig.

To a first approximation, the algorithm can be
viewed as (3) applications of a Bayesian decision rule,
where for each pair of clones, we must decide whether
or not & > 0, based on fingerprint data; that is,
whenever the loss function is independent of actual
amount of overlap, the rule “Decide overlap when-
ever log L(D) > K” for an appropriate K is a Bayes
rule for that loss function. The actual value of K
will depend on the prior and the losses entailed by
incorrect decisions.

In the case of contig building, the critical issue is
to avoid so-called false joins. The consequences of
falsely asserting that two contigs of clones should be
joined into one contig are much more serious than
that of failing to join two contigs that actually over-
lap. Thus, to a first approximation, we can analyze
the decision rule in the classical sense of hypothesis
testing: examine the power of the test for a given
probability of falsely asserting that two clones over-
lap. In our case, we will be examining the behavior of
the decision rule over a range of alternatives 8 > 6,.
Consequently, the power we explore will be the power
with respect to the marginal distribution of D, aver-
aged over the range of alternatives. Asis traditional,
let us denote the probability of falsely deciding two
clones overlap by «, and likewise denote the probabil-
ity of falsely deciding that two clones do not overlap
by B. Note that all the.analyses that follow use L(D)
as defined by the simple trinomial model without er-
rors [equation (6)].

What value of ¢ is reasonable? Given a library of
n clones, we expect to have (j)a ~ (n%/2)a false pos-
itives. In LLNLs case, n ~ 104, so we expect around
5 x 107« false positives. The fact that the expected
number of false positives increases as the square of
the library size forces us to insist upon values for o
very much lower than one typically sees (say, on the
order of 10~¢). With this harsh reality in mind, let
us examine the performance of L(D).

First, we examine the effect of the probability of a
positive probe hit p on the power to detect any over-
lap: 6 = 0 versus 6 > 0. Fu, Timberlake and Arnold
(1992) analyzed hybridization approaches to over-
lap detection from a hypothesis-testing point of view
and showed results indicating that p in the range
(0.4, 0.6) was optimal for detecting overlap when the
test statistic was simply the total number of agree-
ments ngp + n11, which we denote by 7(D). In Figure
10, we compare the power of the integrated likelihood

ratio L(D) to that of T(D) for « = 1072, 103, 10~*
and 1075, In all cases, the number of probes
was 120.

Several features stand out. First, the integrated
likelihood ratio decision rule L(D) seems to outper-
form T (D) for any « and p. This is not unexpected,
since L(D) is the Bayes rule for any “all-or-nothing”
loss function. Also, the probability p that performs
the best for L(D) seems to be somewhat lower than
that for T (D): between 0.2 and 0.3. Finally, the two
approaches have equal power at p = 0.5. This is also
not unexpected, for in that situation the trinomial
probabilities in (4) reduce to binomial probabilities,
the number of matches nop +n11 becomes a sufficient
statistic and the two approaches are identical. To
summarize, then, if we use L(D) > K as our decision
rule, the optimal values for p seem to range between
about 0.2 and 0.3.

In the above paragraphs, we examined the power
to detect an overlap averaged over all § > 0. De-
tecting small overlaps may be too difficult. Now, let
us see how the procedure detects overlaps above a
certain amount: 8 = 0 versus 6 > 6.

In Figure 11, we see a form of ROC curves for de-
tecting overlaps of various sizes (6§ > 0,0.2,0.5,0.8)
and three probabilities of positive probe hits (p =
0.1, 0.3, 0.5). All curves are for 200 probes. Note that
these curves differ from traditional ROC curves only
in their vertical axis, which shows the probability of
a Type II error rather than power.

In addition, we note that these graphs show that
the power relationship between p and 6 is not
uniform. As our requirements loosen and the min-
imum amount of overlap we are required to detect
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grows larger, the higher probability probes become
much more informative.

3.4 Discussion

It is instructive to examine the observed versus
expected distribution of different statistics, assum-
ing various amounts of overlap. In Figure 12, we
see scatter plots of all 680 values of ng, n1, ng and
log L(D | ), plotted against the estimated amount of
overlap. Superimposed upon the scatter plots are the
expected 10, 50 and 90% percentiles for the statistics
under the trinomial model. These percentiles were
separately computed for overlaps of 5, 10, .. ., 40 kilo-
bases by simulating random draws of overlapping
clones, computing the appropriate trinomial prob-
abilities and then simulating a trinomial random
variable. For each amount of overlap, 500 clone
lengths were drawn as independent, identically dis-
tributed random values from a gamma distribution
with mean of 40 and variance of 25, subject only
to the condition that they exceeded the amount of
overlap.
 One feature is immediately apparent: the values
of all statistics are tremendously over-dispersed, rel-
ative to their expected distributions, even after com-
pensating for unequal clone lengths. In addition,
there is a slight bias upward in L(D). Some of
this may be due to nonindependence between frag-
ment sizes. We are continuing to investigate the ex-
act source of this unexpected overdispersion. The
D19S11 region is unusual in that it contains mul-
tiple copies of a repeated DNA sequence. Conse-
quently, more fragments will match than would oth-
erwise be the case. However, this slight bias is still
evident when other restriction maps are similarly
evaluated.
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Fic. 12. Observed versus expected for various statistics for the
D19811 region.

In addition to attempting to understand the prob-
lem with overdispersion, we are planning other
future analyses aimed at further optimizing the ap-
proach. For instance, it is clear that the completely
general calculation in (10) is quite involved. Is it
worth the effort, or will a simple trinomial model do
just as well? In addition, we are exploring likeli-
hood calculations for configurations involving more
than two clones (Nelson, Speed and Yu, 1994) to see
if they can improve the contig-building process.

4. OTHER TOPICS AND OPEN PROBLEMS

The field of physical mapping is evolving extraor-
dinarily rapidly. From less than a decade ago, when
the first tentative steps toward large-scale high reso-
lution physical mapping were being taken, map con-
struction techniques have progressed to the point
where recently Cohen, Chumakov and Weissenbach
(1993) published a coarse, “first-generation” phys-
ical map in YAC’s of the entire human genome.

- During that time, popular approaches to mapping

have evolved in response to advances in technology.
New cloning vectors such as YAC’s made cloning
larger fragments of DNA possible, and still more
recent vectors like PAC’s (Ioannou et al.,, 1994)
raise the prospect of cloning large inserts without
chimerism and deletion. New probing technologies
like PCR have made possible the reliable detection
and construction of unique segments of DNA from
extremely small samples. Recently, fluorescence in
situ hybridization (FISH) techniques (Lichter et al.,
1990; Lawrence, Singer and McNeil, 1990; Brandriff,
Gordon and Trask, 1991) have made possible the di-
rect microscopic analysis of ordering and distance
relationships among clones (Brandriff et al., 1994).
Such advances in technology bring with them new
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problems in experimental design and data analysis,
and new opportunities for statistics to play a role.
We now cite just a few examples.

High resolution mapping using FISH is a very re-
cent development. In this method, two or more flu-
orescent probes are hybridized to chromosomes, at a
particular stage in the cell cycle, in many different
cells. The distance (in microns) between the fluo-
rescent dots in each cell is measured. (Another use
of FISH involves mapping a probe to a chromoso-
mal band. In this case, only one probe is used, and
the chromosome is dyed to reveal its bands.) There
are many variations on this basic theme, involving
the number and type of different probes, the num-
ber of different fluorescent dyes and the stage in
the cell cycle. The data from a FISH experiment
consists of a series of distance measurements be-
tween two or more probes. Data from multiple ex-
periments involving multiple probes must be inte-
grated into a set of ordering relationships among the
probes. How should one model the randomness in
this data? Van den Engh, Sachs and Trask (1992)
have suggested that, under certain conditions, the
path between probes can be modeled as a Brownian
motion. However, other more recent data (Brandriff
et al., 1994) strongly suggests that this model does
not hold for very high resolution data. If statistical
approaches are to be used to plan mapping experi-
ments and to evaluate the resulting uncertainty in
FISH maps, good analytic models for the configura-
tion of chromosomes in nuclei must be developed.

More generally, methods are required which rec-
ognize the pervasiveness of experimental error and
can quantify the resulting imprecision in generated
maps. In all of the methods outlined in Section 2, sta-
tistical modeling is applied only to the simplest sit-
uation. Can one construct effective models that can
be used to evaluate more complex structures such
as contigs and entire maps? We would need realis-
tic models, good approximations to the likelihood for
such models and some method such as Markov chain
Monte Carlo to explore the posterior distribution of
contigs or maps, given the data. In ordinary hy-
‘bridization experiments, for instance, the error pro-
cesses are quite complex. Cosmids are typically ar-
rayed on filters, with perhaps 10° cosmids per filter.
The filters are exposed to a complicated experimen-
tal protocol involving the desired probe. The result
of the experiment is typically a gray-scale image of
the entire filter, with dark dots corresponding to cos-
mids which hybridized successfully to the probe, and
light (or nonexistent) dots otherwise. This image is
then usually reduced to a clone—probe incidence ma-
trix for use by map assembly routines. Error models
for the hybridization process would enable a suitable
map assembly program to take account of the qual-

ity of the data in constructing the map. In this way,
published maps could consist of not only the “best”
map, but annotations indicating weaknesses in the
map, as well as some indication of likely alternatives.
Such additional data would be useful to subsequent
researchers who need to know how much they can
depend on particular attributes of a published map.

In summary, methods for physical mapping have
progressed to the point where a variety of approaches
have been applied with varying degrees of success
to moderate-to-large regions of the human genome,
at a number of different resolutions. Future issues
will revolve not around feasibility, but rather design-
ing efficient and economical mapping techniques in
the face of a rapidly changing technology and emerg-
ing low resolution genomic maps. Future challenges
to statisticians will more likely focus on evaluating
and integrating different mapping alternatives, tai-
loring an approach to match the goals of the project
and the strengths and interests of the laboratory. In
addition to this experimental design role, statistics
is uniquely suited to provide needed analytic tech-
niques to integrate information from.various maps
as well as to provide map consumers with some mea-
sure of uncertainty about the maps they use.
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