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POLYNOMIAL ESTIMATION OF REGRESSION FUNCTIONS
WITH THE SUPREMUM NORM ERROR

By VAcrLAv FABIAN
Michigan State University

Regression with the error measured by the supremum norm is consid-
ered. Analytic functions on [0,1] and functions with a bounded rth deriva-
tive are considered as functions to be estimated. It is assumed that the
experimenter chooses the points at which the observations are taken. Poly-
nomial and piecewise polynomial estimates are considered. Asymptotic and
nonasymptotic bounds for the error are obtained.

1. Introduction. In this paper we obtain results cohcerning nonparametric
regression functions on [0, 1], with the error measured by the supremum norm
|| |l- As estimates we use polynomial interpolants through observations taken at
expanded Chebyshev points; by a polynomial we mean an algebraic polynomial
unless specified otherwise.

In numerical analysis and in approximation theory, measuring the error by
|| |l plays a central role. Kiefer and Wolfowitz (1959) remark on the desirability
of using || || in regression analysis. We will refer to results obtained in this area
and toward the end of this introduction we restate the advantages of defining
the error by || ||.

Approximants studied in approximation theory are polynomials and trigono-
metric polynomials, and piecewise polynomials with varying smoothness, i.e.,
splines. For analytic functions, polynomial approximations give very good ap-
proximations [cf. (2.5.1)], better than piecewise approximations [see Hart,
Cheney, Lawson, Maehly, Mesztenyi, Rice, Thacher and Witzgall (1968), Section
3.5], but for functions that are not smooth enough (e.g., Vx on [0, 1]), the relation
is reversed [see de Boor (1978), end of Chapter II].

The accuracy of polynomial and rational approximations derived for computer
use is remarkable [see Hasting (1955) and Hart et al. (1968)]. Often the degree of
the approximating polynomial is large compared to the usual choice in poly-
nomial regression. The best polynomial approximations can be (approximately)
obtained by the Remes algorithm [see Remes (1934) and, e.g., Hart et al. (1968),
Section 3.2]. A recent result by Brutman (1978) makes it possible to obtain easily
a polynomial approximant with the error close to minimal error. Such a poly-
nomial is obtained by interpolating the function at expanded Chebyshev points
(cf. Section 2.3). The penalty paid for using this suboptimal approximation is
small: The error is at most (1 + A,) times the minimal error, with & the order of
the polynomials considered and A, tabulated in Table 1. Thus, for k£ < 15
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1346 V. FABIAN

(k > 15 have not been much used) the penalty is at most 1 + A, = 3.27, rather
negligible in situations when the minimal error is quite small. For asymptotic
considerations with 2 — oo, this is not so good, since 1 + A, > (2/7)log & +
1.5 — oo.

In (nonparametric) regression analysis, several authors constructed estimates
with asymptotically optimal rates. For functions with bounded rth derivatives,
Halasz (1978) uses piecewise polynomials as estimates and Stone (1982) uses
moving polynomials (as in moving averages); Stone allows multidimensional
domains of the functions. Ibragimov and Has’minskii (1980, 1981, 1982) consider
classes of 27-periodic functions and estimates that are trigonometric functions—a
standard argument replaces an f(¢) on [—1,1] by f(cos x) and makes the results
applicable to nonperiodic functions as well.

The estimates have errors of the order O((log n/n)/@"+D) for functions with
bounded rth derivatives and O((log n log, n/n)'/?) for analytic functions. How-
ever important from the theoretical point of view, these results are difficult to
use in applications because of unknown constants involved in the statement and
because of the asymptotic nature of the statement.

A related result is due to Walk (1987), who, improving on previous work by
Pantel (1979), adapted a stochastic approximation method, obtained a sequential
estimate of the best polynomial approximant and described asymptotic proper-
ties of the estimate (not restricted to algebraic polynomials).

Improving the applicability of the estimates by specifying the constants in the
order of convergence or strengthening the asymptotic results for the estimates
seems difficult for the estimates considered up to now, but we have obtained
such a strengthening for the estimates we study here.

We consider here estimates obtained by interpolating the estimates of the
function values at expanded Chebyshev points. For our estimate we obtain
almost immediately nonasymptotic bounds for the error in Theorem 2.8 with
more details and tables in Sections 6 and 7. The polynomial estimates may be
preferred in some situations to the less smooth estimates proposed by Halasz
(1978) and Stone (1982) and to the smooth but somewhat complicated estimates
described by Ibragimov and Has’minskii (1980, 1982). In addition, approxima-
tions by polynomials are considered important in approximation theory and
(with order kept low) also in classical regression theory.

The organization of this paper and the results in more detail are described
next:

Sectiori 2 is introductory and reviews some results from approximation theory.

Section 3 gives asymptotic error bounds for polynomial estimates of analytic
functions and of functions with bounded rth derivatives. The order %, of the
polynomial estimate when n observations are available is considered and a
choice that minimizes the asymptotic bound for the error is obtained in Theo-
rems 3.6 and 3.7. The asymptotic results are of the type limsup ¢, !||Y, — f|| < C
with numbers ¢, and C specified rather than of the type ||Y, — f|| = O(c,). The
asymptotic considerations confirm that k,, the order of the polynomial ap-
proximant, should be rather small.
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The simplicity of the estimate imposes a penalty: The asymptotic bounds are
larger by a factor of C log &, than the optimal error rates, with C an unknown
number. This does not say much about finite n.

The suitable choice of £, depends on the class to which the estimated f
belongs. An adaptive estimate is described in Section 4. Under the assumption
that f belongs to a union of a finite number of classes, the estimate selects the
best class that contains f and has an asymptotic error bound equal to that of the
estimate that uses the knowledge of the class. This result parallels a result by
Hardle and Marron (1985) in a related area.

Section 5 describes, for functions with bounded rth derivatives, a piecewise
polynomial estimate which achieves the optimal rate. The result is an easy
consequence of results from Section 3 and it adds to results by Halasz (1978) and
Stone (1982) who obtained a bound O((log n/n)/@*Y): we obtain a more
specific bound limsup(n/log n)7@ *||Y, — f|| < C for an explicit constant C.
This makes possible a comparison with the asymptotic properties of complete
cubic spline estimates described in Fabian (1987); see Remark 5.6.

It should be understood that the asymptotic considerations are of limited
importance although they are more elegant than the ploddingly produced partial
tables of nonasymptotic bounds: they make possible comparisons with other
asymptotic results; they indicate that &, the order of the estimating polynomial,
should be rather small. That is pleasant since we really would not want to use
large k. But the asymptotic bounds use & — oo and are very inaccurate for small
k. Thus results of Sections 4 and 5 would aiso need a nonasymptotic reformula-
tion to be applicable (for the result in Section 5 this is partly done in Section 8).
It would be possible to rewrite the asymptotic bounds to make them more
accurate, but the most accurate are the nonasymptotic bounds discussed in
Section 2 and in more detail in Sections 6 and 7.

Sections 6 discusses several bounds for the quantile of |Y — f,||, where Y is a
polynomial estimate and f, a polynomial interpolant to f. This is also a
simultaneous band considered in least squares regression. A bound N based on
the Lebesgue constant is compared with the bound W due to Wynn (1984) and to
the bound S of Scheffé (1953). A misleading asymptotic result obtains: Asymp-
. totically, bound N is better than bound S, but bound S is better than N for
k=3,...,15 (for 2 =2 and for k larger than about 50, N is better than S).
Bound W is closely connected to bound N, thus also worse than S, for our design
and for k£ = 3,...,15. Results by Knafl, Sacks and Ylvisaker (1985) and some
preliminary computation by the author make it clear that bound S, in our
context, can be improved with practical significance.

Section 7 returns to the nonasymptotic error bounds of Section 2 and gives
tables of the quantiles of the error ||Y — f|| for f analytic and Y a polynomial
estimate. The tables also show the decomposition of the error ||Y — f|| into
several partial errors. For f in B®(1), quantiles of the error are obtained for
both the polynomial and the piecewise polynomial estimates.

The author believes that the considerations and the results presented are
important for applications.
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The main difficulty in actually applying the results is in the assumption that
f belongs to a certain class of functions. Of course, such a difficulty is present in
applications of all statistical and, more generally, mathematical methods; Re-
mark 7.2 is a more detailed discussion of this.

The definition of the error by the supremum norm seems considerably more
appropriate in many applications than that of the least squares regression. It
leads to a more difficult theoretical problem. Even so, the results we obtain can
be used in actual applications. We shall talk about these two points in some
more detail.

The definition of the error by the supremum norm seems considerably closer
to the needs of applications than other definitions. Thus, in particular, the often
used definition of error as the sum of squared deviations at the points of
observations completely neglects deviations at the other points, compensates for
large errors at some points by small errors at other points and weighs the errors
at individual points by the multiplicity of observations. All of these are undesir-
able in most applications (and unacceptable in numerical analysis). An estimate
that minimizes the error may be unsatisfactory from another important point of
view. Additional ad hoc rules are used to eliminate such “optimal but undesir-
able” estimates. In particular, when using a polynomial estimate, increasing the
order (i.e., the allowed degree) enlarges the class of the estimates and thus can
only diminish the error of the best estimate, yet this is strongly discouraged
because of the potentially bad behavior of the estimate, behavior unaffecting the
error. Proposals to add to the error a penalty for the complexity or lack of
smoothness usually involve a large amount of arbitrariness. It is meaningless to
study the effect of the design on the error because the definition of the error
changes with the design (of course the effect of the design on, e.g., the estimate of
the leading coefficient can be studied).

The definition of the error by the supremum norm has none of the preceding
disadvantages except it is more difficult to study.

One result which is qualitative more than quantitative is that a high order
(say 10) polynomial estimate gives a useful estimate when a suitable design is
used. The asymptotic results give some insight on the behavior of the error and
on a suitable choice of the order, and are accompanied in Section 7 by non-
asymptotic numerical results. For all these results it is assumed that the
estimated function lies in a certain class. This is perhaps unpleasant for applica-
tions, but cannot be improved upon. However, the classes considered are much
wider than those considered in classical parametric regression theory.

The present results reemphasize the importance of suitable design. It is
pleasant that expanded Chebyshev points are suitable in our context since close
to them Chebyshev points have been found optimal in a related context of
estimating the leading coefficient of a polynomial regression by Kiefer and
Wolfowitz (1959). It seems that most practically oriented texts on regression
analysis miss completely the overwhelming importance of the design in general
‘and the results by Kiefer and Wolfowitz and related results by other authors in
particular.
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With the design properly chosen, it is possible (and may be advantageous, see
Section 7) to choose the order & of the polynomial rather large. (Practical
considerations and the practice of computer approximations seem to favor 2 not
exceeding 10; Section 7 considers k = 2,...,15). Of course, disasters occur for
large k& if the design is not chosen suitably, e.g., if the equidistant design is used.

The asymptotic results and the nonasymptotic results in Section 7 give
insight on the bounds obtained. For concrete applications the bound for quan-
tiles of the error can be determined as demonstrated in Section 7.

2. Some approximation theory results.

2.1. Notation. A function means a real valued function unless the range is
specified differently. By B we mean the family of all bounded functions on [0, 1].
By B, for a positive integer r, we mean the family of all functions f on [0,1]
such that the (r — 1)st derivative f "~V exists and is absolutely continuous. If f
is in B, then, for a set A of (Lebesgue) measure 1, f has a derivative f ")(x) at
x for all x in A. We denote B also by B©.

By || || on B we mean the supremum || f || = sup{|f(x)|: x € [0,1]}; for an f
in B™ we let || f (|| = vraisup|f 7).

For positive M and r > 0, we set

BO(M) = (f: fe B, ||f") <M},
P, is the family of all polynomials of order %, i.e., of degree at most & — 1.
For fe€ B, d,(f) is the distance of f from £, ie, d,(f)=inf{||f — gl|;
8 € Py}

2.2. Interpolation. Suppose X, is a size k subset of [0,1] and for every
function f with a domain containing X,, f, is the interpolant of f through X,
i.e., the unique g in &, that agrees with f on X,. Denote by ., the function
f = f,. Note that #, is linear and idempotent. The Lebesgue constant A,
corresponding to X, is the norm of £, i.e,

(2.2.1) Ay =sup{||£f|; f€ B(1)}.
An easy result is then [see, e.g., de Boor (1978), Chapter 2, (9)]: For every f € B,
(2:2.2) If = fell < (L + A)di(f).

Indeed, for every g in #,,
N2 f — 8l = 12 f — 28l < AWl f — &lI;
thus
W= Fll <If—gll+1fi— &l <@+ AIf - &l

Taking the infimum with respect to g gives (2.2.2).

~ Relation (2.2.2) says that f, is an approximation in £, to f which is worse
than the best approximation by at most a factor of 1 + A,. It is desirable to
have A, small.
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TABLE 1
The Lebesgue norm for k expanded Chebyshev points (EC), for the equidistant points (ED) and
values m,,
A, A,
k EC ED m,,
2 1.0000 1.0000 1.0000
3 1.2500 1.2500 1.0000
4 1.4299 . 1.6311 1.0070
5 1.5702 2.2078 1.0154
6 1.6851 3.1063 1.0221
7 1.7825 4.5493 1.0272
8 1.8670 6.9297 1.0312
9 1.9416 10.9456 1.0344
10 2.0083 17.8486 1.0370
11 2.0687 29.9000 1.0392
12 2.1239 51.2142 1.0410
13 2.1747 89.3249 1.0426
14 2.2217 158.1023 1.0439
15 2.2655 283.2107 1.0451

2.3. The expanded Chebyshev points. For an integer k > 1, the expanded
Chebyshev points c;), ¢, ..., ¢, are given by

1 cos((2i — 1)a) 7
2.3.1 = =14+ — itha = —.
( ) kT g cosa » Witha 2k

Set Xko = {Ckl, ceey ckk}.
If X, = X,,, i.e., when the interpolation is through the expanded Chebyshev
points, then, by a result of Brutman (1978),

2 2
(2.3.2) —logk +05 < A, < —logk +0.73.

de Boor [(1978), page 27] states that numerical evidence strongly suggests that
the choice of expanded Chebyshev points comes within 0.02 of minimizing A,.

For the Chebyshev points, the second inequality in (2.3.2) holds with 0.73
increased to 4; for equidistant division of [0,1], A, > = Ce*/? for a constant C
[see de Boor (1978), page 26]. For k = 2,...15, Table 1 gives A, for the expanded
Chebyshev points and for the equidistant choice. The equidistant choice seems
intuitively very appealing, the expanded Chebyshev points do not seem to be so
much different from the equidistant points and thus the difference in their
Lebesgue constants A, is at first surprising. But the difference explains why
interpolation (and similarly least square approximation) with high degree poly-
nomials and without a suitable design, leads to disasters; the situation is
" different with the expanded Chebyshev points design.

The norm A, can be expressed more explicitly as follows: Denote by /,; the
Lagrange polynomials, i.e., /,; is the interpolant through X, = {x,,,..., x,,} of
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the function which is equal to 1 at x,; and 0 at the other points in X,. Denote
by I, the vector function with components ;. If y is the k-tuple of values of f
at the points x,;, then f, = ¥, and it follows easily that

(2-3-3) Ap = 11Nk,
where

k
(2.3.4) M= 1Al

i=1

is called the Lebesgue function.

2.4. Computation of maxima. Table 1 gives the Lebesgue constants A, for
the expanded Chebyshev points, for the equidistant choice and also values of

k
(2.4.1) m, = max 1/ Y ()
¢ i=1

for the expanded Chebyshev points. The values m, will be needed in Sections 7
and 8. Powell (1967) computed the Lebesgue constants for the Chebyshev points.

A bound for the error of the values in Table 1 is desirable. An obvious way is
to determine a bound for the derivative of the Lebesgue function A, and use it to
bound the difference between A, and the maximum of A, (t;) for i=1,...,n
and ¢, suitably selected points in [0,1]. Unfortunately, direct calculations of the
coefficients of *_,/,; lead to bounds too large to be useful. However, there is a
theoretical bound for a derivative of any polynomial g of order k:

(2.4.2) |g'(x)] < (k- 1)ngnmin{2(k -1, _1/.“_x(11— x) }

[see Timan (1963), Section 4.8, (33)]. The calculation proceeded in two steps.
First a lower bound ¢ for A, was determined by finding the maximum at 5001
equidistant points in [0,1/2]. Then A, was evaluated at points x,, x,,..., Xy,
updating lower bounds to b, b,,..., by and with the increment x;,, — x; at
point x; chosen in such a way that A, < max{b;, A,(x;,,)} + « on the interval
[x;, x;.,] with kK = 10~* the error allowed.

The same calculations were performed to find m,. (In each of the two cases,
the maximum found in the second step was equal to the lower bound for the
maximum found in the first step.)

The values of A, for the equidistant choice are lower bounds, determined as
maxima of A, over {(i — 1)/10000; i = 1,...,10001}.

2.5. The distance d,(f). An f € B is called analytic if it is a restriction of
an analytic function F of a complex variable. In such a case, the domain of F
contains the interior of an ellipse with foci 0 and 1 and sum of the axes equal to a
number R; for a given number R, A(R, M) denotes the family of all such
functions f with |F| bounded by M on the interior of the ellipse. For every f in
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A(R, M) and forall £ = 2,3,...,

R
(2.5.1) dk( f) < (2"”)1/2M"E—:—1'R_k.
This follows from the proof in Section 5.4.1 in Timan (1963).
For f in B")(M) we obtain, for every k=r+ 1,r + 2,...,

(B—r)!
k!

This is a slight strengthening of Jackson’s Theorem V, Part (iii), as formulated
in Chenney [(1982), Section 4.6]. For f with a continuous rth derivative, (2.5.2)
is obtained from there by setting Chenney’s n,k to our 2 — 1, r and then
multiplying the bound by 277, accounting for the fact that our f is defined on
[0,1] and not on [—1,1]. If f is not continuous and ¢ is a positive number,
then there is a continuous g, in L,(A) (A the Lebesgue measure on [0, 1]) with
lgo — f™ll, <& and || ||, the L(A) norm. Take g = max{—M, min[g,, M]}.
Again ||g — f (|| < & But there is a function G with G =g and |G — f|| < e.
Since d,(G) is bounded by the right-hand side of (2.5.2), d,( f ) also must satisfy
(2.5.2).

(2.5.2) dy(f) < (w/4)’M

2.6 EXaMPLE. Consider, as an example of (2.5.1), the function f(x) = Vx on
[a, b] with @ > 0. f can be extended to an analytic function F on the interior of
the ellipse that has loci at a, b and passes through 0. We obtain the sum of the
axes Ry = (Ya + Vb)?, M = a + b. Since (2.5.1) was stated for f on [0,1], we
obtain by a simple argument that for our f, (2.5.1) holds with

R ‘/ba+1
R=-—"2 = / M=yVa+b.

b-a b/a -1’

For b =1 and a = 0.1,0.5 we give R, M and the right-hand side D, of (2.5.1)
in Table 2.

TABLE 2
The bounds D, and d}¥ for di(f)

for f(x) = Vx on[a,1]

a=01 a=05
R 1.92495 5.82843
M 1.04881 1.22474
D, 1.47655 0.10909
D, 0.76706 0.01872
D, 0.39848 0.00321
dy 0.07943 0.00759
dy 0.02188 0.00065

dy 0.00741 0.00007




REGRESSION WITH SUPREMUM NORM 1353

The actual values of d,(f) are considerably smaller and from properties of
the algorithms SQRT 0030, SQRT 0031, SQRT 0032, SQRT 0150, SQRT 0130
and SQRT 0131 in Hart et al. (1968) we obtain much smaller bounds d} for
di(f ). We also give these in Table 2 .

2.7 ASSUMPTION. f isin B, Y is the interpolant through X, to the function
with values f(x;) + ¢; for x; € X, and ¢, random variables. Z = max,_, 4l

2.8 THEOREM. Under Assumption 2.7,

(2.8.1) Y = fll< (X + Ap)dp(f) + 1Y = fil
and
(2.8.2) Y = Fll < ALZ.

ProoF. If w is an elementary event, take a function ¢ in B(Z(w)) with
&(x;) = ¢(w) and obtain

Y(0) =S f+Fe,  |Y(0) = fIl<IY(w) = fell + 11 fp— 1.

Apply (2.2.2) to obtain (2.8.1). Relation (2.8.2) holds since ||Y(w) — fll = || Zrell <
A Z(w).O ’

3. Polynomial approximation, asymptotic case. We shall consider the
case now in which an increasing number n of observations are available, these
divided into % groups. Averages of these are used to estimate the % function
values. Usually then n/k will be a large number and it is not a strong
assumption that the & estimates be unbiased independent normal with variances
k/n. This corresponds to the case of the individual observations having variance
1; the general case of variance o2 reduces to this special case by rescaling.
Estimating o2 from the observations will usually be a minor problem compared
to the estimation of f.

Thus the following will be assumed in this section.

3.1 AssuMPTION. For each n=1,2,... let k=%, be an integer, k, > 2,
k, > o as n — oo. Let X, be the set of the k£ expanded Chebyshev points
Xy; = cy; defined by (2.3.1) and let ¢,,..., ¢,, be independent normal (0, £/n)
random variables. For any function f on [0, 1], consider the estimate Y, that is
the interpolant through X, of the function with values f(x,;) + ¢,,. Set Z, =
max;_; . gl€nl-

3.2 LEMMA. With k =k,

where

’ k12 k2

2. = , = log— .
(3.2.2) A [2logk} By =log (47 log k)"/*
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The distribution of the random variables V, depends only on k, and, as n = oo,
V,, converges in distribution to max{—logn, —log £}, where £ and 7 are inde-
pendent gamma(1) random variables.

ProoF. We have

(3.2.3) Z, = max{£;, — &}

with £, = max.e,;, § = min.,;, By Theorem 4.7.22 in Fabian and Hannan
(1985), the random variables defined by

(3.2.4) V,=a,(n/k)"*Z, - B,
and
(3.2.5) a,= (2logk)?

have the limit in distribution as asserted and it is easy to see that they satisfy
(3.2.1).0

3.3 REMARK. Write X, ~ Y, if X /Y, — 1 in probability for random vari-
ables X,,Y,, including also number sequences. Write X, < Y, or Y, > X,, if

X, + ¢, ~ Y, for positive numbers c,.
For A,, B, and V, in (3.2.1) we obtain

\4
(3.3.1) 1+ —~1
Bk
and
(3.32) 7 - 2k log k
3. . -

We shall consider essentially two choices of %,: In case (i) of &, = a,logn
with log a,,/log,n — 0, we obtain from (2.3.2) and (3.3.2) that

‘/2an(log n)(log,n)

n

2

2
(3.3.3) Ay~ ;logzn, zZ,~

where log,n denotes loglog n.
In case (ii) of k,= a,(n/logn)/®*D with loga,/logn — 0, we obtain
similarly

3.34 A 2 1 Z \/ 2a, (logn )&
(3.3.4) BT w(2r + 1) o8 1 "= 2r+1( n ) )

3.4. The error bound. We shall assume that f isin A(R, M) or in B"(M)
and denote by D, the corresponding bound for d,( f ), i.e., the right-hand side of
(2.5.1) or (2.5.2). By Theorem 2.8, a bound C(n, k) for ||Y, — f|| is given by

(3.4.1) C(n,k)=(Q+A,)D, + A,Z,.




REGRESSION WITH SUPREMUM NORM 1355

We will derive asymptotic properties of C(n, k) and will find asymptotically
optimal choices of k, in the sense of making C(n, k,) the smallest possible
asymptotically. We should keep in mind that C(n, k) is only a bound for the
error and not even a sharp bound. Already the bound (2.2.2), when restricted to
functions in B™(M) or A(R, M), is not sharp. On the other hand, notice that
C(n, k) is a common bound for all f in the class considered.

3.5 LEMMA. Assume f € A(R, M) for some R and M, a, are positive
numbers, log a,/log,n = 0 and

(35.1) . - (2log,n)*? [alogn
5. . . V —

Suppose (n;) is a subsequence of {n). )
Then: If k, = a,logn; and a, > (2log R)™! eventually, then

(3.5.2) C(ni’ kn,v) ~ Cnp

if k, > a,logn,, then
(3.5.3) C(n;,k,) 2c
and, if k and n satisfy k < (a/log R)log n, then

(3.5.4) C(n, k) > V2

Proor. It is enough to consider the case (n;) = (n). By (3.4.1) we have
C(n, k) = D, and (3.5.4) obtains from the expression for D,, i.e.,, from the
right-hand side of (2.5.1).

For k, = a,log n we obtain

(3.5.5) Ay Z, ~ ¢,

by (3.3.3). For k, > a,logn we then obtain A, Z, >c, by (3.3.3) and the
isotoneity of the asymptotlc behavior of A, and Z, [cf . 3 2) and (3.3.2)]. This
proves (3.5.3). If a,, > 1/(2log R) eventually, we have D, = O(n"'/?) by (25.1).
This and (3.5.5) give (3.5.2). 0

3.6 THEOREM. Assume f € A(M, R) for some M and R. Assume k} =
a*log n with a* > 1/(2log R) eventually and a* — 1/(2log R). Then

(3.6.1) C(n, k*) ~ f_ ——— (log;n)"* | = logn

and (k}) is optimal in the sense that for any other sequence (k,),
(3.6.2) C(n,k*) s C(n,k,).
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Proor. Relation (3.6.1) obtains from Lemma 3.5 applied with a, = aX.

Write &k, = a,logn. If a, > a; or a, ~ ay, we obtain (3.6.2) for the subse-
quence from (3.5.3). If a, < a(l/log R) with an a <1/2, then (3.6.2) holds
because of (3.5.4). This completes the proof. O

3.7 THEOREM. Assume f € BM(M) for some r and M and set

(3.7.1) k, = (n/logn)"/®*P,

Then:
(i) If a,, are positive numbers such that log a,,/logn — 0 and k,, = a,k,, then

2logn |/m\" 2a, logn\"/@*D
7. ~ | 7| M+ .
(3.7.2) Cln, k,) 7(2r + 1) [(4) M, 2r+1 ]( n )

(ii) If o} are positive, k} = o}k, and

2 1/@r+1)
(3.7.3) a* > [2r2(2r + 1)(2) MZ] ,
then
2 T ' r/(2r+1) logn r/(2r+1)
1. *) o — | —or 1/(2r+1)l
and (k}) is optimal in the sense that for any other sequence (k,),
(3.7.5) C(n,k¥) <C(n,k,).
Proor. By (2.5.2),
3.7.6 D = (T = (™Y ar
(3.7.6) "'(4) k! ~(Z) ’

the last relation a consequence of the Stirling formula [see Cramér (1946), the
third displayed formula past (12.5.3)]. In case (i), we obtain from (3.3.4) and
(3.7.6) that

477 A 2logn 2 [ 2a, (logn\”/®*H
(3.7.7) b m(2r +1)° n" 2r+1( n )

and

a7 logn r/(2r+1)
(3.7.8) D,,n~(z) Ma;’( ! )

and (3.7.2) follows from (3.4.1).

Denote by A(a,) the expression in brackets on the right-hand side of (3.7.2)
and by a the right-hand side in (3.7.3). It is not difficult to verify that 4 has a
minimum at «. [g(a) = Aa~" + Bya has a minimum

AVe+D[B/(2r + 1)]*7® V(1 + 2r)
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at a = (2rA/B)¥/@ *1] Relation (3.7.4) is then a special case of (3.7.2) with
h(a,) replaced by h(a).
To obtain (3.7.5), we must treat in a special way k&, to which (3.7.2) does not
apply because of the restriction log a,/logn — 0. Suppose k, > a,k, with
= log,n;; set k) = a,x,. Then C(n;, k n) 2 A, Z, and from the asymptotlc
1s0tone1ty of A, and from (3 7.7) applied to kY, we obtaln

2log n 2log,n (logn\/@ D
7(2r + 1) 2r+1( )
and (3.7.5) holds for this subsequence. If
k, =a,k, < (logyn;)k,,
then (3.7.2) and (3.7.4) imply (3.7.5) for this subsequence. This proves (3.7.5). O

C(ni’kn,) 2 n

4. Adaptive estimates.

4.1 REMARK. The asymptotically optimal choice of (%, ) depends on R for f
in A(R, M) in Theorem 3.6 and on r and M for f in B")(M) in Theorem 3.7.
In a related situation of estimating an f in.®,, a set similar to B")(M) but with
an L, type norm, Hardle and Marron (1985) described a method that achieves an
optimal rate of convergence for f in O, without knowing the r, but assuming r is
in a known finite set. The difference in the norms seems to make the method
used by Hardle and Marron inapplicable in our context. However, another
construction makes it possible to obtain similar results. This will be pursued in
detail only for f in A(R, M), but the result can be extended easily to the
situation of Theorem 3.6.

4.2 AssUMPTIONS. We shall assume that F is a family of functions on [0, 1]

and R, R,,..., Ry are numbers such that 1 < R, < --- < R, and that every
f in F satisfies
(421) di(f) ~ CR(k, [)™"

for a constant C; and numbers R(k, f)in {R,,..., Rg}.
We assume that at step n we can use n independent estimates of the function
values, with errors independent and standard normal.

4.3. The addptive estimate. Consider a sequence (7,) of positive numbers
such that

(4.3.1) n, > 0, log(nn,) ~logn
(for example, 7, = 1/log n). Form estimates Y,; of the form described in As-
sumption 2.7 using m, =n,nK~! observations at k,; expanded Chebyshev
points with

log n log n
- > .
2log R;’ ™~ 2log R,

(4 .3 .2) kni -~
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Select i, as the largest i for which i = 1 or
1Y, = Y, iall < m;*log m,,.

Use then (1 — 7,)n observations and k, = k,; to construct the estimate Y.

Set rn( f) = maxiR(kni’ f)'

Theorem 4.4 asserts the adaptivity of Y, in the following sense. If the R(%, f)
in (4.2.1) do not depend on k, then the bound (4.4.1) for the error of Y, is the
optimal bound given in Theorem 3.6 [the assumption f € A(M, R) there is used
only to obtain d,(f) < CR™*]. If R(k, f) depends on k, the same bound (4.4.1)
holds, but we cannot claim its optimality.

4.4 THEOREM. Iff € F, then the estimate Y, defined above satisfies

_ 2 32 logn
(4.4.1) Y, —fll < __—”\/H%—;;(f_) (logyn )™ ( )

ProoF. Note that

5 log m,
ni qniZIOg Ri

with ¢,; > 1 and g,; = 1. Consider a given f and denote by I, the index i such

that R, =r,(f). Foreachi=1,..., K,

(44.2) 1Y, — fll = dk,,,( f)- ”Yni = fx, lls
where

(4.4.3) d, (f)~ Cim;[logR(k,.ul)/(ﬂog R)lam
by (4.2.1) and

(4.4.4) 1Yi = il s m; '/ *log m,

by (2.8.2) and (3.3.3).
From (4.4.2)-(4.4.4), we obtain for a positive ¢ and every i = 2,..., K that

(4.4.5) IY,,: = fll 2 Cm;'/2*e

with (v) the subsequence of all n such that i > I,.

On the other hand, by (3.5.2) in Lemma 3.5 [we can replace the requirement
f € A(M, R) there by d,(f) < CR™*] we obtain for every i and the subsequence
wof all nsuchthat i <1,

(4.4.6) m*(log m,,) " '|IY,, ; = Il = 0.
Relations (4.4.5) and (4.4.6) imply
(4.4.7) P{i,=1} - 1.

The result now follows by Lemma 3.5 applied to subsequences for which I, is
constant. The fact that Y, is constructed differently on the complement of
(i, = I,} and that it uses (1 — 1,)n observations can be neglected because of

(4.4.7) and because (1 — n,)n)" V% ~ n~1/2.O0
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5. Approximation by piecewise polynomials.

5.1 REMARK. For f in BU") (M), Theorem 3.7 gives a bound for the poly-
nomial estimate that is larger by a factor of log n than the best achievable rate
established by Halasz (1978) and Stone (1982) for estimates not necessarily
polynomial.

We describe a piecewise polynomial estimate and show it has the best
achievable rate. This has been done already by Halasz (1978) and, for another
estimate, by Stone (1982), but our result is more detailed in that it specifies the
constant involved in the order O(log n/n)/@ *Y; also of some interest is the
proof, which shows that the property is an easy consequence of approximation
theory results reviewed in Section 2.

5.2. Notation. Suppose A is a closed interval of fihite positive length. The
concepts of expanded Chebyshev points and the interpolant transformation .7,
introduced for the interval [0,1] in Sections 2.2 and 2.3, are easily redefined for
the interval A; £, so modified will be devoted by %, , and we assume the
interpolation is through the expanded Chebyshev points for A. In what follows,
the order of the polynomial approximation will be denoted by s rather than
by k. :

For an integer m, set A, = [(i — 1)/m,i/m] for i = 1,..., m and abbreviate
£, 4, to I

For f in B and f, the restriction of f to A, denote % f, simply by %;f and
set Z,,,f to be the function that agrees with £;f on A,. Since at the endpoints
a of A; we have (4;f )(a) = f(a), there is no ambiguity in the definition of 7,,,.

7., depends on f at s points in each of the subintervals A,,..., A,,. These
are k = sm — m + 1 points x,,; in [0, 1].

5.3 ASSUMPTION. Assume s is a positive integer and, for each n, m = m,, is
a positive integer, k= (s —1)m + 1 and ¢,,..., ¢,, are independent normal
(0, k/ n) random variables. For an f€ B, Y, is the estimate obtained by
applying 7, to the function with values f(x,,;) + ¢,; at x,,; for i =1,..., k.

5.4 THEOREM. Suppose M is a positive number, r a positive integer and
sup; means the supremum over f in B™(M). Suppose Assumption 5.3 holds and
s>r+ 1. Suppose

(5.4.1) . k,=arx,
~ with log a,/logn — 0 and «, as in (3.7.1). Then

Y 1+ A "rM(s_r)! s_1r+A 22,
—-— < —
S";p” n f”~ ( s)(4) s! a 8 2r+1

n

(5.4.2)

lOg n r/(2r+1)
X .
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PROOF. Set Z, = max;_,  le,l- From (3.3.4),

2an logn r/(2r+1)
(5.4.3) Z,~ 2r+1( ! ) .

Relation (2.5.2), when applied to an interval of length m ™!, allows a multipli-
cation of the right-hand side by m~". This and (2.2.2) then give

' [y Gt L
(5.4.4) Sl;PIIf TsF | < (1 +A )( ) 8' g
and (2.8.2) gives
(5.4.5) sup|| T, f = Y|l < A Z,.

; .

Since m ~ a,k,/(s — 1), (564.2) follows from (5.4.4), (5.4.5) and (5.4.3). O

5.5 REMARK. If, in Theorem 5.4, r = 4, s = 5, then (5.4.2) becomes, with
four decimal digit accuracy,

' logn\*?®
(5.5.1) supl|Y, — f|| < [2.0863Ma,;* + 0.7402a, ](—n——) .
f

The right-hand side is minimized by
(5.5.2) ' a, = 1.9985M%/%;
for this a,,, (5.5.1) becomes

log n
(5.5.3) sup||Y,,—f|151.1772M1/9( ,gl )
f

5.6 REMARK. The asymptotic bound (5.5.3) can be compared to that ob-
tained in Fabian [(1987), Remark 9] for the complete cubic spline estimate T),:

log n\*?
(5.6.1) supl|T, - f| < 2.869M1/9(—n—) .
f

Notice .that the bound in (5.5.3) is smaller than that in (5.6.1). The same
relation holds between the left-hand sides of (5.5.3) and (5.6.1) because in (5.6.1)
the estimate is selected from a smaller class of estimates. For the polynomial
estimate Y, we obtain from (3.7.4) with r = 4 that

logn
(5.6.2) supuY—fll<00462M1/9logn( i ) ;

the right-hand side of (5.6.2) is larger than that of (5.5.3) for n > (1.16)10"'. That
is, however, due to the inaccuracy of the asymptotic bounds for finite n; Table 8
gives quite different results.
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6. Bounds for |Y — £l

6.1. Introduction. We shall assume Assumption 2.7 with ¢, for i =1,..., %
independent normal random variables (0,1). Remark 6.5 discusses the case
Vare; # 1.

In Sections 3-5 we used a bound

(6.1.1) ”Y - Yk” S Aka
[see (2.8.2)]. We obtain easily a bound for the 8 quantile K4||y — f|l:
(6.1.2) Kﬁ”Y_ fk” S AkKﬂZk'

Call this bound N (it is obtained from simple properties of the norm A,).

We shall compare bound N with a bound S due to-Scheffé (1953) and a bound
W due to Wynn (1985). We shall mention some results on obtaining not bounds,
but the quantile Kg||Y — f,|| by numerical methods.

We shall find that, for large &, bound N is considerably better than bound S,
but the reverse relation is true for all £ > 2 and likely to be used. We shall find
that bound W is close and related to bound N.

Results by Knafl, Sacks and Ylvisaker (1985) and some other limited compu-
tation show that bound S overestimates the quantile Ky||Y — f,|. Notice that

k
(6.1-3) Y - fk = E liei = l,e.
i=1

6.2. Bound S. The estimate was originally proposed for another use, but
applied in our context, it provides a conservative bound.
Set

(6.2.1) z = Kpx(k),

i.e., set z equal to the 8 quantile of the square root of a x% random variable with
k degrees of freedom.

z gives an upper bound for the 8 quantile of s7Y|(Y, — f5)|l, where s(t) is the
standard deviation of Y,(¢). In our case, s? = 1*_,12 Table 1 gives values of m,,
the maximum of s, for £ = 2,...,15.

It follows that zm, is a bound for K;||Y, — f;ll and we shall consider this
weaker assertion since we are interested in the || || norm. We might also keep the
original stronger estimate. However, we should note that, with exception for
k = 2, the values s(¢) vary considerably with ¢ (see Figure 1) and replacing them
by the maximum may be an appealing modification even if the norm || || is not of
exclusive interest.

As k - 0, it follows from the asymptotic behavior of the x2(%) distribution
. that bound 8 satisfies S > y%. On the other hand, N ~ (1/7)y2 (log k)*/? by
(2.3.2) and Lemma 3.2 [notice that Var(e;) is 1 here and k/n there]. Thus, for %
large, N is a better bound than S, but for 2 = 3,...,15 (in fact for 2 up to about
50) the relation is reversed; see Table 3.
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I.10

k=8
1.00 ’\ y..N 2\

A%
SN

0.80 N N

0.70

0] 0.20 040 0.60 0.80 1.00
Fi16.1. The standard deviation s for k = 3 and k = 8.

6.3. Bound W. In (6.1.3), replacing ¢; by the maximum Z, of their absolute
values gives a bound

k
(63.1) P{m hI(D) = (ByZ) & Ili(t)I,Vt} > B,

i=1

This is bound W in our context. Changing it by making the bound a constant
and with similar justifications (see Figure 2) as for bound S, we replace ©*_,|Z;|
by its maximum A,. But this gives bound N.

Wynn addresses a more general problem than that of interpolation, but shows
that the more general problem can be reinterpreted as the special problem.

6.4. Exact bounds. Better bounds than bound S might be obtained, but not
easily. The method developed by Knafl, Sacks and Ylvisaker (1985) might be
used, but their numerical results are not applicable in our context because of a
difference in the design. On the other hand, their numerical results indicate that

TABLE 3
The bounds S and N
B = 0.95 B =0.99 B = 0.999
S N S N S N
2 2.448 2.236 3.035 2.806 3.717 3.481
3 2.795 2.985 3.368 3.668 4.033 4.485
5 3.378 4,033 3.944 4.850 4.599 5.839
10 4,437 5.623 4.996 6.606 5.641 7.813
15 5.225 6.633 5.779 7.706 6.417 9.034
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F1G. 2. The Lebesgue function Ay for (1) expanded Chebyshev knots, (2) equidistant knots.

bound S can be improved; that is also indicated by the asymptotic relation of N
to S (cf. Section 6.2). '

The author computed Kg||Y — f,||, approximately, by direct numerical in-
tegration of the distribution function for several values of 8 and for 2 = 2,3,4.
These are given in Table 4 and compared with bound S. The computation was
performed as follows: For & < 4 an explicit expression is possible and was used to
determine the maximum on [0,1] of X% ,l.e; for any given e. Then numerical
integration with respect to ¢; gave the distribution function of ||Y, — f|| and
from there the quantiles were determined. The precision seems to be that of the
last digit displayed.

The difficulty in direct computation for £ > 4 is that numerical integration is
more difficult or impossible and, perhaps more importantly, the maximum on
[0,1] of TX_,L.e;, with ¢; given, is difficult to determine. (The method described in
Section 2.4 might be used to determine the maximum.)

6.5 REMARK. The case of a known variance o2 of the ¢, is treated easily by
premultiplying by o the bounds already obtained for the special case of
variance 1.

TABLE 4
The B quantiles K of ||Y ~ f,|| foro =1,
compared with bound S
k= 3 k=4
B K S K S

0.95 2.4 2.80 2.6 3.10
0.99 3.0 3.37 3.2 3.67
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If 02 is unknown and V is a ¢%x%( f ) random variable independent of &, then
bound S can be again used, with z given by

|%4

1/2
K,k f))

(6.5.1) z= (k
instead of by (4.3.1).

7. Nonasymptotic considerations.

7.1. Introduction. We shall discuss here the nonasymptotic properties of the
polynomial estimates. Extensions to piecewise polynomials are almost im-
mediate.

Suppose Assumption 2.7 holds with ¢, independent normal (0, 6%). To reduce
the complexity of the tabulation, we assume o known.

Under Assumption 2.7, Theorem 2.8 yields the following bound for the 8
quantile K||Y, — f|| of the error ||Y, — f|| of the kth order polynomial estimate

Y,:
(7.1.2) KgllY, — fll < (,1 + Ap)d,(f) + B,

with B, a bound for Kg||Y, — f,|l. We use bound N for £ = 2 and the conserva-
tive but useful bound S for & > 2.

If f is known to be in a class of functions with a known bound D, for d,(f)
(as discussed in Section 2) we obtain a bound for K||Y, — f||, independent of f.

A bound D, may overestimate d,(f) considerably as we have shown in
Example 2.6, yet the bounds we discussed do not admit easy improvements.

In the next section we discuss situations in which % is chosen and a (tem-
porary) assumption is made that d,(f) is negligible. In Section 7.3 we discuss a
more conservative approach.

7.2. Case of k chosen, d,(f) negligible. It seems that in some practical
problems, one may be justified to select a k2 (say 5 or 8) and assume—tempor-
arily at least—that d,( f) is practically negligible. This can be done on the basis
of bounds for d,(f) described in Section 2, but often also by analogies with
many functions f for which d,(f) has been approximately determined as in
Hart et al. (1968).

This would be more justified in applications in which the estimate is quickly
put into use that further checks the accuracy of the estimate. (On the other side
of the spectrum, guessing % is also harmless if the estimate is never put into use.)

In other situations it may be that the interpolant f, of f itself is of a primary
concern as a smoother and simpler approximation to a possibly more com-
plicated f.

Every statistical method requires, in applications, an assumption of varying
strength, e.g., independence, normality, zero interactions and so on. Regression
applications of the classical theory often assume that the regression function is
or is approximately a polynomial of order 2 or 3.
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TABLE 5
The relative cost of estimating cl = k: one of k means; c2: simultaneously k means; c3: the
interpolating polynomial; c: overall cost of estimating the interpolating polynomial

B = 0.95 B =0.99 B = 0.999
k c2 c3 c c2 c3 c c2 c3 c
2 1.30 1.00 2.60 1.19 1.00 2.37 1.12 1.00 2.24
3 1.48 1.37 6.10 1.30 1.32 5.13 1.19 1.26 4.51
4 1.62 1.55 10.02 1.38 1.47 8.12 1.24 1.40 6.92
5 1.72 1.73 14.86 1.44 1.63 11.72 1.28 1.53 9.77
6 1.80 1.90 20.55 1.49 1.78 15.88 1.31 1.66 13.00
7 1.87 2.06 27.05 1.53 1.92 20.57 1.34 1.77 16.59
8 1.94 2.22 34.34 1.57 2.05 25.76 1.36 1.89 20.53
9 1.99 2.37 42.41 1.60 2.18 31.45 1.38 2.00 24.79
10 2.04 2.51 51.25 1.63 2.31 3762 ° 140 2.10 29.39
11 2.09 2.65 60.84 1.66 2.43 44.27 141 2.20 34.30
12 2.13 2.79 71.18 1.68 2.55 51.38 1.43 2.30 39.53
13 2.16 2.92 82.26 1.70 2.66 58.97 1.44 2.40 45.06
14 2.20 3.06 94.06 1.72 2.78 67.01 1.46 2.50 50.90

15 2.23 3.18 106.61 1.74 2.89 75.51 147 2.59 57.04

Suppose now £ is chosen and d,( f ) is negligible. Then an approximate bound
for Ky||Y, — £l is By [see (7.1.1)] with B, /o independent of o.

Consider n independent normal observations available, with the standard
deviation o. If all are used to estimate one value, the 8 quantile of the error is
dy=09,_o// Vn with @ =1 — B and ¢, the standard normal y quantile. If
n/k observations are used to estimate by Y; the value f(x;), the 8 quantile
Kp|Y; — f(x;)| of the error is d, = dyk . The B quantile of the maximum error,
Kgmax,_, . oY, — (%)l is dy = d\@p /Py oo With By = (1 + B'/*)/2. Finally
d3 = B,, is a bound for Kg||Y, — flI.

We can keep d; equal to d;_, if we increase the number n of observations by
a factor of ¢; = (d;/d;_,)%. These relative costs are tabulated in Table 5 includ-
ing the cost ¢ = (d;/d,)> It is apparent from Table 5 that the most costly step
is that from estimating one value to estimating 2 values. For 8 = 0.99 and
k = 10, that step has cost 10. The next step has only cost 1.63 and the last step
only costs 2.31. The overall cost is 37.62; it is 37.62 times more expensive to
estimate the interpolating polynomial f,, than to estimate one value. Table 5
shows such costs for other a and other k.

7.3. The overall error for f in A(R, M). Sometimes it may be known, from
the theory of the applied field (e.g., from chemical kinetics) that the estimated
function is in a class A(R, M) [or in a class B")(M)] or such an assumption
may be accepted as a weakening of the assumption that d,( f) is negligible.

We shall consider here f in A(R, M) and polynomial estimates. By rescaling
we may reduce the considerations to the case M = 1.
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TABLE 6
Upper bound for the error Kg||Y,, — f|| of ¥, for f in A(R,1) and B = 0.95

R=2 R=4
k e: 005 0.01 0.001 0.05 0.01 0.001
2 2.5873 2.5228 2.5082 0.4985 0.4339 0.4194
3 1.5335 1.4347 1.4124 0.2410 0.1422 0.1200
4 0.9196 0.7930 0.7645 0.1900 0.0634 0.0349
5 0.5954 0.4412 0.4065 0.2011 0.0469 0.0122
6 0.4370 0.2557 0.2149 0.2288 0.0475 0.0067
7 0.3690 0.1610 0.1142 0.2606 0.0526 0.0058
8 0.3492 0.1147 0.0620 0.2932 0.0587 0.0060
9 0.3544 0.0939 0.0353 0.3257 0.0652 0.0066
10 0.3727 0.0863 0.0219 0.3579 0.0716 0.0072
11 0.3975 0.0855 0.0153 0:3900 0.0780 0.0078
12 0.4257 0.0882 0.0123 0.4218 0.0844 0.0084
13 0.4554 0.0926 0.0110 0.4535 0.0907 0.0091
14 0.4859 0.0980 0.0107 0.4849 0.0970 0.0097
15 0.5167 0.1037 0.0108 0.5162 0.1032 0.0103
R=6 R=38
k e: 0.05 0.01 0.001 0.05 0.01 0.001
2 0.2478 0.1832 0.1687 0.1702 0.1057 0.0911
3 0.1549 0.0560 0.0338 0.1361 0.0373 0.0151
4 0.1639 0.0373 0.0088 0.1600 0.0334 0.0049
5 0.1937 0.0395 0.0048 0.1929 0.0388 0.0041
6 0.2268 0.0455 0.0047 0.2267 0.0454 0.0046
7 0.2601 0.0520 0.0052 0.2600 0.0520 0.0052
8 0.2930 0.0586 0.0059 0.2930 0.0586 0.0059
9 0.3256 0.0651 0.0065 0.3256 0.0651 0.0065
10 0.3579 0.0716 0.0072 0.3579 0.0716 0.0072
11 0.3900 0.0780 0.0078 0.3900 0.0780 0.0078
12 0.4218 0.0844 0.0084 0.4218 0.0844 0.0084
13 0.4535 0.0907 0.0091 0.4535 0.0907 0.0091
14 0.4849 0.0970 0.0097 0.4849 0.0970 0.0097
15 0.5162 0.1032 0.0103 0.5162 0.1032 0.0103

In Tables 6 and 7, the values depend on o; we do not label them by o,
however, but by the half-width e of the 8 interval estimate of the mean based on
a normal random variable with variance o2, i.e.,, we compare all other error
bounds to a corresponding bound one would get when estimating one function
value, instead of k.

Table 6 shows the dependence of the error bound on R, % and e for 8 = 0.95.
Table 7 shows the dependence of the error bound on R, e and B in case & is
selected to minimize the bound.

Table 8 shows bounds for the 0.95 quantile of the error for polynomial
estimates and for the piecewise polynomial estimate described in Section 5 for f
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TABLE 7
Upper bound for the error Kg||Y, — f || of the estimate Y, for f in A(R,1) and optimal k

R=2 R=4 R=6 R=8

e B k Bound k Bound k Bound k Bound
0.050 0.950 8 0.3492 4 0.1900 3 0.1549 3 0.1361
0.050 0.990 9 0.3092 4 0.1742 3 0.1446 3 0.1258
0.050 0.999 9 0.2778 4 0.1632 4 0.1372 3 0.1187
0.010 0.950 11 0.0855 5 0.0469 4 0.0373 4 0.0334
0.010 0.990 11 0.0740 6 0.0420 4 0.0341 4 0.0302
0.010 0.999 11 0.0661 6 0.0382 4 0.0319 4 0.0280
0.001 0.950 14 0.0107 7 0.0058 6 0.0047 5 0.0041
0.001 0.990 14 0.0092 7 0.0051 6 0.0042 5 0.0036
0.001 0.999 15 0.0081 7 0.0046 6 . 0.0038 5 0.0034

TABLE 8

Upper bounds for the 0.95 quantile of the error for polynomial and piecewise polynomial estimates
for f in B®(1); optimal k and m

Piecewise
Polynomial Polynomial
e k Bound m Bound
0.0500 5 0.238229 1 0.238229
0.0100 5 0.054165 1 0.054165
0.0010 7 0.007716 2 0.007156
0.0001 10 0.001134 3 0.000933

in B®(1) and for different e with the same meaning as in Tables 6 and 7. Bound
N was used. The 2 and m were chosen optimally, s = 5.
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