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ADMISSIBLE KERNEL ESTIMATORS OF A
MULTIVARIATE DENSITY

By DAREN B. H. CLINE
Texas A & M University

A kernel density estimator is defined to be admissible if no other kernel
estimator has (among all densities and sample sizes) uniformly smaller mean
integrated squared error. Admissible kernel density estimators are precisely
those using kernels with nonnegative Fourier transforms bounded by 1.
Several examples are given.

Introduction. The kernel estimator of a multivariate density f on R is
given by

A 1 s
fn,x(x) = ; Z IC(X - Xi)’
i=1

where the kernel « is integrable and X,..., X, is a random sample from f. A
commonly used measure of the global efficiency of this estimator is its mean
integrated squared error

MISE(f, ) = E f f, () - f(x))*dx.

This of course requires that both f and « are square integrable. MISE may be
expressed as the sum of two portions, the integrated variance

v(f, f Var( f, (x)) dx
and the integrated squared bias

18B( ) = [(Ef, (%) - {(x))" dx

An early paper by Watson and Leadbetter (1963) determined the kernel which
minimizes MISE. (Their argument is valid for multivariate densities.) This
kernel, however, is specific to the density and thus cannot have practical use.
Numerous authors have suggested choices for sequences of kernels which at least
obtain the optimal convergence rate for MISE within a class of densities.
Perhaps the most familiar is the sequence generated by the kernel of
Epanechnikov (1969) and its multivariate extension [Sacks and Ylvisaker (1981)]
which are asymptotically optimal among nonnegative kernels for twice differen-
tiable densities.

Presumably, the practitioner also would appreciate knowing whether his
choice of kernel can be improved upon uniformly among all densities and sample
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sizes. If it cannot, then at least some optimality is assured for finite sample size,
without restricting the class of densities. With this in mind, we say a kernel « is
admissible if the only kernel «, satisfying

MISE( £, , ) < MISE( f, ), forall nand f,

is k, = k. A kernel estimator is admissible if it uses an admissible kernel.

In Theorem 1, we will characterize admissible kernels as those which have
nonnegative Fourier transforms bounded by 1. Admissibility thus implies sym-
metry, a traditional requirement. Another property of an admissible kernel is
that any rescaling of the kernel is again admissible. This allows the practitioner
to choose an admissible kernel shape without knowing the best choice of
bandwidth in advance. Thus, by choosing an admissible kernel shape with
appropriate other properties, one may devise a sequence of admissible estimators
with asymptotically optimal convergence rate.

Strictly speaking, our definition does not require the kernel to integrate to 1, a
property that is necessary for consistency. However, any nonzero admissible
kernel can be normalized to integrate to 1 and it will remain admissible.
Requiring the kernel to integrate to 1 is perhaps analogous to requiring invari-
ance in parametric statistics and at least avoids nonsensical, if admissible,
estimators. An admissible estimator which does not integrate to 1 is a kind of
shrinkage estimator which apparently attempts to estimate extremely flat densi-
ties and densities with mass near infinity.

On the other hand, Professor Jeff Hart points out to us that all nonparamet-
ric density estimators are shrinkage estimators which shrink towards smooth-
ness. Avoiding the large variance (roughness) term due to the high dimensional
parameter space, like James—Stein estimation, actually entails a biased estima-
tor. The distinction, apparently, between parametric and nonparametric estima- -
tion is that in the former problem one chooses between unbiased estimators and
accepting a bias in return for a reduction in variance, while in the latter problem
one views bias as a necessity. In both, however, admissibility provides one
criterion for choosing among shrinkage estimators. In fact, as Theorem 1 will
also show, one can choose an admissible estimator over an inadmissible estimator
and thereby reduce both integrated squared bias and integrated variance.

Other standard properties frequently required of kernels include unimodality
and nonnegativity or a specific number of nonzero moments, depending on the
uses for the estimate. Although admissible kernels which are unimodal probabil-
ity densities form a rich class, an issue is the fact that the Epanechnikov kernel
is not admissible among all kernels. That is, there exist kernels which have
uniformly smaller MISE. Clearly such kernels must have some negative values
since otherwise the Epanechnikov kernel would not be the unique asymptotically
optimal kernel (for twice differentiable densities) among nonnegative kernels.
Thus, this kernel can be said to be admissible among nonnegative kernels.

Similar other restrictions on a kernel, such as the number of sign changes or
the number of vanishing moments, can also result in asymptotically optimal
choices which are not admissible among the class of all kernels. When those
restrictions are desired and the class of acceptable kernels is thus smaller, the
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admissibility criterion accordingly can be weakened. These evidently weaker
forms of admissibility are not characterized here.

The next section proves our main result and corollaries. The final section
provides examples.

Results. We start with a characterization of admissible kernels.
THEOREM 1. Admissible kernels are precisely those whose Fourier trans-

forms are nonnegative and bounded by 1. Furthermore, for any kernel k with
transform ), let the kernel k, have Fourier transform

1) ¥1(t) = max[0, min[1, Re(y (t))]].
Then «, is admissible with

(2) wv(f,,)<Iv(f..)

and

(3) ISB( f, ) < ISB( f,.).

ProoF. Let ¢(t) be the characteristic function for f and {(t) be the Fourier
transform for k. From Plancherel’s identity [cf. Watson and Leadbetter, (1963)],

y (27')—0’ 2 2
4) V(/,,.) = ——— [W®PQ - lo(t)*) dt
and
(5) ISB( f,.) = @m) ¢ [l - v(®O)Ple(V)* dt.
Let « be any square integrable kernel and let k, satisfy (1). Then
Re(¢)” + Im(y)", if Re(y) < 0,
|12 = ¥]” = { Im(¢)?, if0 < Re(¢) <1,

(6) 2 P

(Re(¢)? — 1) + Im(y)?, if1 < Re(y)

> 0.

From (4) and (6) we see that (2) holds, with equality for all f and r only if
\P = \Pl‘ AlSO,h

(1 - Re(¢))® =1+ Im(¢)?, if Re(¢) <0,

L= 9IP =1 = ¢ = { Im(y)?, if 0 < Re(y) <1,
(7) 2 : .
(Re(y) — 1)° + Im(¢)", if 1 < Re(¢)
> 0.
From (5) and (7), we obtain (3). Again we have equality for all f and n only if
¥ =1,

Furthermore, if « is admissible then (2) and (3) must be equalities and « = «;.
That is, k must have a nonnegative Fourier transform bounded by 1.
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Conversely, suppose k has transform ¢, with 0 < ¢ < 1. Let «, be any kernel
satisfying

MISE( f, ,,) < MISE( f, ), forall f and n,

and having transform ,. By the argument above, we may assume 0 < ¢, < 1.
Thus,

1 ' .
©® 0= [(¥i-v)-1e) + [(- )"~ @~ 9) )il
for all f and n. Let n = co. Then
0< [(¥=9)@ =¥ - ¥)lol®.
Since the class of normal characteristic functions spans the class of symmetric

bounded continuous functions, it follows that ¢ > ;. Now multiply both sides
of (8) by n, choose |p(t)|2 = exp(—||nt||?) and again let n — . Then

0< [(¥1-v?).
Since ¢ > ¢, this clearly implies ¥, = ¢. Thus « is admissible. O
Several corollaries are readily available from the theorem or its proof. The
first refers to the fact mentioned earlier that admissibility is independent of the
bandwidth choice.

COROLLARY 1. Any rescaling of an admissible kernel is admissible.

Proor. If ¢ is nonnegative and bounded by 1, then y(ht,,..., h t;) cer-
tainly is for all positive bandwidths A ;. O

Convolving a kernel with its reflection across 0 is equivalent to squaring the
modulus of its Fourier transform. This leads to the following observation.

COROLLARY 2. Let k be any square integrable kernel which integrates to no
more than 1 and define

k(x) = [k(y + 2)x(y) dy.
Then «, is admissible.
" The theorem supports the traditional practice of using symmetric kernels. In

fact, a similar proof shows that any asymmetric kernel may always be uniformly
improved by a simple reflection, as is stated next.
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COROLLARY 3. Let k be any square integrable kernel and let
ky(x) = (k(x) + k(—x))/2.
Then (2) and (3) hold.

The order of a kernel with transform ¢ is the largest » such that ||t||~*(1 —
Y(t)) is bounded near 0. This is a measure of the smoothness of the Fourier
transform at 0 and hence is related to the number of vanishing moments of the
kernel. Higher order kernels are used to obtain faster convergence rates for
MISE, if the density is sufficiently smooth and if the sequence of bandwidths is
chosen appropriately. That is, the possible rate of convergence depends on the
order of the kernel. The next corollary will emphasize, however, that although
the conversion in (1) will improve efficiency, it will not improve the convergence
rate. *

COROLLARY 4. Suppose k is a symmetric kernel which integrates to 1 and «,
is given by (1). Then k and «, are of the same order.

Proor. Under the assumptions, formula (1) does not alter ¥ near 0. O

Examples. Apart from the entirely useless kernel which is identically zero,
the simplest admissible kernel is the pyramid,

d
k(x) = Hlmax(O,l = |a ).
j=
This kernel is nonnegative, but has an infinity of modes. Examples of admissible
nonnegative unimodal kernels include the centered normal, Laplace and logistic
densities, as well as convolutions of these.

The optimal kernel estimator of Watson and Leadbetter (1963) is admissible
but, again, it depends on the unknown density. The asymptotically optimal
kernels of Parzen (1958), Watson and Leadbetter (1963) and Cline (1987) are also
admissible. Their multivariate versions have transforms

Y(t) = (1 +|t)|°) ", forsome p > 1.

These kernels are nonnegative and unimodal if p < 2 [Lukacs (1970)]. The
Laplace densities correspond to the case p = 2 and are asymptotically optimal
for bounded, but discontinuous densities [van Eeden (1985) and Cline (1987)].
Similarly, p = 4 and p = 6, respectively, are optimal for densities with bounded
but discontinuous first and second derivatives [Cline (1987), see also Silverman
(1984), page 910, for their use in nonparametric regression]. These kernels have
only slightly negative sidelobes and damp exponentially.

The Fourier integral estimator uses an infinite order kernel whose transform is
nonnegative,

(9) \P(t) = lutusl-

This could still be considered admissible under the criterion in the theorem, even
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though the kernel is not integrable. Davis (1977) demonstrated that the Fourier
integral estimator will achieve optimal convergence rates under a wide variety of
smoothness assumptions on the (univariate) density. In fact this property relies
on the flatness of the transform of (9) at 0. [See Devroye and Gyérfi (1985), page
135.] Thus an example of an integrable and admissible kernel with the same
property is the kernel with transform

1, if |t <« -1,
Y(t) = {a—itl,. fa—1<|it]| <q,
0, if a <]

In one dimension, this kernel is the difference of two Bartlett kernels,

1—cosax 1-—cos(a—1)x

w(x) = ax? - a2

Some familiar kernels are not admissible. For example, the parabolic kernel
[Epanechnikov (1969)] and its extension for multivariate density estimators,

T2+ d/2)
K(x) = —(ﬂ—d/z—maX(O,l - =1I?),

given by Sacks and Ylvisacker (1981), clearly are not admissible. Of course, these
were chosen to optimize the asymptotic MISE under the restrictions that the
kernel be nonnegative and that the density be twice continuously differentiable.
If using a nonnegative kernel is of primary concern, then the Epanechnikov
kernel has the asymptotic edge and no other nonnegative kernel is uniformly
better for all finite sample sizes. On the other hand, there are often good reasons
for using kernels which take negative values. For example, one can achieve a
convergence rate of n~%%, even without assuming a continuous second deriva-
tive, by using a kernel of order 3 or greater [Cline and Hart (1986) and Cline
(1987)]. Devroye and Gyéorfi [(1985), page 247] point out that nonnegative kernels
can lead to estimates with spurious “bumps,” even if the density has only
moderate tails, such as the normal density. Various authors have pointed out
that appropriate negative valued kernels will reduces bias at modes or help
locate discontinuities. [For a short discussion, see Silverman (1986), pages 69-70.]

Similar to the Epanechnikov kernel, the optimal kernels obtained by Gasser,
Miiller and Mammitzsch (1985) and by Miiller (1984) are not admissible among
all kernels. These kernels were required to minimize the asymptotic MISE under
restrictions which effectively limit the number of sign changes the kernel makes
(and thus are more appealing), even though the density may be smooth enough
to allow a higher order kernel. Like the Epanechnikov kernel, they are admissible
among their respective restricted classes of kernels.
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