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A NOTE ON THE VARIANCE OF A STOPPING TIME!

By ROBERT KEENER
University of Michigan
Let {S, = Z?X,},» o be a random walk with positive drift p = EX, > 0
and finite variance o = Var X;. Let 7(b)=inf{n>1: S, > b}, R, =
S,y — b, M =min,, (S,, 7" = 7(0) and H = S,+. Lai and Siegmund show
that Var 7(b) = ba?/p® + K/u? + o(1) as b — oo, but give an unpleasant
expression for the constant K. Using the identity [ER(R_,) dP(M < y) =

Er*h(H)/Er*, the expression for K can be simplified to a form that
depends only on moments of ladder variables.

Let X, X,, X,,..., be iid. with mean p > 0 and finite positive variance o”.
Let S, =0, S, = X , X, and define 7(b) = inf{n: S, > b}, R, = S,,) — b, M =
min,, . ,S,, 7" = 7(0) and H = S,.. Lai and Siegmund [(1979), Theorem 5] show
that if X is nonlattice and E(X*)3 < oo, then

bo? K
Varr(b) = — + =z + o(1)
w

as b — oo. The expression they give for the key constant K is

o2EH? L3 EH?\* 2 EH® EH?EM
ouEH 4\ EH 3 EH EH

2 ER P(M < -x) dx.
0 X

Similar constants arise in the expansions for the variance of stopping times for
curved boundaries given by Zhang (1984). Since moments of the ladder height H
can be obtained from recursions or quadrature formulas derived from Spitzer’s
(1966) identity [see Chapter 2 of Woodroofe (1982)] and EM = EH?/(2EH) —
EX?/(2p), the most troublesome term when computing K is the integral
involving ER,. Using the following theorem, this integral can be expressed in
terms of ladder variables and EM as

EMEH? EH®EH:* EH*"
+ —_
2EH 2EHET* 2ET™

(1)  [TER.P(M < -x)dx= -
0
and the constant K then simplifies to ,

o2EH? 3(EH2)2 2 EH® EH?EH:* EH%**

—_—t = - = - +
2uEH 4\ EH 3 EH EHE+* Er*
Let G denote the distribution of M.
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THEOREM 1. If h > 0, then
dG Et*h(H)
JEn(R-,) d6(3) = =55

This identity in the special case where A(x) = x? appears as equation (23) of
Siegmund (1979) or equation (10.34) of Siegmund (1985). The proof given here
uses the same argument.

To obtain (1) from this result, define the ladder epochs 1-0 =0, ;' =7% and
Tor1=inf{k > 17" §,> 8.} for n> 1 For n>0, let H, , =S — 8., so
H, H,,... are iid. and H, = H. Let 7(2) = inf{(n: ¥ H; > z}, so 'r(z) THz2)
and 7@ H, = z + R,. The following identity is due to Lorden (1970):

7(2)
2[3 dx=-R*+ Y HZ
n=1
By Wald’s identities,
7(z)
E ) H?=E#(z)EH?
n=1
and
g+ z+ ER,
7(z) = TH
So
ZER dx 2EH? EHZER, lER N
= + —_ — .
fo x 2EH 2EH 2 F

By Fubini’s theorem and Theorem 1,

waERxP(Ms —x)dx = ffms _ER, dG(y) dx

yEH? EH?ER_, 1 ert e
—_ + _— —
f 2EH 2EH 5 BRZ, | dG()

EMEH? EH2EH+* EH?+
+ - .
2EH 2EHE+* 2E+*

Theorem 1 will be proved using the following lemma. The proof is based on
the duality principle, and the lemma is a corollary of various standard results,
such as Lemma 18.4.1 of Feller (1971) or Theorem 2.7 of Woodroofe (1982).
E[Y; A] denotes EY1,.

LeEmMA 2. If h > 0, then

Eh(M) = ):E[h(s) S, <0,...,8,<0].

E+
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ProOF. Let J =sup{n > 0: S, = M}. Then
{(J=7}={828,0<k<j,8,>8,k>j}
and
E[h(M); J=j] = E[A(S); $,2 8,0 <k </, 8, >0,k > ]
= E[A(S); S, 28,0 <k <j|P(S,>0,n > 1)
= E[R(S); S, <0,1 <k <j|P(r" = ),
where 7~ = inf{n: S, < 0} and the last equality follows by reversing X,..., X

ne

Lemma 2 follows by summing over j and using the identity P(1~ = «) = 1/E7*.

O
ProoF oF THEOREM 1. First note that for any n > 0 and y < 0,
Eh(R_)) = mZIE[h )i m(—y) = m]
= i E[h(S,+¥);S,< -y,1<k<m,S,> —y]
= i E[h(Spin— S+ );
S, <-y+8,n<k<n+m,S,,,>-y+85,].
Using Lemma 2,
f_OwEh(R_y) dG(y) = — ,io m}iE[h( )
S,<0,1<k<m+n,S,,,>0]
=E1 i nE[h(S,); S, <0,1<k<n,S,> 0
1 " :
=T Et*h(H). o
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