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A BAYESIAN BOOTSTRAP FOR A FINITE POPULATION?

By ALBERT Y. Lo
State University of New York at Buffalo

A Bayesian bootstrap for a finite population is introduced; its small-sam-
ple distributional properties are discussed and compared with those of the
frequentist bootstrap for a finite population. It is also shown that the two are
first-order asymptotically equivalent.

1. Introduction. The bootstrap method for a finite population (FPB, i.e.,
finite population bootstrap) was suggested by Gross (1980). Bickel and Freedman
(1984) and Chao and Lo (1986) gave a first-order asymptotic justification for the
FPB mean. The FPB is derived from a frequentist viewpoint and, for a large
population size, the FPB becomes the frequentist bootstrap of Efron (1979).

The frequentist bootstrap of Efron (1979) has a Bayesian analogue called the
Bayesian bootstrap [Rubin (1981)]. The operational and small-sample similari-
ties between the bootstrap and the Bayesian bootstrap are well known [Rubin
(1981) and Efron (1982)]. Recently, Lo (1987) showed that the Bayesian bootstrap
and the frequentist bootstrap are first-order asymptotically equivalent.

The question is then: Is there a Bayesian analogue (FPBB, i.e,, finite popula-
tion Bayesian bootstrap) to the frequentist FPB? This paper is the result of an
investigation into this question. The answer is affirmative. A FPBB can be
defined in terms of Pélya’s urn scheme [Feller (1971)], by simulating a posterior
distribution with respect to a “flat” Dirichlet-multinomial prior [Lo (1986)]; this
definition of a FPBB is analogous to Rubin’s definition of the infinite Bayesian
bootstrap in terms of gaps of uniform random variables that are used to simulate
a posterior distribution with respect to a “flat” Dirichlet process prior [Ferguson
(1973)]. We also find that the FPBB and the FPB share similar operational
characteristics and small-sample properties, and that for a large population size
the FPBB reduces to the Bayesian bootstrap. In addition, a first-order asymp-
totic justification of the FPBB and a first-order asymptotic equivalence of the
FPBB and FPB are provided.

In Section 2, we define the FPBB in terms of the urn of observations. The
“Bayesianess” of the FPBB is illustrated in Section 3. In the same section we
also show that the FPBB reduces to the Bayesian bootstrap for a large popula-
tion size. The FPBB mean and variance are then computed and compared with
the FPB mean and variance. Section 4 shows that, given a sample of size n from
the population, the FPBB distribution of the standardized unknown empirical
distribution of the finite population converges weakly to a Brownian bridge as
the sample size tends to oo, as long as the sample empirical distribution
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converges to a distribution function. The convergence of the FPBB distribution
of the population mean (and/or any continuous functional of the population
empirical distribution) follows as a corollary. Section 5 discusses the effect of
stratification.

2. The FPB and the FPBB. Let x = {x,,..., x,} be a given sample from a
finite population {y,,..., yy}, n < N — 1. (Here we interpret a sample as data
obtained either from sampling with replacement, or as a realization of the initial
sequence of an exchangeable sequence {y,,..., yy}; the latter case implies that
given the y’s, x is a simple random sample from the y’s [Scott (1971)].) Denote
the sample empirical distribution function, putting mass 1/n on each of the x’s,
by F,, and the population empirical distribution, putting mass 1/N on each of
the y’s, by Hy. The y’s are elements of a g-dimensional Euclidean space R;
denote the Borel o-field on R by #. Consider a functional 6(u, v) of interest; u
and v are probabilities defined on %. A frequentist is interested in the sampling
distribution £{0(F,, Hy)|Hy}. The frequentist FPB method of Gross is to create
a FPB population of N objects based on duplicating the x’s, to sample without
replacement from this bootstrap population to obtain x},..., x* (called a FPB
sample; denote the empirical distribution of the x*’s by F,*), and to replace F,
and Hy in £{6(F,, Hy)|Hy} by F}* and F,, respectively, to obtain a FPB
distribution z{0(F*, F,)|F,}, which approximates the sampling distribution
Z{0(F,, Hy)|Hy).

The success of the FPB method is based on the creation of the FPB popula-
tion from which the FPB sample is dawn. If the population size N is an integer
multiple of the sample size n (i.e., N = nk), the FPB population can be easily
constructed by duplicating the sample {x,,..., x,} & times. In general, there are
two integer multiples of n closest to N, ie., & and &+ 1, with N =nk + r,
where 0 < r < n. Each integer multiple generates a preliminary FPB population
as before. The FPB sample is obtained by sampling from a mixture of the two
with mixing weights 8 and 1 — B, respectively, where

(2.1) B=[1-r/n]l1-r/(N-1)].

Whereas a frequentist is interested in Z{0(F,, Hy)/Hy}, a Bayesian con-
structs an exchangeable prior on the population variables y’s and is interested in
the posterior distribution £{6(Hy, F,)|F,} [Ericson (1969)]. The FPBB method
is the simulation of a random distribution function H}*,, to replace Hy in
Z{6(Hy, F,)|E,} by H,}*, to obtain a FPBB distribution £{8(H,},, F,)|F,}, which
approximates the posterior distribution £{6( Hy, F,)|F,}.

The FPBB method is based on a generalization of Polya’s urn scheme [Feller
(1971), page 210]. Suppose an urn has a finite number of items. Sample from the
urn successively according to the following rule: Select an element from the urn
at random; it is replaced and, moreover, another element of the same kind is
added to the urn. Call a sample of size m obtained from this experiment a Pélya
sample of size m. Denote an urn containing z,,..., 2, by urn {2,,..., 2,}. The
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FPBB method can be described as follows:

Step 1: Take a Polya sample of size N —n (=m > 1),
denoted by y*, y*,..., 3%, from the urn {x,,..., x,}.

Step 2: Let H* = [mG} + nF,]/N, where G, is the
empirical distribution of ¥, ¥%*,..., 3¥. Evaluate 6=
6(H},, F,).

Step 3: Repeat the previous steps a large number of times,
say B times, to obtain G, ..., G}z and hence also 6, ..., 0.

Step 4: The empirical distribution of 6,,..., 5 approxi-
mates the posterior distribution «{6(Hy, F,)|F,} for a

large B.

(2.2)

The following example illustrates the algorithm (2.2).

EXAMPLE 2.1. To obtain a 95% probability band for the finite population
empirical distribution function Hy, consider the absolute deviation functional

(2.3) 6(H,z,, F,) = sup|H,}(x) = F(x)].

The observations are the fifteen GPAs of the law school data in Efron (1982).
The result qf 1000 FPBB replications of the preceding functional for m = 50 is
displayed in Figure 1 (solid line); for comparison, the result of 1000 BB repli-
cations of the same data set is also displayed (dotted line). The figure indicates
that a 95.3th-percentile point is 0.26, and hence a 95.3% FPBB probability band
of the finite population empirical distribution is given by F, + 0.26. (Figure 1
also shows that a 95.3% BB probability band of the infinite population empirical
distribution is given by F, + 0.30.)

Operationally, the FPBB is simply a Polya sampling from the data urn (Step
1), whereas the FPB is a simple random sampling from a mixture of two



BAYESIAN BOOTSTRAP FOR A FINITE POPULATION 1687

preliminary FPB populations. The FPBB is simpler than the FPB in the sense
that no randomized population is involved. On the other hand, the Pélya sample
size m (= N — n) could be much larger than the FPB sample size n. The
difference then is a randomized FPB population against a perhaps larger Pélya
sample size.

3. The small-sample distribution of the FPBB. The paramount distribu-
tion in the FPB method is the multivariate hypergeometric distribution. The
following proposition indicates that the analogue distribution in the FPBB case
is the Dirichlet-multinomial distribution. Denote the distinct observations in the
urn {x;,..., x,} by x4y < -+ < x,. For j =1,..., k, let m¥ be the number of
y*’s equal to X(jy n; be the number of x’s equal to xm, i e m¥ = mGXx;}
and n; = nF{x ;}.

ProrposITION 3.1.

(3.1) (mp,...,m})|F, is a Dirichlet-multinomial (m; n,,...,n;)
: vector;

(3.2) mli_r.noo Z{(m 'm¥,...,m " 'm})|F,} is a Dirichlet (n,,...,n;)
' vector.

ProoF. The first statement (3.1) follows from the definition of the m*’s and
the fact that the y*’s form a Polya sample from the urn {x,,..., x,}. Putting
n = m and a = nF, in Proposition 2.1 in Lo (1986) results in (3.2). O

In general, the number of distinct x’s (i.e., &) increases as the sample size n
grows. Eventually we let n tend to co and it is more convenient to present a
functional form of Proposition 3.1 which is independent of k. To do this, we need
a slightly different, yet equivalent, definition of a Dirichlet-multinomial process
[Lo (1986)].

DEFINITION 3.1. For a positive integer m and a finite measure a on (R, %),
there is a point process N(A), A € # such that for any partition A,,..., A, of
R, (N(A,)),..., N(A,)) is a Dirichlet-multinomial (m; a(A4,),..., a(A,)) vector
[compound multinomial in Mosimann (1962)]; N(-) is called a Dirichlet-multi-
nomial point process with parameters (m, a), denoted concisely by Z{N(-)} =
DM(m; a).

Routine calculation using conditional expectation [or invoking Theorem 4 in
Ferguson (1973)] shows that, Z{ N(-)} = DM(m; «) implies

(29) E| [o(x)N(@)| = m fa(x)a(dw)/a(R) it fig(x)a(ds) < o,



1688 A Y. LO
and if [g%(x)a(dx) < o and a’ = a/a(R),
2
E| fo(x)N(ax)]

- m| [g*(w)e(a)]
(34) 2
+m(m - 1){a(R)»[/g(x)af(dx)]

| +/g2(x)a'(dx)}/(a(3) +1).

THEOREM 3.1.
(85) £{mGx(-)IF,} = DM(m; nF,),

(3.6) lim £{Gx(-)|F,} = a Dirichlet process with shape measure nF,.
m-— oo

Proor. (3.5) follows from (3.1) and the Kolmogorov consistent property
[Theorem 5.5 in Hoadley (1969)] of a’Dirichlet-multinomial vector. Statement
(3.6) follows from (3.2). O

The statement (3.5) and a result in Lo (1986), Theorem 2.1, which states that
for an exchangeable prior on the sequence {y,,..., yy} such that Z{ NHy(-)} =
DM(N; ), £{m(-)|F,} = DM(m; a + nF,), where m~'m(-) is the empirical dis-
tribution function of the unobserved population variables, indicate that one can
view £{mG*(-)|F,} as a posterior distribution of m(-) with respect to a “flat”
Dirichlet-multinomial process prior.

REMARK 3.1. A FPBB which allows the user input of prior information can
be obtained similarly. Summarize the prior information of the finite population
by p initial data, say, {xf,...,x%} (allow ties among the x*’s). Denote the
empirical distribution function of the x*’s by F*. Replace urn {x,,..., x,} by
urn  {x;, ..., x,, xf,...,x¥} in Step 1 of the algorithm (2.2). Then
£{mGX(-)|F,} = DM(m; pF,f + nF,), which can be used to approximate
DM(m; a + nF,) = £{m(-)|F,}. [Note that in this setting, {xf,..., x¥} reflects
the knowledge of the prior parameter a.]

Expression (3.6) states that, for a large population size (and a fixed sample
size), the FPBB reduces to the Bayesian bootstrap since a Dirichlet process with
a shape measure nF, is the backbone of the Bayesian bootstrap method [Lo
(1987)]. .

~ The distribution of the FPBB being known (similarly, a FPB version of
"Definition 3.1 and Theorem 3.1 can be stated in terms of a multivariate
hypergeometric point process), we give the first two moments for the FPBB and
FPB means in the case of ¢ = 1. These moment expressions will be needed in
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Section 5. Denote the sample variance by s2 and the finite population correction
factor (fpc) 1 — n/N by 1 — f.
It follows from (3.3)-(3.5) and H*, = (mG,* + nF,)/N that

Fn] = n_l Z x;

1<i<n

(3.7) &| fo,;‘;n(dx)

and
69) Var{fo,;:‘n(dx) F} — [(N = n)/N][(r - 1)/(n + 1)]s¥/n

=1 -)l(n-1)/(n+1)]s%/n.
In the FPB case, Bickel and Freedman (1984) and Chao and Lo (1985) noted
that a B determined by (2.1) leads also to the following “right” conditional
asymptotic variance for [xF*(dx),

(3.9) E[fon*(dx) Fn] =n! 1 Z x;
and ‘

Var{ [Fx(a)|| = [(N = n)/(N = D][(n = 1)/n]%/m
(3.10)

= Q- H)IN/(N=-D][(n-1)/n]s*/n
= (1 -f)[(n-1)/n]s?>/n, foralarge N.

4. The first-order asymptotic equivalence of the FPBB and FPB. In
this section, we show that the common limit for both £{[n/(1 — f)]"?[H*, —
F.1|E,} and £{[n/(1 — f)]'/%[F* — F,]|F,} is a Brownian bridge, subject to a
change of time scale by the limit of F, and is identical to the limit of the
corresponding posterior distribution [Lo (1986)] and the sampling distribution
[Bickel (1969)], respectively. The key assumption for the validity of these limit
results is the convergence of the sample empirical distribution; it was the same
condition imposed by Scott (1971) and Lo (1986) in order to achieve asymptotic
posterior normality.

AssuMPTION 4.1. For each ¢, F(t) —» F(t), which is a distribution function.

A straightforward proof of these results can be obtained by appealing to the
Markov property of the Dirichlet-multinomial process and the multivariate
hypergeometric process, respectively. However, such a method requires a strenu-
ous amount of notation to account for the jumps of the limit of F,. In the
following a simpler proof of the first limit based on an adaptation of the
well-known quantile transform method in the iid case is given for R = (— o0, o0),
which we assume throughout this section. An almost identical proof of the
second limit [which can also be deduced from a result in Bickel (1969)] is
provided for completeness.
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The quantile method relies on two lemmas. The first lemma deals with the
quantile transform in the Pélya and simple random sampling schemes, and the
second lemma extends the weak convergence of the uniform empirical distribu-
tion function to the Pélya and simple random sampling schemes. Denote the
empirical distribution function of {1/n,...,(n — 1)/n,1} by E,(-). Call the urn
{1/n,...,(n — 1)/n,1} the standard urn (n). For any nondecreasing function K
on the line, define its inverse by K~%(s) = inf{x: K(x) > s} for s € (0,1).

LEMMA 4.1. Denote the empirical distribution function of the real numbers
Zyeees 2 bij.

G U,...,U, is a Polya sample from the standard urn (n) implies
K, 'Uy),..., K, XU,) is a Pdlya sample from the urn {z,,..., z,}.

(ii) U,,..., U, is a simple random sample from the standard urn (N) implies
Ky U,),..., KyXU,) is a simple random sample from the urn {z,,..., zy).

Proor. According to Lo (1986), page 1227, the joint distribution of a Pélya
sample of size m from the urn {z,,..., 2,} is the average of the m-fold product of
Dirichlet (nK,(-)) random probabilities; similarly, Z{Uy,...,U,,} is the average
of the m-fold product of Dirichlet (nE,(-)) random probabilities. Note that, if G
is a Dirichlet (a(-)) random probability on [0,1] and H is a given nondecreasing
function, the Borel function H~! maps G to a Dirichlet (a(H(-))) random
probability. Hence, Z{ K, X(U,),..., K, (U,)} is the average of the m-fold prod-
uct of Dirichlet (nE,(K,(-))) [ = Dirichlet (nK,(-))] random probabilities, pro-
ving (i).

The proof of (ii) is completely elementary and is omitted. O

Next, we turn to the second lemma. For any — o0 < a < b < o0, let D[a, b]
be the space of “cadlag” functions defined on [a, b]. Equip D[a, b] with the
projection o-field; metrize this space with the uniform metric. Unless otherwise
specified, weak convergence of random elements taking values in D[a, b] will be
studied under this setting; see Pollard (1984) for details. Denote a standard
Brownian bridge in D[0,1] by B(s),0 <s < 1.

LEMMA 4.2. (i) Let U,,..., U, be a Polya sample from the standard urn (n)
and Y,,,(s) = [mn/N1/2[m™'%, _ ;. nJ(U; < s} — E,(s)] for 0 < s < 1; then
2{Ypn(IE,} = 2{B()]  inD[0,1] asm,n - co.

(i) Let U,,...,U, be a simple random sample from the standard urn (N)
and X,,(s) = [n/( - V[T, , ;. J(U; < s} — En(s)] for 0<s<1;
then

2{X,..(-)Ex} » 2{B(-)} inD[0,1]asm,n - .

ProorF. We first prove (i). Note that «(X,_;_,[{U; < -}|E,} is a
DM(m; nE,) process and E (s) = s for each s € [0,1]. First, denote D[0,1]
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equipped with the Skorohod metric and the Borel o-field by D,[0,1]. It is well
known that the finite-dimensional distributions of Y,,, converge appropriately
[Scott (1971)]. A computation in Lo (1986), page 1231, yields

E[(Yn(D)Y,a(C))IE,] < 13E,(D)E,(C), forall mand n,

where D and C are neighboring blocks; tightness follows from the extension to
Theorem 3 in Bickel and Wichura (1971). Therefore, £{Y,,,(-)|E,} — £{B(-)}
in D,[0,1]. Next, the continuous mapping theorem in Pollard (1984), page 70,
can be applied to the identity map x from D,[0,1] onto D[0,1] to yield
2(X(Yun)IE,} = £{x(B)}, proving (i).

The proof of (ii) is similar. It suffices to show that £{X,,.()|E,} — £{B(-)}
in D,[0,1]. According to Hartley and Rao (1968), the finite-dimensional distribu-
tions of X, , converge appropriately. A computation of Bickel and Wichura
(1971), page 1668, yields

E[(X,n(D)X,1(C))1Ey] < 33Ey(D)Ey(C), forall N > 4,
implying that the sequence {X,,,} is tight, proving (ii). O

THEOREM 4.1. Under Assumption 4.1,

i) {ln/Q-DI"’[Hx() - BN} - 2{B(F(-))}
inD[—w,x]asm,n > o,

and
(i) 2{[n/( = HI'?[F2(-) - F()IF,} — 2{B(F("))}

inD[-w,x] asn - .

Proor. We prove (i) first. Denote F,, by F. For each n = 1,..., o0, define
the map Q, from D[0, 1] to D[ — oo, 0] by Q,(¥) = (Q,¥)(-) = (F,(-)) for each
y € D[0,1]. The @-maps are measurable with respect to the projection o-fields;
furthermore,

sup  [(Q,x)(2) — (Q,¥)(£)l < sup |x(s) — y(s)l,

—o0<t< o0 0<s<1

implying that the @-maps are equicontinuous. Hence, Lemma 4.2(1) can be
applied to yield that £{Q,(Y,,,)|F,} and £{Q,(B)|F,} have the same limit [the
Y’s are defined in Lemma 4.2(i)]; the latter distribution equals Z{B(F,(-))|F,},
which converges to Z{B(F(-))} under Assumption 4.1.

It remains to show that

{Qu(Yun)F} = 2{[n/(1 = )]*[H(-) = F()IE,}.
For each ¢, E, (F(t)) = F,(¢) and U; < F(¢) if and only if F, l(Uj) < t. Hence,

= [mn/N1”\m™t ¥ KF;(U;) <t} - F(¢)],

1<j<m
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which, according to Lemma 4.1(i), has the same distribution as

[mn/N]%|m=* ¥ I{y* <t} - F(t)
1<j<m
= [n/(]- - f)]l/len’:n(t) - Fn(t)]'
The proof of (ii) is almost identical. First, suppose N is an integer multiple of

n. Then F, = H3¥, which is the empirical distribution function of the FPB
population, and n — oo implies m = N — n — 0. Hence (ii) is equivalent to

() z{[n/Q = HI"’[FX() - HF()IHZE} - 2{B(F(-))}
in D[ —o0,0]asn - oo,

which can be proved by arguing verbatim, using Lemmas 4.1(ii) and 4.2(ii)
instead, as in the proof of (i) [an alternative proof of (ii") follows from applying
Theorem 3.1 in Bickel (1969)]. Next, if N is not an integer multiple of n, the first
argument can be applied to the populations corresponding to each of the two
integer multiples of n that is closest to N; the proof can be completed by noting
that two sequences of distributions converge weakly to an identical limit implies
that any mixture of the two also converges weakly to the same limit. O

COROLLARY 4.1. Under Assumption 4.1, F continuous implies

tim  P{[n/(1 = 1)]"* sup|H3,(1) = E(£) > AIF,)

(4.1) = lim P{[n/(1 = )] suplE(2) ~ F(£)) > NE,)
=2 ¥ (-1 exp(-2/°V);

F has a bounded support implies
im o n/ (1= )27 [tz (o) - [ (a)
m, n— oo

_ nlin:oé{[n/(l 3 f)]1/2s-1{/‘an*(dx) - fo,,(dx)} Fn}
—

where @ is the distribution function of a standard normal random variable.

(42)

For a continuous F, one can use (4.1) to obtain a large-sample uniform FPBB
band for the population empirical distribution given by

(4.3) F, £ A[(1-f)/n]"%

‘where A is the (1 — a)-percentile point of sup,|B(t)| defined by
2%, - j<o(—1)7"lexp(—2j%N) = a (note that the FPB leads to the same band).
For example, a = 95.3% corresponds to A = 1.37, and if the sample size is 15 and
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the population size is 65, the fpc (1 — f) equals 0.769231; a 95.3% large-sample
FPBB probability band for the finite population empirical distribution is given
by F, + 0.354(1 — f)/2 = F, + 0.354(0.877) = F, + 0.31, which compares
favorably with the exact FPBB band obtained in Example 2.1.

5. Stratification. The extension of the previous results to several strata
does not present any great difficulty. The idea is to perform the FPBB and /or
the FPB in each stratum independently. Suppose the population is broken into </
strata and sampling is performed in each stratum independently to obtain
x={x;;i=1...,n;and j=1,..., J}, where n; is the sample size for the jth
stratum. Let F, be the Jth stratum sample empn'lcal distribution function, x;.
the jth stratum sample average n; 'Y, <i<n®ji» and s? the jth stratum
sample variance (n; — 1)~ D <n; (x - x; )2 Sumlarly, given x, for j=

, J, the Polya sample from the ]th urn [Step 1in (2.2)] is denoted by {y}*;
z = 1 m;}, where m; is the Pélya sample size for the jth urn, and given x,
samphng from dlfferent urns is assumed to be 1ndependent Let H}Y, be the
empirical distribution function of the Pélya sample in the jth urn, and Y
(=m;'E, ;. m i) be the average of the Polya sample within the jth urn. Note
that n +m; N which is the population size of the jth stratum. Suppose the
functlonal of mterest is the weighted average
(5.1) Y w,(6(Hy-F,)},

1<j<d

where H N, is the jth stratum population empmcal distribution function; the
w, s are welghts which may depend on the F,,’ oS (but not the H, N, ’s).

‘Our discussion will be restricted to the case of a linear combination of strata
means, i.e., § is a mean functional given by

(5.2) 6(Hy, F,) = [xHy(dx) — [F, (dx).

The next theorem states a first-order asymptotic result for the FPBB and
FPB subject to stratification.

THEOREM 5.1. Suppose that the population is numerical and bounded and
that F, (t) —> F(t) for eachj and t. Let w, = [Elsjstfjsf(l - f/n;12

(i) min{n,,...,n,;} = o and min{m,,..., m;} - oo imply
Z Hx, (dx) — Fndx”}
s I | [ ) ~ o o)
-t T m) 7,
l<j<d

x} -
(ii) min{n,,..., n;} = oo implies
(5.3) holds with H}, n replaced by F* (i.e., yj* replaced by
x}), where F* is the ]th stratum FPB sample empirical
dzstnbutzon functwn and x}. is the jth stratum FPB sample
average.

(5.3)

(5.4)
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Proor. First, note that according to (3.8),
12 _
= (nj— 1)/(nj+ 1) -1, forj=1,...,d,

and that expression (4.2) in Corollary 4.1 yields for each j, as n;, m; - oo,
(5:6) 2(j, myn;) = L[ny/ (1= )] 57 (my/N;) (3 = 2, |, ) > @,

independently (in j).

Denote the conditional distribution defined in (5.3) by G,, and the
Wasserstein metric defined in Mallows (1972) by p. According to the Mallows
inequality (1972), Lemma 3,

p*(Gpp» @) < wn_z[ Y wisi(1-1f;)/n;le

1<j<d

H<(j,mjsny), @)

(5.7)

< jmax. pz(é(j, m;,n;), <I>).
<js

By (5.5) and (5.6), the last expression goes to 0 as both n; and m; - oo, proving
the theorem. O

The choice of w, = N;/N in Theorem 5.1 y1e1ds a large-sample (1 — «) FPBB
or FPB interval for the population average in a finite population subject to
stratification given by
(5.8) y N,N~'x; + Aw,,

l<j<d
where A is the (1 — a/2)-percentile point of ®. This interval agrees with the
classical one based on the stratified simple random sampling [Cochran (1977),
page 95]. For the case of one stratum, i.e., J = 1, (5.8) reduces to the classical
large-sample (1 — «) interval estimate for a finite population mean based on the
simple random sampling [Cochran (1977), page 27].

REMARK 5.1. Bickel and Freedman (1984) proved a version of Theorem
5.1(ii) under a weaker Lindeberg-type condition on the population variables;
moreover, their theory also allows for the possibility of “many small strata,”
whereas our theory treats the case of a fixed number of strata only. However, the
“in-probability” conclusion of their result dictates that their result does not
imply Theorem 5.1(ii).
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