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Ancestral Inference in Population Genetics

R. C. Griffiths and Simon Tavaré

Abstract. Mitochondrial DNA sequence variation is now being used to
study the history of our species. In this paper we discuss some aspects
of estimation and inference that arise in the study of such variability,
focusing in particular on the estimation of substitution rates and their
use in calibrating estimates of the time since the most recent common
ancestor of a sample of sequences.

Observed DNA sequence variation is generated by superimposing the ef-
fects of mutation on the ancestral tree of the sequences. For data of the
type studied here, this ancestral tree has to be modeled as a random pro-
cess. Superimposing the effects of mutation produces complicated sam-
pling distributions that form the basis of any statistical model for the data.
Using such distributions—for example, for maximum likelihood estima-
tion of rates—poses some difficult computational problems. We describe a
Monte Carlo method, a cousin of the popular “Markov chain Monte Carlo,”
that has proved very useful in addressing some of these issues.

Key words and phrases: Coalescent, ancestral inference, mitochondrial
Eve, infinitely-many-sites, mitochondrial DNA, Markov chain Monte

Carlo, Monte Carlo likelihoods.

1. INTRODUCTION

Recent advances in molecular biology have pro-
vided rapid and accurate methods for sequencing
DNA from many different organisms. This has lead
to the accumulation of enormous amounts of DNA
sequence information from many different species.
Comparison of homologous regions of DNA among
species has been used to infer the ancestral relation-
ships of the species, while comparison of sequence
information from individuals within a species can be
used to infer aspects of the evolutionary history of
that species. These latter studies have been most
prevalent in the context of human evolution, where
one particular molecule, mitochondrial DNA, has
‘had a profound influence. ’

Human mitochondrial DNA, first sequenced by An-
derson et al. (1981), is a circular double-stranded
molecule about 16,500 base pairs in length, contain-
ing genes that code for 13 proteins, 22 tRNA genes
and 2 rRNA genes. Mitochondria live outside the
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nucleus of cells, where they play a role in oxida-
tive phosphorylation and ATP synthesis. One part of
the molecule, the control region (sometimes referred
to as the D-loop), has received particular attention.
This region is about 1,100 base pairs in length and
contains promoters for transcription and the origin
of replication for one of the DNA strands.

As the mitochondrial molecule evolves, mutations
result in the substitution of one of the bases A, C, G
or T in the DNA sequence by another one. Transver-
sions, those changes between purines (A, G) and
pyrimidines (C, T), are less frequent than transitions,
the changes that occur between purines or between
pyrimidines.

It is known that base substitutions accumulate
extremely rapidly in mitochondrial DNA, occurring
at about 10 times the rate of substitutions in nu-
clear genes. The control region has an even higher
rate, perhaps an order of magnitude higher again.
This high mutation rate makes the control region a
useful molecule with which to study DNA variation
over relatively short time spans, because sequence
differences will be found among closely related in-
dividuals. In addition, mammalian mitochondria
are almost exclusively maternally inherited, which
makes these molecules ideal for studying the mater-
nal lineages in which they arise. This simple mode
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of inheritance means that recombination is essen-
tially absent, making inferences about molecular his-
tory somewhat simpler than in the case of nuclear
genes.

Mitochondrial sequence variation has been used to
study the history of our species. One such analysis
led Cann, Stoneking and Wilson (1987) to suggest
that all living mitochondria descend from a single
ancestor who lived approximately 200,000 years ago
in Africa. While the precise details of the hypothesis
have been the subject of much heated debate [sum-
marized, e.g., by Stoneking (1993)], there is general
agreement about the power of the methodology. An-
other example focusing on human history concerns
the origin of New World natives. Although it is gener-
ally believed that they have an Asian origin, there is
still much debate about the number, time and compo-
sition of migrations into the New World. See Schurr
et al. (1990), Torroni et al. (1992), Shields et al.
(1993) and Ward et al. (1993). Archaeological and
linguistic data have been used to study such migra-
tions, but molecular data provide an evolutionary
framework from which quantities such as times of
divergence can be inferred.

In this paper, we focus on mitochondrial data sam-
pled from a single North American Indian tribe, the
Nuu-Chah-Nulth from Vancouver Island. Based on
the archaeological record (cf. Dewhirst, 1978), it is
clear that there is remarkable cultural continuity
from earliest levels of occupation to the latest. This
implies not only that there was no significant im-
migration into the area by other groups, but that
the subsistence pattern and presumably the demo-
graphic size of the population has also remained
roughly constant for at least 8,000 years. Based on
the current size-of the population that was sampled,
there are approximately 600 women of childbearing
age in the traditional Nuu-Chah-Nulth population.

The original data, appearing in Ward et al. (1991),
comprised a sample of mtDNA sequences from 63 in-
dividuals. The sample approximates a random sam-
ple of individuals in the tribe, to the extent to which
this can be experimentally arranged. Each sequence
is the first 360 base pair segment of the control re-
gion, corresponding to positions 16,024—16,383 in the
human reference sequence of Anderson et al. (1981).
By convention, the characteristic attributes of the se-
quence data are defined in terms of the “light” strand.
With reference to the light strand, this region com-
prises 201 pyrimidine sites and 159 purine sites; 21
of the pyrimidine sites are variable (or segregating),
that is, not identical in all 63 sequences in the sam-
ple. In contrast, only five of the purine sites are vari-
able. There are 28 distinct DNA sequences (hereafter
called lineages) in the data. Because no transver-
sions are seen in these data each DNA site is binary,

having just two possible bases at that site. Further-
more, because there is no recombination each site in
the sample has the same ancestral history.

The purpose of this paper is to describe some
statistical approaches to understanding this history.
In particular, we would like to estimate the rate at
which substitutions accumulate in this region; to un-
cover evidence of population size fluctuations and
possibly geographic subdivision; and to infer some-
thing about ancestral features of the population such
as the distribution of the time to the most recent com-
mon ancestor of the sample.

In order to make statistical statements about these
issues, we have to model several features of the data.
First, and perhaps most important, we have to rec-
ognize that the sampling variation observed in the
sequences comes from highly dependent data. This
dependence comes from the fact that individuals in
the sample are correlated because of their common
ancestry. Second, this common ancestry is random
in at least two respects: different samples produce
different ancestries, each providing a snapshot of dif-
ferent parts of the ancestral tree linking all the in-
dividuals in the history of the population, and this
population tree is itself one (and our only) run of the
evolutionary process. Unfortunately, in population
studies such as these we cannot observe the underly-
ing ancestry of the sample, and so we must resort to a
stochastic description of it. The natural time scale of
the questions we study places the emphasis between
real-time pedigrees in the human genetics arena and
much longer time scale problems concerned with in-
ferring ancestral relationships among distantly di-
verged species. The basic techniques we use come
from population genetics.

Given a plausible model for the ancestral relation-
ships among the molecules in the sample, we then
have to superimpose the effects of mutation, the pro-
cess that is ultimately responsible for the variation
we see in the sample. This leads us to a statisti-

-cal description of the variability that can be used to

estimate population parameters, such as the substi-
tution rate, and for ancestral inference.

To keep the presentation simple, we focus on one
part of the data that seems to have a relatively
simple mutation structure. As discussed later, we
shall assume that substitutions at any nucleotide
position can occur only once in the ancestry of the
molecule. Hence we have eliminated lineages (i.e.,
distinct DNA sequences) in which substitutions are
observed to have occurred more than once. The re-
sulting subsample comprises 55 of the original 63
sequences, and 352 of the original 360 sites. Eight
of the pyrimidine segregating sites were removed,
resulting in a set of 18 segregating sites in all; 13 of
these sites are pyrimidines, and 5 are purines. These
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TABLE 1
Nucleotide position in control region*
1 1 2 2 3 1 1 1 1 1 2 2 2 2 3 3
Position o 9 5 9 4 8 9 2 4 6 6 9 3 6 7 7 1 3
6 0 1 6 4 8 1 4 9 2 6 4 3 7 1 5 9 9
Site 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 Lineage
fregs.
Lineage
—a | A G G A A T ¢ ¢ T C T T C T C T T C 2
b A G G A A T ¢ ¢ T T T T C€C T C T T C 2
c G A G G A c ¢ ¢ T ¢ T T C C C T T T 1
d G G A G A c ¢ ¢c¢c ¢c T T C C C T T C 3
e G G G A A T ¢ ¢ T ¢C T T C€C T C€C T T C 19
f G G G A G T ¢ ¢ T C T T ¢€ T C T T C 1
g G G G G A c ¢ ¢cT ¢ ¢ ¢ c¢c ¢ ¢ T T T 1
h G G G G A c ¢ccT CcC € ¢c T C C T T T 1
i G G G G A c ¢c ¢ T ¢ T T C C€C € C€C C T 4
j G G G G A c ¢c¢cT c T T C C € C T T 8
k G G G G A ¢c ¢ ¢cT c¢c T T C € € T T C 5
1 G G G G A c ¢c¢cT c T T €C C C T T T 4
m G G G G A c ¢ T T C T T C € C T T C 3
n G G G G A ¢c T ¢ T C T T C C€C T T T C 1

*Mitochondrial data from Ward et al. (1991, Figure 1). Variable purine and pyrimidine positions in the control region. Position 69
corresponds to position 16,092 in the human reference sequence published by Anderson et al. (1981).

data are given in Table 1, subdivided into sites con-
taining purines and pyrimidines. Each row of the
table represents a distinct DNA sequence, and the
frequencies of these lineages are given in the right-
most column of the table.

The layout of this paper is as follows. In Section 2
we give a description of the coalescent, a stochastic
model often used by population geneticists to approx-
imate the random ancestral relationships among a
sample of molecules. In Section 3, we discuss the
so-called infinitely-many-sites assumption that pro-
vides the simplest description of the molecular vari-
ability seen in a sample, and we show how these two
features can be combined to give sampling theory
which takes into account the effects of size varia-
tion in the ancestral populations. In Section 4, we
describe a useful computational device, a type of

Markov chain Monte Carlo method, for computing

these sampling distributions. In Section 5, we use
this method to estimate substitution rates in the re-
© gion. In Section 6, we study thé distribution of the
time to the most recent common ancestor of the sam-
ple for plausible values of the substitution rate, and
we infer something about the type of that ancestor.
The paper closes with a discussion in Section 7.

2. THE COALESCENT

We have noted that mitochondrial DNA is mater-
nally inherited and that mtDNA molecules therefore
provide a way to study the ancestry of the females in
which they arise. The first task is to model this ances-
try. Suppose then that we have taken a random sam-

ple of size n from the present generation of individu-
als. Think of the sample as females; every male in the
sample should be taken as a surrogate for his mother.
Assume for the moment that they were sampled from
a population (of females) that has been of approx-
imately constant size N for many generations into
the past. We impose reproductive neutrality by sup-
posing that the joint distribution of the number of (fe-
male) offspring born to each individual is exchange-
able, and identical in different generations. If we
let v denote the number of offspring born to a typi-
cal individual, then exchangeability guarantees that
Ev = 1; we denote the variance of v by o7. Notice
that in the ancestral description of the population,
many individuals in a given generation may share
a common parent, and the structure of the ancestral
process may therefore be very complicated. Kingman
(1982a) introduced the coalescent as a continuous-
time approximation, obtained in the limit of large
population size, to this ancestral process.

Kingman (1982b) also provided a very useful in-
variance principle that shows that essentially all the
exchangeable reproductive models can be approxi-
mated by this coalescent. Specifically, if time is mea-
sured in units of 0 ~2N generations, where 0 < 02 =
limN_N,oaf, < 00, then in the limit as N — oo the
ancestral process of the discrete model converges in
distribution to the coalescent. In the population ge-
netics literature it is common to assume that o2 = 1,
corresponding to the approximation of the celebrated
Wright-Fisher model.

The coalescent has a very simple structure. In
this continuous-time approximation, ancestral lines
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FiG. 1. Coalescent tree.

going backward in time coalesce when they have
a common ancestor. Note that coalescences occur
only between pairs of individuals. This process may
also be thought of as generating a binary tree, with
leaves representing the sample sequences and ver-
tices where ancestral lines coalesce. The root of the
tree is the most recent common ancestor (MRCA) of
the sample sequences. Figure 1 illustrates a coales-
cent tree for five individuals.

It remains to describe the stochastic structure of
this tree. This is made up of two parts: the time
scale that determines the rate at which coalescences
occur, and the topology that determines who is re-
lated to whom. Let A,(r) denote the number of dis-
tinct ancestors that the sample has ¢ time units back
in the past. The random process {A,(z),t > 0} is a
pure death process that moves from state k to state
k — 1 at rate k(k — 1)/2, and individuals are joined at
random when coalescences occur.

The time 7; during which the sample has j dis-
tinct ancestors has an exponential distribution with
parameter j(j — 1)/2 and times for different j are
independent. The time Tyrca until the common an-
cestor of the sample is

1 TMrea=T+ T, 1+ + 1z,
and hence

‘ 1
3] ETMgrca = 2(1 - ;) .

To allow for variable population sizes, suppose
that, relative to the population size N at time 0 (the
time of sampling), the size of the population time ¢
units ago is v(¢). In this approximation we are as-
suming that all the past population sizes have been
large. In the Wright—Fisher case, time is once more
measured in units of N generations. The topology of
the tree is just as before, but its time scale has to be
changed to account for the fluctuations in population

size. To do this, define

t
(3) A(t)=/ s 5.
0

v(s)’

The process {A,(t),t > 0} giving the number of dis-
tinct ancestors of the sample ¢ time units ago is then
anonhomogeneous death process whose distribution
can be defined by

@) A(t) = Aa(AD), 1>0.

If the population has been contracting as we look
back into the past, then v(f) < 1sothat A(s) > ¢, from
which it follows that A, (t) < A, (¢). Therefore, for any
k=1,...,nandforany: > 0, wehave]P’(Z,,(t) >k) <
P(A,(t) > k). This stochastic ordering corresponds to
the observation that it should take less time to find
a common ancestor in a small population than in a
large one.

3. SAMPLING DISTRIBUTIONS

Our first aim is to describe the process of substitu-
tions that have occurred in the North American In-
dian mitochondrial sequences discussed in Section 1.
To do this, we have to describe how mutations (in this
case, substitutions of one base for another) can be su-
perimposed on the ancestral coalescent tree. This is
made up of two parts: one that records where mu-
tations in the lineages occur; the second, what the
effect of each mutation is. It is usual to assume that
conditional on the ancestral tree, mutations occur at
the points of Poisson processes of rate /2, indepen-
dently in each branch of the tree. In terms of the
underlying discrete process, we are assuming that
a mutation occurs with probability u per sequence
per generation and that 6 = 2Nu, where N is the
size of the population from which the sample was

drawn.

The second part depends on the level of detail that
is to be assumed about the effects of each mutation.
Since we are just modeling substitutions, we need to
specify the probabilities with which a mutation in a
sequence changes a particular position, and the prob-
abilities with which that particular base is changed
to other bases. Despite the apparent simplicity of
the model, it covers cases in which rates at different
sites vary and so can be made to model the effects of
hot spots and invariable sites, those positions which
change very rapidly or not at all. More generally,
the model can allow for complicated interactions be-
tween substitutions at different positions along the
sequences and for recurrent mutations, those which
occur at a particular site more than once in the his-
tory of the molecules.
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In this article we describe the simplest possible
substitution process, the so-called infinitely-many-
sites model (cf. Watterson, 1975). In particular we as-
sume that when a substitution occurs in a sequence
it is at a location that has never seen a substitution
before. This model arises as an approximation to the
evolution of a sample of sequences of finite length,
when it is assumed that sites at which recurrent mu-
tations have occurred are rare and may be ignored.
In practice most sequence data exhibit recurrent mu-
tations, and we therefore have to select a subset of
sites and individuals to which the simpler model ap-
plies. We saw earlier that in the full mitochondrial
data set of 63 sequences, there are sites at which
recurrent mutation has occurred, and we described
how a reduced set (of 352 sites from 55 individu-
als) that is consistent with the infinitely-many-sites
model was chosen. The variable sites in this reduced
set of sequences are given in Table 1. In Section 5, we
try to assess how this data selection has influenced
our estimates of substitution rates.

What structure do these sites have? Because of
the infinitely-many-sites assumption, the pattern of
segregating sites tells us something about the muta-
tions that have occurred in the history of the sample.
Since mutations can occur only once at a given site,
there is an ancestral type and a mutant type at each
segregating site. For the moment assume we know
which is which, and label the ancestral type as 0 and
the mutant type as 1. To fix ideas, take each column
of the data in Table 1 and label the most commonly
occurring base as 0, the other as 1. The data can
therefore be thought of as a matrix of 0’s and 1’s, with
multiplicities for each distinct row (or lineage). This
matrix can be represented as a rooted tree by labeling
each distinct row by a sequence of mutations up to the
common ancestor. These mutations are the vertices

F1G. 2. Possible coalescent tree for mtDNA data.

in the tree. This rooted tree is a condensed descrip-
tion of the coalescent tree with its mutations, and it
has no time scale in it. It is convenient to label the
root 0, even though it does not represent a mutation
in the tree (in fact, it represents the first mutation
occurring to the ancestors of the MRCA). The data
sequences can also be thought of as the incidence
matrix of the mutations occurring in the paths to the
root. The information in the data is equivalent to the
information in such a condensed tree. Algorithms for
producing these trees are detailed in Griffiths (1987)
and Gusfield (1991), for example. Felsenstein (1982)
discusses where such trees arise in the systematics
literature.

Figures 2 and 3 illustrate the connection between
coalescent and condensed trees. Dots represent
where mutations have taken place, and each lin-
eage is represented by just a single line. For the
site labeling mentioned above, the data in Table 1
are equivalent to the condensed tree shown in Fig-
ure 3. Since there is no time scale in these condensed
trees, many topologically different coalescent trees
may produce the given condensed tree. The coales-
cent tree shown in Figure 2 is one of many which
produce the tree in Figure 3.

An alternative way of describing the condensed
trees is by listing the mutation paths of each lineage
backward in time to the root, together with the mul-
tiplicities of each lineage, as in Table 2. We think
of a tree (T, n) with 4 distinct sequences as being a
listing of these paths together with multiplicities of
typesn = (ny,...,nq).

Of course, in practice we never know which type
at a site is ancestral. All that can be deduced then
from the data is the number of segregating sites be-
tween each pair of sequences. In this case the data
is equivalent to an unrooted tree whose vertices rep-
resent distinct lineages and whose edges are labeled
by mutations between lineages. The ordering of mu-
tations between lineages is not unique.

FiG. 3. Rooted genealogical tree for mtDNA data.
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TABLE 2
Mutation paths for the rooted tree in Figure 1*
Lineage
Lineage frequencies
a 1 6 4 14 0 2
b 10 1 6 4 14 0 2
c 2 18 0 1
d 9 3 0 3
e 6 4 14 0 19
f 5 6 4 14 0 1
2 12 11 18 0 1
h 13 12 11 18 0 1
i 17 16 18 0 4
j 16 18 0 8
k 0 5
! 18 0 4
m 8 0 3
n 7 15 0 1

*Numbers correspond to site labels in Table 1.

The unrooted tree can be constructed from any
given rooted tree by reorganizing so that vertices
represent lineages (rather than mutations), and mu-
tations are along the edges. If the root lineage is not
in the sample, it does not appear in the unrooted tree.
The unrooted tree corresponding to the rooted tree
in Figure 3 is shown in Figure 4. All possible rooted
trees may be found from an unrooted tree by plac-
ing the root at a vertex or between mutations, then
reading off mutation paths between lineages and the
root. These paths are then paths from the leaves to
the root in the rooted tree whose vertex labels are
mutations. If there are s segregating sites, there will
be s + 1 rooted trees that correspond to it. Each of
these corresponds to a labeling of which type at each
site is ancestral and which is mutant. For our exam-
ple, there are 19 rooted trees that correspond to the
unrooted tree in Figure 4. Some of the internal ver-
tices in the unrooted tree may be inferred sequences,
ones that are not represented in the sample. Further
details about the construction of these trees may be
found in Griffiths and Tavaré (1994b). The infinitely-
many-sites assumption implies that either a rooted
tree or an unrooted tree can be constructed uniquely
from a collection of data sequences.

We have seen that the data may be represented as
an unrooted tree Q with d vertices representing dis-
tinct sequences appearing in the sample, these ver-
tices having multiplicitiesn = (ny, ..., ng). We would
like to be able to calculate the probability p°(Q, n) of
the data under these models for a variety of param-
eter values. [The zero superscript in p° is used so
that the notation agrees with that of Griffiths and
Tavaré (1994b).]2 This would provide a way to use
likelihood methods for parameter estimation and for
inference about such parameters. The sampling dis-
tribution p°(Q,n) can be found by first computing

Fi1G. 4. Unrooted genealogical tree for mtDNA data: e is pyrimi-
dine site, mis purine site.

the probability p°(T, n) of each of the s + 1 rooted
trees T corresponding to the given unrooted tree,
and summing:

(5) p’@Q m) =) p’T,m).
T

To calculate the rooted tree probabilities, we use the
branching structure of the model to derive a recur-
sion satisfied by these probabilities. The recursive
nature of the method stems from the fact that we can
look back up the coalescent tree to the most recent
event in the past (it is either a coalescence or a mu-
tation) and see what type of tree we must have had
at that event to produce the tree that represents the
data now. In the case of a constant-population-size
process [A(t) = t], this produces the recursion

n(n —1+6)p°%(T,n)

= Z n(ng — l)pO(T,n—ek)

king>2

© T2

k:ny =1, xy0 distinet,
8x; #X;Vj

+0 ) > i+

king=1, j:8xx=X,
xio distinct

p°(8xT,m)

- P (RiT, Re(m + €)).

In equation (6), e; is the jth unit vector, 8§ is a
shift operator which deletes the first coordinate of
a path, 8§;T deletes the first coordinate of the kth
path of T, R, T removes the kth path of T and “x;
distinct” means that xio # x;; for all (x1, ..., x,) and
(@i, j) # (k, 0). The boundary condition is p(71, e1) =
1. Defining the degree of (T, n) as {n — 1+ the num-
ber of vertices in T}, we note that the system (6) is
recursive in the degree of (7, n).

The first term in (6) corresponds to the most re-
cent event in the past being a coalescence [with
probability (n — 1)/(n — 1 + 6)], the second and
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third to the event being a mutation [with probability
8/(n — 1 + 0)]. If the last event was a mutation,
the lineage with this mutation is necessarily a sin-
gleton in the sample. In the second term, removing
the last mutation from a lineage leaves the lineage
still as a singleton in the data, but in the third term
the lineage with the mutation removed is identical
to another in the sample. For each singleton path in
T with a distinct first coordinate, there is exactly one
nonzero entry in the second and third terms.

A more detailed discussion and derivation appears
in Griffiths and Tavaré (1994b). In the case of
variable population size the recursion is no longer
discrete, but rather has the form of an integro-
recurrence (see Griffiths and Tavaré, 1994c).

4. A MARKOV CHAIN MONTE CARLO METHOD

For samples of the size we have here, computing
probabilities like p°(Q, n) by solving recursions like
(6) directly is computationally prohibitive. Instead
we adopt a Monte Carlo approach that uses the re-
cursion to construct a Markov chain in such a way
that the probability of interest can be represented
as the expected value of a functional along a sample
path of this chain.

In general terms, the method is as follows. Any
recursion like (6) can be written in the form

(D qx) =Y rx g+ Y r&x,»9@), xe€s3,

yeA yeB

where A denotes the set of x values for which g(x)
is known; B denotes the set where it is unknown;
and the kernel r(x, y) > 0. Let p(x, y) be the transi-
tion matrix of a Markov chain X on A U B satisfying
p(x,y) > 0 whenever r(x, y) > 0, with the property
that X visits A with probability 1 starting from any
x € B. Define

rx,y)

, x,yeAUB.
p(x,y)

h(x,y) =

, Iterating the equation in (7), we see that, for x € B,

q(x) =) p(x, h(x, »)q ()

yeA

+ Y > px, PG, YR, YD1, Y)()

y1€ByeA

+ 3 3 3 px, y0)pGL ¥2)PG2, YR, Y1)

y1€By2€eBye A
cB(y1, y2)h(y2, Y)g(y) +---.

It follows that

® ) =EqX) [[hX-1 X)),

ji=1

where 7 is the time when A is first visited by X. While
there is some flexibility in the choice of p(x, y), it is
convenient to take

Py ="2 fw= T rwo),
(9) ye AUB
h(x,y) = f(x).

Multiple independent simulations of the Markov
chain X starting from X(0) = x may then be used
to provide estimates of g(x). This method is indeed a
type of Markov chain Monte Carlo method, albeit of
a rather different type than its better-known cousin.

For the case of (6), Griffiths and Tavaré (1994b)
show how to construct the appropriate Markov chain
(X, ! = 0,1,2,...}. The chain has a tree state
space, with states x = (7, n), and makes transitions
as follows:

(T,n —ey),
(10) (T,n) —» { (8«T,n),
(ReT, R+ €))),
n—1
fTm)@m+6-1)
with probability T (i I
O(n;+1)

f(T,mnn+6-1)’

fork=1,2,...,d. The scaling factor is

(nk—l) Om
nn+6-1)’

where m is defined by

m = |{k: ni = 1, xidistinct, Sx; # ijj}[

+ > > i+ 1.

king=1, x;odistinct j:Sx=x,

The X process starts from an initial tree (7, n) and
runs backward in time until the time  at which there
is a tree (71, e;) corresponding to a single root se-
quence. The process always moves toward (71, e1),
in the sense that the degree decreases by 1 at each
move. The representation of p°(T, n) follows from (8)
and (9) in the form

7—1
1D p°T,m) = E(T,m[ [1s((ro, n(z)))],

=0

where X (1) = (T (), n(l)) is the tree at time /.
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Equation (11) may be used to produce an estimate
of p°(T, n) by simulating g independent copies of the
tree process {X(I), l = 0,1,...} and computing for
each run j the value F; of the functional along the
sample path:

(12) Fj= [ﬁ f((T(z),n(l)))].

The average of the F; over all g runs is then an un-
biased estimator of p°(T, n). An estimate of p°(Q, n)
can then be found by summing over all rooted trees.
The technique can be modified by changing the stop-
ping time 7. Stopping the chain earlier and comput-
ing the probability p°(T,n) at that point explicitly
results in both time and variance reduction (see Grif-
fiths and Tavaré, 1994b).

The method can be modified by using importance
sampling to compute p°(T,n) for fixed (T,n) as a
function of 9, from a single realization of the pro-
cess {X(), ! = 0,1,...}. This produces a Monte
Carlo approximant to the likelihood surface of in-
terest. We proceed as follows: simulate the chain
{(Xxi),!=0,1,...} with a particular value 6 as pa-
rameter, and obtain the likelihood surface for other
values of § using the representation

pY(T, n)
EY. ,,)[I‘[ ((rw,n0),

(T +1),n( + 1)))],

(13)

where (T(1),n(l)) is the ‘tree at time I/, and A is de-
fined by

+6—1
h((T,m), (T,n— &) = fo (T, n>———2 +9°_ 1

and
. , 0(n+90—1)
h((T,m), (T, n))) = fo,(T', 1 m

for thé second type of transition in (10), when
(T, n’) = (8 T,n), and for the third type, when
(T/v n’) = (g?'kT’ Rk(n + ej))'

The analogs of this scheme in the variable popu-
lation size case can be found in Griffiths and Tavaré
(1994c¢). As noted in the Introduction, the population
size of the Nuu-Chah-Nulth is not thought to have
fluctuated widely over the last 8,000 years, but the
picture before that is less clear. With this in mind,
we assume a constant population size in the analysis
that follows. Further discussion of this point appears
in Section 7.

5. ESTIMATING SUBSTITUTION RATES

The first issue we address is how to estimate and
compare rates of substitution across the molecule. In
particular, we ask whether the rates of substitution
per site are the same in the purine and the pyrimi-
dine regions.

We begin by describing how the infinitely-many-
sites model approximates the evolution of sequences
of finite length. Suppose then that the sequences
have my pyrimidine sites and mg purine sites, in a
total length of m = my + mp sites. In our data, mg =
159 and my = 193. Let uz and uy be the per base
purine and pyrimidine substitution rates; uz and uy
measure the rate at which substitutions that change
a site occur in the purine and pyrimidine regions,
respectively. The overall substitution rate is

0 =mpug+ myuy,

and the marginal rates are

(14) Or = mgig, Oy =mypuy,

respectively. The infinitely-many-sites process with
multiple rates arises by supposing that mz and my
tend to infinity in such a way that 6z and 6y remain
fixed. There are two equivalent ways in which the re-
sulting process can be described. Suppose we have a
realization of a coalescent tree with mutations super-
imposed on it. One description is to imagine muta-
tions occurring according to the Poisson mechanism
with rate 6/2 in each branch, and then independently
to label them a Y-site substitution with probability
py = Oy /6 or an R-site substitution with probability
pr = Br/6. The other is that mutations at the two
types of site are laid down according to independent
Poisson processes with rates 6y /2 and 6z/2, respec-
tively. In this model, because of the homogeneous
Poisson process along the edges of the tree, it is not
important whether mutations are laid down in a for-
ward or backward direction. A more complex mu-
tation process, where mutations are laid down in a
Markov scheme from the MRCA type forward in time
is considered in Griffiths and Tavaré (1994a).

In order to assess whether the per site substitu-
tion rates are equal, notice that, conditional on the
total number of segregating sites (say, s), the num-
ber that occur in the R-positions is binomially dis-
tributed with parameters s and pg. When uz = uy,
pr reduces to pr = mg/m = 159/352 = 0.45, and the
hypothesis of equal rates can be tested in the obvious
way. For our data, the observed number of segregat-
ing sites is s = 18, and five of those occurred in the
R-positions. The probability of seeing five or fewer
successes is approximately 0.11, suggesting no differ-
ences in the rates at the two types of site. Indeed, the
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same method can be used to find a very rough confi-
dence interval for the ratio of the rates in the region.
A 95% confidence interval for py is (0.07, 0.48), which
translates into a 95% confidence interval for uy/ur
of (0.88, 10.81). We see that very wide fluctuations
in rates are not inconsistent with these data.

We can use the Monte Carlo likelihood method de-
scribed in Section 4 to estimate the overall substitu-
tion rate # by maximum likelihood. For the unrooted
tree in Figure 4, we ran g = 200,000 repetitions of
the surface simulation algorithm to find the proba-
bility of each of the 19 rooted trees, summed these to
find the probability of the unrooted tree and from this
obtained an MLE of & = 4.8. The standard deviation
(sd) can be estimated heuristically from the likeli-
hood curve by first computing the second derivative
at the maximum. This gave a value of sd(9) ~ 1.48.
As is typical in this field, the rate cannot be esti-
mated very precisely (although in principle it can be
estimated consistently as the sample size increases).

In estimating 6 this way, we are not assuming any-
thing about the type of each site. We could modify
our algorithm to estimate simultaneously the over-
all rate 6 and the relative rate in the R and Y classes.
We do not pursue this here. Rather, we see what in-
formation can be found by analyzing the purine and
pyrimidine sites separately, as though they were the
whole data set. The unrooted subtrees can be found
from the unrooted tree in Figure 4. Mutations la-
beled with = symbols correspond to the purine sites,
those labeled with e symbols to pyrimidine sites. The
frequencies of each subset of vertices can be calcu-
lated from the data in Table 1. Corresponding to the
purine sites there are six rooted trees, and to the
pyrimidine sites there are 14 rooted trees. Using the
algorithm in (13) once more, we estimated the rates
asOg = 1.22+0.61 and 9y = 3.31 +1.14, the plus-or-
minus figure being the estimated standard deviation.

Since each mutation produces a new segregating
site, the number of segregating sites NR among the
purines and N¥ among pyrimidines in a sample of
n sequences is precisely the number of mutations of
each type, so that
(15) ENY =6yH,, ENR =6xH,,
where H, = 14+ 1/2+---+ 1/(n — 1). We can use
(15) to construct moment estlmators 6, g and 6y of
the rates 9, 6z and 6y, respectlvely (cf Watterson,
1975). These estimates satlsfy 6 = 0R + 0y For our
data, we obtain 8 = 3.93,0; = 1.09 and 6y = 2.84.
The situation is very similar for the MLE, where we
found § = 4.76, 65 = 1.22 and 6y = 3.31.

Lundstrom, Tavaré and Ward (1992) used the full
data set of 63 sequences and 360 sites to estimate
rates, assuming a model with finitely many sites and

uniform rates across each of the regions. They as-
sumed that, conditional on the coalescent tree, sub-
stitutions occur independently at each site, with rate
matrix R given by R = (v/2s)(P — I). Here P is a
matrix with identical rows (mo, 1), 7o being the sta-
tionary frequency of the base labeled 0, and m; the
stationary frequency of the other base. The overall
rate at which substitutions that change the type at
a site occur is then u = 2momv/s. For large s this
process is approximated by the infinitely-many-sites
model with rate 0 given by 6 = su, just as in (14).
This correspondence allows us to compare estimates
across different models using different parts of the
data. For the pyrimidine region, Lundstrom, Tavaré
and Ward estimated uy = 0.05 x 0.48 = 0.024, and
this gives the estimate 6y ~ 193 x 0.024 = 4.63.
This estimate is in good agreement with the rate Oy
found here for the infinitely-many-sites model. For
the purine region, Lundstrom, Tavaré and Ward es-
timated ur = 0.02 x 0.42 =~ 0.008, so that 6z ~
159 x 0.008 = 1.27, once more in good agreement
with the estimate 6z = 1.22 found here. We conclude
that our data selection method has had little influ-
ence on estimates of substitution rates in the region.
Estimating rates is an important problem because
they are used to calibrate evolutionary clocks, and
so to infer properties of the ancestry of the sample.
Some examples are discussed in the next section.

6. ANCESTRAL INFERENCE

We discuss two examples of ancestral inference:
identifying the ancestral lineage, and finding the con-
ditional distribution of the time to the most recent
common ancestor given the observed data (Q, n).
The first question can be addressed by comparing
the likelihoods (at the MLE ) of the different rooted
trees that correspond to the unrooted tree in Figure 4.
Each of these corresponds to a particular labeling of
types in each site as ancestral or mutant. The p°
probabilities of the 19 trees vary between 1.0 x 10~19
and 1.2 x 1025, The most likely is the one given
in Table 2, which has the root at lineage k. This
tree corresponds to the most frequent base at each
site being labeled as ancestral. The next four most
likely trees have likelihoods of 3.6 x 10720, 3.5x 10720,
1.1 x 10720 and 9.1 x 1021, These correspond to the
root being placed between the mutations labeled 4
and 14, between 4 and 6, at lineage / and at lineage e
in Figure 4, respectively. The relative likelihood that
the root is at one of these locations, given the data, is
about 97%. Looking at the topology of Figure 4, we
find quite a tight concentration for the possible roots.

The second issue concerns inferences about the dis-
tribution of the time to the MRCA of the sample. In
the absence of any data at all, Tmgrca has the distri-
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bution given in (1). For a sample of size n = 55 this
distribution has mean and standard deviation given
by

(16) [E(Tmgrca) = 1.96, sd(Tugrca) = 1.08.

How is this distribution changed when we condition
on the data? To assess this, we calculate the condi-

tional distribution P(Turca < w | (Q, n)). We can use
the Monte Carlo approach to address this, because

P(Turea < w, (Q, m))

aratio of probabilities each of which satisfies a recur-
sion. The denominator is p°(Q, n), which we know
how to compute already. It remains to calculate the
numerator. First suppose that we want to find the
analogous probability for a rooted tree (7, n). To do
this we modify the Markov chain scheme in Section 4
by keeping a more detailed description of the sample
path. At each move of the chain X (1) = (T (1), n(})),
record the time taken for that move. If the chain is
currently in a state which corresponds to a sample of
size m, then the time to the next move is exponential
with parameter m(m + 6 — 1)/2; these waiting times
can readily be simulated. For the jth of ¢ simulated
trajectories, we have to do the following:

1. watch the chain back until the state (71, e1) is
reached, and compute the functional

k-1
Fi(1) =[] (T, nw),
1=0

where k is the number of steps until (71, e;) is
hit;
2. record the total time 7;(T) that the run lasts.

An estimator of P(Tmrca < w, (T, n)) is then
1 14
=Y F(D1(i(T) < w),
g

and P(Tyrca < w, (Q, n)) can be estimated by sum-
ming these estimators over all the rooted trees 7. An
estimator of the conditional distribution function in
(17) is therefore

S X8y B (5T < w)
ZT Z?:l F;(T) .
If 7j) denotes the jth smallest of all the 7;(7), and

Fjy is the corresponding F;(T), then this empirical
distribution has jumps of height F; /3, F at time

(18)

TABLE 3
Summary statistics of time to MRCA

Data 6 E(Turca | data) sd(Tymgca | data)
None (16) 1.96 1.08
R, Y-sites 3.3 1.40 0.55
R, Y-sites 48(=0) 1.20 0.39
R, Y-sites 6.3 0.96 0.12
Y-sites 3.3(=6) 1.26 0.41
R-sites 1.2 (=6) 1.54 0.65

17(j). In practice, these distribution functions are ap-
proximated by binning the observations in the usual
way.

As summary statistics of these conditional distri-
butions, we record in Table 3 the conditional mean
E(Tmrea | (Q, n)) and the conditional standard de-
viation sd(Zmrca | (Q, n)) for comparison with the
unconditional figures given in (16). We see that
the mean time to the MRCA is substantially re-
duced when information in the data is taken into ac-
count. For the full data set comprising both purine
and pyrimidine sites this amounts to a reduction of
about 40%.

As noted earlier, this population appears to
have been relatively constant in size for the last
6,000 years, prompting us to assume a constant-
population-size model in our analysis. To translate
our estimates of ancestral times into real time units
therefore requires an estimate of the current popula-
tion size N of childbearing age. Ward et al. (1991) es-
timate this size at between 400 and 800 individuals;
we use a value of N = 600 in what follows. If we take
a generation to be 20 years, then the unconditional
mean time corresponds to 1.96 x 600 x 20 ~ 23, 500
years. Conditional on the sample configuration, this
mean is reduced to 14,400 years, a figure in remark-
ably good agreement with the estimate of 13,000
years given by Ward et al. (1993) using an entirely
different approach.

Notice also that the standard deviation is substan-
tially reduced, reflecting the fact that with more in-
formation the conditional distribution of the time to
the MRCA should be much more concentrated about
its mean (although this distribution will have non-
zero variance even for an infinitely large sample).

The reduction in conditional mean time to the
MRCA given the data, compared to the unconditional
mean time, is not a general feature for all data sets.
Intuitively, for a fixed value of 8, data showing more
(less) segregating sites than the expected number
should have increased (decreased) expected condi-
tional time given the data. This may not be precisely
true, because the expectations depend on the detailed
structure of the data.
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conditional distribution (6 = 6.3).

To assess the variability in these estimates that
arises from uncertainty in our estimates of 6, we cal-
culated the corresponding quantities for two other
plausible values of 6, namely, 3.3 and 6.3 (these be-
ing 6+1 sd). These results are also given in Table 3.
Qualitatively, we see the same sort of behavior: the
conditional mean is much reduced, as is the standard
deviation. As should be expected, the mean time to
the MRCA will be smaller the larger the assumed
value of the clock rate, 0.

Since there is no recombination in these molecules,
different regions of the molecule have shared an iden-
tical evolutionary history. In particular, each of the
purine and pyrimidine regions provides a separate
estimate of the distribution of the time to the MRCA.
It is therefore of interest to know whether these re-
gions give us similar ancestral signals. In Table 3,
we give summary statistics for the analysis based on
just the purine sites (R), and the pyrimidine sites (Y).
We see that, while the conditional means get closer to
their unconditional values, the two regions give es-
timates for the time to the MRCA comparable with
that for the region as a whole.

We turn now to the distribution of the time to the
MRCA. In Figure 5 we plot the empirical conditional
distribution function (df) of Tmrca given the data, ob-
tained from (18), for values of # bracketing the MLE.
This is compared to the distribution of the uncondi-
tional time determined by (1). The estimated con-
ditional df for & = 4.8, the MLE, lies between the
two conditional df’s shown in Figure 5. The marked
reduction in variance is clearly shown in the very

steep slope of the df’s relative to the unconditional
df. As might be expected, the conditional times are
stochastically ordered in 6.

7. DISCUSSION

The methods described in this paper should be
taken as illustrative of techniques currently being
developed to study DNA sequence variation within
populations. Our approach derives directly from
the recognition of the central importance of ances-
try encapsulated in Kingman’s coalescent process.
Accessible reviews about the coalescent appear in
Hudson (1991) and Tavaré (1994). This way of think-
ing about population genetic data has revolutionized
statistical approaches to the study of such variation.
We have exploited this approach to derive sampling
distributions for data, from which estimates of ge-
netic parameters such as substitution rates might
be found and from which hypotheses about the pop-
ulations under study might be tested.

Our analysis of the mitochondrial sequence data
from the Nuu-Chah-Nulth should be regarded as ex-
ploratory. There are several features that need fur-
ther investigation, among them a deeper study of
the issues of population expansion, admixture and
migration. Assumptions of demographic stability
are tenuous and, with the exception of humans, es-
sentially untestable. Because of extensive archae-
ological data from many parts of the world, we do
have some information on the demographic history
of many human populations, and we also have some
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record of whether extensive migration has occurred
in the past. The archaeological data for the Nuu-
Chah-Nulth happens to be extensive, and it allows
us to identify something about the population at the
time the area was settled. It is thought that the
Nuu-Chah-Nulth population arose from a split of a
much larger population at about that time. With Dr.
Ryk Ward, we are currently studying the sort of ef-
fect such a bottleneck would have on estimates of
the distribution of the time to the MRCA and thus
on inferences about the colonization of the Americas.
Monte Carlo methods for inference in the case of vari-
able population size are described in Griffiths and
Tavaré (1994c). In addition, we based our analysis
on a simplified picture of the evolution of mitochon-
drial DNA molecules. Our data selection involved
choosing a subset of sites and individuals compati-
ble with the simple infinitely-many-sites model, and
we saw that estimates of substitution rates obtained
from this approach agree closely with analyses based
on more detailed models. Our choice of the infinitely-
many-sites model is based in part on computational
expediency, and the belief that recurrent mutation
has not occurred at many sites. Analogous methods
have been devised for models in which recurrent mu-
tation can occur (see Griffiths and Tavaré, 1994a) but
these are much more computer-intensive and cannot
(at the time of writing) handle sequences of the size
described here.

Our statistical approach is based on Monte Carlo
methods for solving certain sorts of recursion or
integro-recurrence equations that derive from the co-
alescent. Thus far, population geneticists have em-
phasized the study of simpler summary statistics of
the data, such as the number of segregating sites or
the distribution of pairwise differences (obtained by
comparing pairs of sequences and recording the num-
ber of pairs with 0, 1, ... differences), and have used
these summaries for estimation and inference. While
this represents an important first step in a new field,
it fails to make full use of the information in the data.
The trade-off is that the computational complexity
of the analysis can increase substantially. Given the
time taken to collect extensive collections of sequence
data, it seems reasonable to explore statistical tech-
niques that make fuller use of these hard-won data.

Computer-intensive likelihood methods have been
used to calculate probabilities on complex pedigrees
arising in human genetics. Cannings, Thompson and
Skolnick (1978) describe the structure of the models,
and Thompson and Guo (1991) and Thompson (1994)
show how Markov chain Monte Carlo (MCMC) meth-
ods can be applied. The techniques we use are rather
different, in that we generate independent runs of a
process of random length as opposed to the depen-
dent observations on a single ergodic process typi-

cal of MCMC. The techniques have in common the
fact that they are in principle quite old, MCMC dat-
ing back to Metropolis et al. (1953) and Hastings
(1970), and the present method at least to Forsythe
and Leibler (1950) in the context of solving linear
equations. See Halton (1970) for further examples.

As sequence data become more prevalent, popula-
tion geneticists will be able to refine their analyses
by studying the joint evolution of several different
genomic regions at once. While this should give a
more comprehensive picture of the evolutionary his-
tory of our species, the analysis will be much more
complicated. This derives in part from the fact that
recombination between different regions of nuclear
genes is very common, and recombination has the ef-
fect of scrambling evolutionary history. A second dif-
ficulty concerns another statistical issue, that of sam-
pling strategy. In our look at the Nuu-Chah-Nulth,
we supposed that the sample was indeed “random.”
In practice this is of course very difficult to arrange.
The sensitivity of estimates and inferences to non-
random sampling certainly needs to be quantified.
Finally, much of the population genetics theory cur-
rently used to analyze molecular variability is based
on rather simplified, selectively neutral, models of
reproduction. These assumptions, embodied in this
paper in the coalescent, warrant further study with
a view to assessing how well conclusions based on
them might apply to human populations. The devel-
opment of statistical approaches to such issues will
be an important part of population genetics for many
years to come.
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