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CONTROLLING RISKS UNDER DIFFERENT LOSS FUNCTIONS:
THE COMPROMISE DECISION PROBLEM!

BY PETER J. KEMPTHORNE

Massachusetts Institute of Technology

Controlling Bayes and/or minimax risks under possibly different loss
functions is formulated as a problem faced by two or more statisticians who
must compromise and agree on the use of a single decision procedure. The
theory characterizing solutions to Bayes compromise problems and minimax-
Bayes compromise problems is presented. In a Bayes compromise problem,
Bayes risks under different prior distributions and/or loss functions are
minimized simultaneously. In a minimax-Bayes compromise problem, a Bayes
risk under some loss function for a given prior distribution and a maximum
risk under a possibly different loss function are minimized simultaneously.

1. Introduction and summary. Suppose a group is faced with a compro-
mise decision problem whereby its constituents must agree on the use of a single
decision procedure. For example, a venture capital firm might have to decide
which of several projects to finance. The partners of the firm may not have the
same preferences over the projects because some partners prefer projects with
regular cash flows providing a consistent income while others prefer those which
delay payments until the end of the investment period for greater capital
appreciation. Also, the partners’ opinions may differ as to the uncertainties of
projects’ cash flows. Consequently, to agree on a group decision, some or all of
the partners will have to compromise.

Section 2 describes the assumptions and notation for general compromise
decision prolems. For a given problem, assume each individual is a statistician
who can specify his loss function and choose a decision principle, such as the
Bayes or minimax principle. For simplicity we assume there are just two
statisticians. Because the optimal procedure for one individual is generally not
optimal for another, the choice of a decision procedure by the group will require
some compromise. We address the characterization of decision procedures con-
stituting principled compromises.

In Section 3 we treat the theory of Bayes compromise problems when both
apply the Bayes principle relative to different prior distributions and/or loss
functions. Each statistician prefers procedures with smaller Bayes risks. The
solutions to these problems characterize the class of compromise decision proce-
dures satisfying Savage’s (1954) “group principle of admissibility,” a Pareto-opti-
mality criterion; see Theorems 3.1 and 3.2.

The results of Section 3 complement those of Weerahandi and Zidek (1981,
1983), de Waal, Groenwald, von Zyl and Zidek (1983) and Zidek (1984). They
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apply the theory of n-person bargaining games to the multi-Bayesian decision
problem and examine the Nash (1950) solution as a group compromise procedure.
While the motivation for the Nash solution will be compelling in certain
compromise problems, in others it will not. In general, the Nash solution is just
one compromise procedure in the class of principled compromises—the group-
admissible decision procedures.

Also, Weerahandi and Zidek (1981), page 86, report a result in an unpublished
manuscript of Madansky (1978) which, if not identical, is closely related to
Corollary 1 to Theorem 3.2. When Bayesians have identical loss functions, then
their group decision is admissible if (and only if) they act like a single Bayesian
with a prior distribution equal to a linear pooling of their individual priors. This
result together with Corollary 2, concerning the analogous result interchanging
loss functions and prior distributions, characterize when group-admissible behav-
ior is consistent with acting like an individual decision-maker with a group loss
function and group prior distribution, constructed by separately pooling con-
stituent’s loss functions and pooling their prior distributions.

While interesting independently, the theory of Bayes compromises provides
the necessary foundation for solving minimax-Bayes compromise problems. In
such problems, some of the statisticians apply the Bayes principle while others
apply the frequentist, minimax principle. Section 4 gives a formal development
of the relevant theory, first treated in Kempthorne (1983). As in the case of
Bayes compromises, the collection of solutions to all such compromise problems
characterizes the class of Pareto-optimal group decision procedures. We show
that a minimaxist, engaged in a compromise problem with Bayesians, must act
like a Bayesian in a Bayes compromise problem for the decision to be Pareto
optimal. In such a problem, the minimaxist’s prior distribution is least favorable
to the compromise. We prove that this least favorable distribution has discrete
structure for a large class of problems. Then it is susceptible to numerical
solution; see Kempthorne (1987a).

The minimax-Bayes compromise problem provides a reasonable basis for
characterizing procedures which control risks under different loss functions.
While stated with reference to two statisticians with different objectives and
perspectives, the problem also applies to a single statistician who addresses a
decision problem and wishes to control simultaneously the maximum and Bayes
risks under possibly different loss functions. The special case of the minimax-
Bayes compromise problem where the two loss functions are equal is well suited
to the frequentist decision theorist who has carefully specified a single loss
function and who also has some prior knowledge about the unknown parameter.
Not having complete confidence about his specification of a prior measure for the
parameter, however, he seeks to control the maximum risk of the procedure over
the entire parameter space while still achieving a small Bayes risk with respect
to the prior measure. The solutions to such minimax-Bayes compromise prob-
.lems incorporate prior knowledge about the parameter but are robust against
gross inaccuracies in these prior beliefs.

The particular case of the minimax-Bayes compromise problems with two
statisticians having the same loss function was considered first by Hodges and
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Lehmann (1952). The procedures which solve such problems, “restricted Bayes
solutions,” are Bayes for the single loss with respect to the prior measure which
is a mixture between the prior distribution of the Bayesian and another prior
distribution. This is just the special case of Theorem 4.4 under the condition of
Corollary 1 to Theorem 3.2.

Bickel (1983) addresses the special minimax-Bayes compromise problem of
estimating the mean of a univariate normal random variable where the Bayesian’s
prior measure concentrates all its mass at the origin, and both losses are squared
error. Bickel proves that the solution procedures which minimize the maximum
squared-error risk subject to doing well at the origin are Bayes with respect to
discrete prior measures. This result is a special case of Theorem 4.6(b).

Several important and popular problems in decision theory are minimax-Bayes
compromise problems. Approximate solutions to minimax-Bayes compromise
problems for estimating a multivariate normal mean when the loss functions are
equal to squared error have been the subject of considerable research; see Efron
and Morris (1971, 1972), Berger (1976, 1980, 1982a, b), Chen (1983) and George
(1986). The approaches used in these papers do not approximate the prior
measures characterizing the exact solutions. However, they can provide reason-
ably tractable procedures which perform at levels close to those of the exact
solutions. Kempthorne (1986, 1987b) extends the theory of Section 4 to obtain
partial characterizations of the measures specifying the exact solutions.

Regarding minimax-Bayes compromise problems where the loss functions are
different, Kempthorne (1986, 1987a) uses the theory of Section 4 to characterize
minimax squared-error risk preliminary test estimators of a normal mean. These
estimators bound the probability of using estimates associated with a Type I
error in the preliminary test. The theory of minimax-Bayes compromises applies
because this probability can be expressed as a Bayes risk under a zero-one loss.

In another application Kempthorne (1988) uses the theory of minimax-Bayes
compromises to characterize admissible dominating procedures of inadmissible
procedures in simple decision problems with one loss function and one statisti-
cian. Dominating an inadmissible procedure is expressible as a constraint on the
maximum risk for a second loss function. A class of optimal dominators consists
of those procedures minimizing Bayes risks under the loss function of the
original problem.

Among alternate approaches to controlling risks under different loss functions
one uses a vector risk function whose components are the individual risks under
each loss function. Cohen and Sackrowitz (1984) characterize admissible proce-
dures in a general setting and Meeden and Vardeman (1985) do so for set
estimation problems. Their admissible procedures can be interpreted as Bayes
compromise procedures, or their limits. See Kempthorne (1985) for details.
Brown (1975), using a distinctly different approach, investigates the performance
of estimation procedures when the loss function is incompletely specified.

2. Components of the compromise decision problem. Let X be a ran-
dom variable whose distribution is in a family indexed by the parameter 6.
Suppose that the decision problem concerns drawing inferences about 6 given an
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observation of X. Possible inferences include an estimate of 6, a confidence/
credible region for § or a prediction of a future observation of X. When the
decision problem has multiple objectives, several inferences might be made
collectively.

Let 2 denote the sample space and & a o-field on 2 for which X is
measurable. For each § € O, the parameter space, let the distribution of X be
specified by P(-|8), a probability measure on %, which is absolutely continuous
with respect to p, a o-finite measure on (£, %).

Let ¢ denote a o-field on ® which includes all atoms. Let A denote the
collection of all inferences with o-field .«/. We assume that both A and © are
metrisable spaces, locally compact and the union of a denumerable family of
compact spaces. For many estimation problems A is equal to 0. For testing, A is
often a set of two points corresponding to “accept” and “reject.” For multiobjec-
tive problems the action space can be more general, consisting of pairs or triples
of simultaneous actions such as estimates of parameters, predictions of future
values of X and outcomes for hypothesis tests. We note that in some decision
problems A will include the action making no inference or even the action not to
observe X. In compromise decision problems, the first would correspond to not
compromising.

A decision procedure & identifies an action in A for each value X = x which
could be observed. For any procedure 8, we assume that (i) the action it
identifies given X = x is described by a probability measure §(-|x) on (A, &)
and (ii) for any A, € &, 8(A,|x) is an Fmeasurable function of x.

Suppose two statisticians are presented with the problem of agreeing to use a
single decision procedure from 2, the collection of all such decision procedures.
Assume that the statisticians have agreed on A, the universe of available (joint)
actions and that each has formulated his or her own loss function. Let i = 1,2
index the statisticians and let L,(a, §) denote the loss incurred by statistician i
for taking action a when 8 is true. Assume that (i) L, is jointly measurable in a
and 0, (ii) for each § € ©, L, is a lower-semicontinuous function in a satisfying
L,(a,8) > 0 and (iii) if A is not compact, let A* = A U {j} denote its one-point
compactification with lim,_, ;L,(a,0) = o and lim,_, »(a) = 0, where » is a
dominating measure on (A, &) for all § € 9.

For any procedure 6 € 2 and true 6, let R,(8, 6) denote the risk under loss
L,, that is,

R,(5,0) = fngL,.(a,ﬂ)S(dam)P(dxlO).

For any probability measure 7 on (0, ¢), let r,(8, 7) denote the expected risk
of & with respect to « for loss L,, that is,

r(8,m) = feR,.(s,a)w(do).

Let R,(8) denote sup, coR,(8, 8), the maximum risk of & under loss L;.
If statistician i is a Bayesian with prior distribution #, then he prefers those
8 € 2 with smaller Bayes risk r,(8, 7). His optimal procedure, if it exists, is 87,
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a Bayes procedure which minimizes the Bayes risk, i.e., r(8B, m) < ry(8, m), for
all & € 9.

If, on the other hand, statistician i is a frequentist applying the minimax
principle, then he prefers procedures with smaller maximum risk under his loss.
The optimal procedure is then a minimax procedure 8M which, if it exists,
satisfies R,(8M) < R (), for all § € 9.

The general situation we consider is when the two statisticians having chosen
either the Bayes or minimax principle must agree on the use of a single decision
procedure. To solve this problem, they must find a procedure which is simulta-
neously optimal for both, agree on a principled compromise or fail to agree. We
characterize a class of admissible compromise procedures when both statisticians
are Bayesians in the next section.

3. The Bayes compromise problem. Suppose that each statistician is a
Bayesian. Let =, denote the probability measure on (®, ) describing the prior
beliefs about # for the ith statistician and let 82 denote the corresponding
Bayes procedure whose existence is guaranteed by the lower-semicontinuity of
L;; see, for example, Le Cam (1955). In general, if either the loss functions or the
prior distributions differ, then the Bayes procedures 8 and 8 are not the same.

Any principled compromise must be a Pareto-optimal procedure, that is, one
for which no other procedure is preferred by at least one statistician and is no
less preferable for both, as judged by their respective Bayes risks. This is just the
group admissibility principle of Savage (1954).

We pursue the characterization of the class of Pareto-optimal compromise
procedures. First, we define two related problems.

Bayes compromise problem. Find a decision procedure which

minimizes 7r;(8, 7)

(3.1) subject to  ,(8,7) < K,,

where (i, j), the roles of the statisticians, is fixed at (1,2) or (2,1) and K is a
fixed constant satisfying (87, m;) < K; < r(87, m)).

A-Bayes cpmpromise problem. Find a decision procedure which minimizes
(3.2) Ar(8,m) + (1 — A)ry(8, m),

where A is a fixed constant satisfying 0 < A < 1.

The first result resolves the existence of solutions to problem (3.1) and (3.2),
their Pareto optimality and the relationship between Bayes compromise and
A-Bayes compromise problems. To facilitate its proof, suppose that

r(88,m) < oo and n(87, m) < o0.

Consider then Theorem 3.1.
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THEOREM 3.1. (a) For any Bayes compromise problem (3.1), a solution
exists.

(b) If a procedure is Pareto optimal, then it solves a Bayes compromise
problem.

" (c) A necessary and sufficient condition for a procedure 8* to solve the Bayes
compromise problem (3.1) specified by K is that there exists a A, 0 <A <1,
such that §* solves the A-Bayes compromise problem and &* satisfies ry(8*, ;) =
K; whenj=2and A<1,o0r, j=1and A > 0.

(d) If a A-Bayes compromise problem (3.2) is specified by A € (0,1), then the
solution is Pareto optimal.

Proor. Each ry(8, 7) is a lower-semicontinuous function on 2 by the lower-
semicontinuity of L; and Fatou’s lemma. Consequently, the “risk set” S =
{(r(, m), ry(8, m,))), 8 € D} is closed from below. The remainder of the theorem
then follows from standard decision-theoretic results. See, e.g., Section 5.2 of
Berger (1985). O

REMARK A. Parts (c) and (d) of the theorem almost give the converse to part
(b). The difficulty lies in the possibility that when A = 0 or A = 1, the A-Bayes
compromise problem is solved by any Bayes procedure for the second or first
statistician, respectively. There is no guarantee that Bayes procedures under
L,, m, have constant Bayes risk under L,, 7, and vice versa.

REMARK B. To each group-admissible procedure 8* there corresponds a
point (K, K,) on the “lower-left” boundary of the risk set S, where the slope of
the tangent line is —A/(1 — A). The procedure 8* simultaneously solves the
A-Bayes compromise problem and two Bayes compromise problems: that with
(i, J) = (1,2) and K; = K, and that with (i, j) = (2,1) and K; = K.

To characterize solutions to Bayes compromise problems, we assume that the
sample space Z and parameter space © are finite-dimensional Euclidean spaces
and that the probability measures P(-|6) for X given 6 and =, for § are each
absolutely continuous with respect to Lebesgue measure with respective densities
p(x|0), #(8). For statistician i, i = 1,2, we use the notation

pi(x) = fe p(x18)7,(db),

_ p(i0)m(0)
) = )

and
r(alx) = Ei[Li(a! 0)|x] ’
' respectively, for the marginal density of X , the density of the posterior distribu-

tion for 6 given x and the posterior risk of an action a € &/, where E; denotes
expectation with respect to the posterior distribution for 6 given x.
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The next result addresses the structure of solutions to A-Bayes compromise
problems.

THEOREM 3.2. For a A-Bayes compromise problem specified by A € [0,1],

(a) a measurable solution 8, exists and
(b) given X = x, 8, satisfies 8,(H,|x) = 1, where
H, = {a: Ap,(x)ri(alx) + (1 = A) py(x)ry(alx) is @ minimum}.

ProoOF. Part (a) follows from Theorem 3 in Brown and Purves (1973). Part
(b) is obvious upon interchanging the order of integration over 2 and © (by
Fubini’s theorem) in the objective function Ary(8, m;) + (1 — A)ry(8, m,). O

One might question whether the Bayes compronﬁse problem for two Bayes-
ians can always be reexpressed as a decision problem for a single Bayesian with a
“compromise” loss function and a “compromise” prior distribution. When the
statisticians have the same loss function or the same prior distribution or both,
then it can. We formalize these results in the following corollaries whose proofs
are straightforward.

COROLLARY 1. If L, =L, = L, then the A-Bayes compromise problem is
solved by the Bayes procedure for loss L and compromise prior distribution ,
equal to the A\-mixture of =, and m,, i.e., (w(d@) = Am(d0) + (1 — A)my(d).

COROLLARY 2. If m, =m, ==, then the A-Bayes compromise problem is
solved by the Bayes procedure for the compromise loss: L = AL, + (1 — X)L,
and prior distribution .

DiscussioN. When the statisticians have the same loss function or the same
prior distribution, then any Pareto-optimal compromise is to act as one Bayesian
with a particular loss and prior. This resolves how a Bayesian with a well-
specified prior distribution should approach a problem in which he or she is
concerned simultaneously with Bayes risks under two loss functions. A single loss
function which is a weighted average of the two losses achieves the objectives
characterized by both risks. This is not a suprising result since the axioms of
Bayesian decision theory imply that a Bayesian acts in accordance with a single
loss /utility function.

Corollary 1 relates to the problem of a single decision-maker with a well-
defined loss function who seeks the assistance of an expert to specify a prior
distribution and hence a Bayes procedure. Controlling the Bayes risk under his
and the expert’s prior distributions simultaneously is equivalent to mixing the
two priors with no adjustment of widely divergent priors. The A-Bayes compro-
mise procedure is consistent with the decision-maker believing that his or her
own prior is true with probability A and that the expert’s prior is true with
probability 1 — A.

Theorems 3.1 and 3.2 together characterize the Pareto-optimal procedures
available to two Bayesians who must compromise and use a single procedure.
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The appropriateness of one of the versions of (3.1) or of (3.2) would depend on
the group structure of the pair of Bayesians. However, it is important to note
that any choice of a Pareto-optimal procedure can be motivated by either
version of (3.1) or by (3.2) (recall Remark B).

Choosing a specific procedure requires setting j = 1 or 2 and specifying K,
the maximal Bayes risk r; in (3.1) or specifying A in (3.2). The study of principles
guiding the choice of the “best” Pareto-optimal procedure is beyond the scope of
this article. However, we note that the Nash (1950) solution investigated by
Zidek and his collaborators is likely to be appropriate in many group problems
because it is invariant under linear transformations of the loss (utility) functions
of the Bayesians.

4. The minimax-Bayes compromise problem. Suppose now that the two
statisticians who must agree on the use of a single decision procedure consist of a
Bayesian and a “minimaxist,” that is, a frequentist who applies the minimax
principle. We still assume that each has a loss function, L;, satisfying the
conditions given in Section 2. Let the first statistician be the minimaxist and the
second a Bayesian with prior distribution m,, as before. The optimal procedures
for the first statistician are minimax with respect to the first loss function.
Typically no L,-minimax procedure would be Bayes under loss L, with respect
to the prior distribution =,. If the two statisticians are to agree on the use of a
single procedure, then a nontrival compromise is necessary.

A principled compromise for these statisticians is to use a Pareto-optimal
procedure balancing the two criteria: Ry(-), maximum risk under loss L,; and
ry(+, m,), Bayes risk under loss L, for prior m,. As in the case when both
statisticians are Bayesians, we seek to characterize the class of Pareto-optimal
procedures for a minimaxist and a Bayesian who must compromise. To this end,
define analogs to the Bayes compromise and A-Bayes compromise problems of
Section 3 as follows.

Minimax-Bayes compromise problem. Find a decision procedure which either

minimizes R,(9)
(4.1a) .
subject to  1,(8, m,) < K,,
where K, is a finite constant satisfying ry(87, m,) < K, < r,(8y, m), or
minimizes 1,(8, 7,)
" subjectto R,(8) < K,

where K, is a finite constant satisfying R,(8¥) < K, < Ry(8%).

(4.1b)

A-minimax-Bayes compromise problem. Find a decision procedure which
minimizes
(4.2) AR(8) + 1 = MN)ry(8,7),
where A is a fixed constant satisfying 0 < A < 1.
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Solutions to minimax-Bayes compromise problems (4.1a) or (4.1b) exist, are
Pareto optimal and their specification as solutions to related A-minimax-Bayes
compromise problems is straightforward according to Theorem 4.1.

THEOREM 4.1. (a) For any minimax-Bayes compromise problem (4.1a) or
(4.1b), a solution exists. _

(b) If a procedure is Pareto optimal with respect to R,(-) and ry(-, m,), then it
solves a minimax-Bayes compromise. problem.

(c) A necessary and sufficient condition for a procedure 8* to solve the
minimax-Bayes compromise problem (4.1a) or (4.1b) specified by K, or K, is
that there exists a A\: 0 <A <1, for which §* solves the \-minimax-Bayes
compromise problem and 8* satisfies either ry(8*,m,) =K, or R(8*) =K,
depending on whether 8* solves (4.1a) and A < 1.or 8* solves (4.1b) and A > 0.

(d) If a A\-minimax-Bayes compromise problem (4.2) is specified by A € (0,1),
then the solution is Pareto optimal.

PrRoOOF. The proof is entirely analogous to the proof of Theorem 3.1 upon
noting that R, is a convex, lower-semicontinuous function on 2. O

By Theorem 4.1, any Pareto-optimal procedure can be characterized as a
solution to a A-minimax-Bayes compromise problem. We now show that any
A-minimax-Bayes compromise problem can be expressed as a minimax problem
for a generalized risk function.

THEOREM 4.2. For a given X: 0 < A < 1, a procedure solves the \-minimax-
Bayes compromise problem if and only if it is a minimax procedure with respect
to the generalized risk function

(4.3) Ry(5,8) = AR,(3,0) + (1 — A)ry(8, m)).

ProoF. The result is immediate upon noting that
supR,(8,0) = AR,(8) + (1 — A)ry(8, my). O
)

We call R, a generalized risk function because there is no underlying loss
function depending on just the true parameter, § € ©, and the action taken,
a € A.

To solve a A-minimax-Bayes compromise problem then, we can apply stan-
dard minimax techniques with a generalized risk. Specifically, under additional
assumptions on the decision problem, a minimax procedure can be characterized
as a Bayes procedure with respect to a least favorable prior distribution or as a
limit of such procedures. Wald (1950) and Brown (1976) provide extensive
discussions of conditions on the decision problem for which this is true. Introduc-
_ tory expositions of this theory are given in the texts of Bickel and Doksum
" (1977), Ferguson (1967) and Berger (1985). Kempthorne (1987a) gives simple
proofs for special cases of the general problem treated by Wald and Brown.

We quote a theorem proven in Kempthorne (1987a) regarding minimax prob-
lems for generalized risks and then interpret it for compromise problems. Let
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R(-, ) be a risk function on 2 X ©, which is lower-semicontinuous on 2 for
each § € ©. For any prior distribution 7 on © and procedure § € 9, let r(é, )
and R(8) denote the Bayes and maximum risks.

Let r(w) = infs_4r(8, ) = r(8,, 7) denote the Bayes risk of the Bayes
procedure 8. If it exists, a least favorable prior distribution #* satisfies r(7*) =
Sup, « pe)7(7), where #(0) denotes the class of all distributions on ©. The
existence of a least favorable prior distribution and the minimaxity of the
corresponding Bayes procedure is proved under the following assumptions.

(A.1") The risk function R($, #) is a continuous function of § for any § € 2
having everywhere finite risk.

(A2) If {m, i=1,2,...} is any sequence of distributions on ® which con-
verge weakly to =, then for 6 in any compact set, the risks of the corresponding
Bayes procedures { R(3,, 0), i = 1,2,...} converge uniformly to the risk R(§,, 6)
of the Bayes procedure with respect to .

THEOREM 4.3. Under assumptions (A.1’) and (A.2'), if © is a compact subset
of R*, then

(a) a least favorable prior distribution 7* exists,

(b) the Bayes procedure §,. corresponding to the distribution =* in (a) is
minimax and

(c) the Bayes procedure 8. is an equalizer on ©*, i.e.,

R(8,.,0") =r(n*), forall 8’ € supp(7*).

ProoF. A direct proof is given in Theorems 2.1-2.3 of Kempthorne (1987a).
While assumption (A.2’) is stronger than needed, it enables a proof without
relying on properties of regular-convergent sequences of decision procedures.
Proofs in more general contexts are given in Wald (1950) and Brown (1976). For
example, it is sufficient to assume that if {§;, i = 1,2,...} converges regularly to
8, then {R(9;,0), i = 1,2,...} converges uniformly to R($, §). O

The next theorem provides a solution to the minimax-Bayes compromise
problem. First, we must interpret the assumptions when R(-,#) is the gener-
alized risk R,(-,0) = ARy (-,8) + 1 — M)ry(+, m,). We can restate (A.1") and
(A.2’) for a compromise problem as follows.

(A.1) The risk function for the minimaxist, R,(d, §) is a continuous function
of @ for any procedure 8§ € 2 having everywhere finite risk.

(A.2) Let {m ;, i=1,2,...} be any sequence of distributions on ® which
converge weakly to the distribution 7. For A: 0 <A <1, let §, ; (respectively,
8,) denote the procedure which solves the A-Bayes compromise problem when
statistician 1 uses the prior distribution m, ; (respectively, m,) and statistician 2
uses, prior distribution m,. Then

() lim; _, ,,ry(8y i my) = 1y(8), 7) and

(b) lim;_, ,R\(8, ;,0) = R(8,, 0) uniformly for § in any compact set.

1—00

Now we can state Theorem 4.4.
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THEOREM 4.4. If © is compact and assumptions (A.1) and (A.2) are satis-
fied, then there exists a distribution m* on © such that

(a) 8%, the solution to the A\-Bayes compromise problem, where =* and =,
are the prior distributions of the two statisticians, solves the A-minimax-Bayes
compromise problem and

(b) for all 8’ in the support of m*, the procedure 83 in (a) satisfies

R,(8%,6') = sup R,(83%,0).
[2=1C]

Proor. Part (a) follows from Theorem 4.3(a) and (b) using the generalized
risk R,. Part (b) follows from Theorem 4.3(c), notlng that R, and R, are
maximized at the same 8 values. O

Note that it is possible for m* to equal =,. If L, equals L,, then the
A-minimax-Bayes compromise procedure would be 82, the second statistician’s
Bayes procedure by Corollary 1 to Theorem 3.2.

The next theorem extends Theorem 4.4 to the case of noncompact 0. Consider
Theorem 4.5.

THEOREM 4.5. For a given A, suppose the A-minimax-Bayes compromise
problem (4.2) satisfies (A.1) and (A.2).

(a) There exists a sequence of A-Bayes compromise problems defined by a
sequence of prior distribution pairs {(m*,, ), n = 1,2,...} (i.e., m, is fixed),
with solutions {8}, n =1,2,...} and a procedure 6, solving the \-minimax-
Bayes compromise problem which satisfy liminf, , R,(8*,8) = R\(8%,80).
Furthermore, the sequence {m*,, n =1,2,...} has weak limit m* and is least
favorable in the sense that {ry(d}, m*,), n = 1,2,...} is an increasing sequence
whose limit is sup, c g R,(8}, 6).

(b) If the weak limit m* of the sequence {m*,, n = 1,2,...} in (a) is proper,
then (i) 8} is the A-Bayes compromise procedure corresponding to the prior
distribution pair (m*, m,) and (ii) 8, satisfies R (85, 0") = supyoR (85, 0) for
all 0’ in the support of m*.

Proor. Let {0,, n=1,2,...} be a sequence of nested compact sets which
converge to ‘0. For each n, consider the minimax problem for parameter space 0,
and generalized risk function R,(8,8) = AR(8,8) + (1 — A)ry(d, m,). For each
n, let 8* be the solution to the minimax problem and let #*, be the least
favorable distribution for which 8} is Bayes. The procedure 8 minimizes
supy c ¢ B(8, 0), for 8 € 2; and it solves the A-Bayes compromise problem when
the two statisticians’ prior distributions are =;*, and ,.

Consider the sequence of maximum risks (R} = max sco B8, 0), n=
1,2,...}. Clearly {R*} is monotonically increasing. If the sequence increases
without bound, then inf;_,max,.oR (8, 8) = oo and any procedure is mini-
max.
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So, we need only consider the case when the limit is bounded above by
C < . For any §, € 0, if n is sufficiently large, say n > n, then 6, € 0, and
8 € 9,= {6: Ry§,0, <C}. By the sequential subcompactness of I =
{RA(S -): 8 € 9.}, there exists a subsequence {8} ¥y J=1,2,...} C 9 of the §}*
and a 8} € 9 such that liminf; R\, 0) >R (8;"‘,0), for all § € O; see
Theorem 8.6 on page 64 of Brown (1976).

Without loss of generality, substitute the original sequence with the subse-
quence {n;} (or a further subsequence), where 7* denotes the weak limit of the
subsequence of {7*,, n =1,2,...} (the further subsequence may be necessary
for the weak limit to exist).

For any n, it is easily shown that

(4.4) sup R,(8%,0) < liminf[sup Rk(8j*,0)].
0ce, i e

The bracketed quantity on the right-hand side of (4.4) is infssup, ¢ Rx(8, 0)

because §* is minimax for R, on O, Together with the fact that ®;, 7 © it

follows that sup,.gR (8%, 0) = infgsupycgR (8, 8). Thus 63 is minimax for

risk R, and the proof of (a) is complete.

For (b), suppose first that (i) is not true. Then there exists a procedure 85 *
for which ry(8*) < r\(8;), where r,(-) is the objective function for the A-Bayes
compromise problem specified by the prior distributions m; and =,. Let 8% be
the procedure which randomizes between §* and 8 * with probability ;. Then
it follows that

hm [A"l(‘s* ns 71, *) + (1 - }\)"2(8A m"’z)] < r(8%).

€6,

This yields a contradlctlon because
n(8%) = lim inf [Ary(8, m2,) + (1= A)ry(8, )]
n-— oo

< lim [Ar(83 %, mita) + (1= Mn(d23, m))].

Thus 8} solves the given A-Bayes compromise problem.

It remains to prove (ii) of part (b). Let @ denote any compact set of the
parameter space where the L,-risk of ;¢ does not achieve its maximum. There
must exist an & > 0 such that R (8}, 0") < supyR,(8%¥, 0) — ¢, for all 8’ € Q. But
for sufficiently large n, =*,(Q) = 0 because m*, supports only the points of
maximum L,-risk of §* on 0, which are within ¢ of the maximum risk of §; on
©. Since m* is the weak limit of {7*,, n = 1,2,...} it must be that =*(Q) =
Because @ is arbitrary the proof is complete. O

A difficulty in applying Theorem 4.5 is that when O is not compact, there is
no guarantee that the weak limit of {#*,, n=1,2,...} is indeed a proper
probability distribution. Brown (1980) gives some conditions under which = * is
proper in the standard decision theory problem. The study of conditions ensur-
ing that «* is proper and the study of solutions when the weak limit is a
subprobability measure are beyond the scope of this article. However,
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Kempthorne (1987b) pursues the characterization of such solutions for minimax-
Bayes compromise estimation of a multivariate normal mean under squared-
error loss.

The application of Theorems 4.3 and 4.5 entails determining the least favor-
able prior distribution for a generalized risk function. To conclude, we show that
when O is a closed interval of R! the distribution is discrete for a large class of
problems satisfying the following assumption.

(A.3) For any procedure § € 2 whose Ll-rlsk is finite for all 6, R,(9, ) is an
analytic function of 4.

Now consider

THEOREM 4.6. For the \-minimax-Bayes compromise problem of Theorem
4.4 or 4.5, suppose that © is a closed interval of R' and (A.3) is satisfied. Then
either the L,-risk of 8y, the \-minimax-Bayes compromise procedure, is con-
stant on ©, or the support of the least favorable distribution m* is

(a) discrete and finite, if © is compact or
(b) discrete with no accumulation point, zf © is not compact and w* is proper
[see Theorem 4.5(b)].

ProoF. By Theorem 4.4 or 4.5 the procedure 83 has constant L,-risk on the
support of 7*. Since Ry(8, #) is analytic in 6, if the support of 7;* contains an
accumulatlon point, then the function must be constant on ® by the identity
theorem for analytic functions. Otherwise, the support of 7* is discrete with no
accumulation point. If © is compact, then it follows that the support must be
finite. O

So, when we can show that no procedure with constant L,-risk solves the
A-minimax-Bayes compromise problem, it must be that the dlstnbutlon o
specifying the compromise procedure is discrete. Kempthorne (1987a) presents
an algorithm for specifying such discrete distributions numerically and proves its
convergence when 0 is a compact interval.

For solving minimax-Bayes compromise problems (4.1a) or (4.1b), if the A
specifying the corresponding A-minimax-Bayes compromise problem is known,
then just one minimax problem with a generalized risk function must be solved.
When A is unknown a sequence of such problems can be solved varying A in the
unit interval until the constraint of (4.1a) or (4.1b) is just satisfied. Implementing
this strategy analytically may be intractable, but numerical solutions are some-
times possible; see e.g., Kempthorne (1987a, 1988).
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