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Consider the regression model Y; = g(t;) + ¢, 1 < i < n, with nonran-
dom design variables (¢;) and measurements (Y;) for the unknown regression
function g(-). We assume that the data are heteroscedastic, i.e., E(e?) =

a? # const. and investigate how to estimate o?. If 6? = 02(¢;) with a smooth

function ¢2(-), initial estimators 67 can be improved by kernel smoothers

and the resulting class of estimators is shown to be uniformly consistent.
These estimates can be used to improve the estimation of the regression
function g itself in parametric and nonparametric models. Further applica-
tions are suggested.

1. Introduction. We consider the heteroscedastic regression model
(1'1) Yi,n=g(ti,n) +ei,n’ 1_<_iSn,

where we omit indices n whenever feasible and assume that the design {¢,,..., ,}
is fixed. The r.v.’s (Y;) are measurements of the unknown regression function g:
[0,1] —» R, contaminated with errors (¢;), which are assumed to have expectation
zero and are independently but not identically distributed. There are two main
approaches to estimate the regression function g: the parametric approach,
which assumes that g follows a parametric (linear or nonlinear) model and the
nonparametric approach [Priestley and Chao (1972) and Reinsch (1967)], which
only assumes that g is “smooth.” The problem of heteroscedasticity, i.e., of
nonconstant error variance, is generally recognized by applied statisticians dealing
with regression methods who usually judge by looking at residual plots whether
the model should be heteroscedastic or not and what the approximate behavior
of the error variance is [Anscombe and Tukey (1963)]. However, it is well known
that such subjective judging by eye can be quite misleading.

It is the aim of this paper to develop objective methods for estimating the
variances of the errors under minimal assumptions on the regression model (1.1).
As a first step, we consider initial variance estimates which are squared weighted
sums of m (a fixed integer > 2) observations neighboring a fixed point where the
variance is to be estimated. Since these initial variance estimates are not
consistent, we smooth them with a kernel estimate. The resulting final estimator
of the local error variance is shown to be uniformly consistent.

In order to establish results for the proposed estimator, we consider the initial
variance estimates as coming from a nonparametric regression model. In order to
analyze this model, we have to investigate kernel estimators for m-dependent
data. We derive a uniform consistency result for general linear estimators in the
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case of m-dependent data (Lemma 5.2), which is then specialized to the case of
kernel estimators (Theorem 5.1). An application of the latter result then yields
strong uniform rates for our local variance estimator (Theorem 3.1).

Among the possible applications, we discuss in more detail the estimation of
optimal weights in weighted linear regression and the estimation of optimal local
bandwidths in nonparametric kernel regression. For the first problem, we obtain
as a solution an asymptotically efficient weighted least-squares estimate (Theo-
rem 4.1), extending a result of Carroll (1982). For the second problem, we show
that by substituting our local variance estimate and an estimate of a higher
derivative of the regression function into the asymptotic formula for the optimal
local bandwidth, the resulting variable bandwidth kernel estimators perform
better w.r.t. integrated mean squared error (IMSE) than constant bandwidth
kernel estimators supplied with the asymptotically optimal bandwidth (Theorem
4.2).

Estimation of the local variance has been considered in the context of simple
linear regression with the aim of estimating optimal weights for weighted least
squares by Fuller and Rao (1978) and by Carroll (1982). The estimate of Fuller
and Rao, based on local squared residuals, was improved by Carroll who
proposed to smooth neighboring squared residuals with the kernel method and
derived rates of convergence for this estimate. Carroll’s approach was shown to
be superior in a simulation study by Matloff, Rose and Tai (1984). An estimate
for a constant variance in a nonparametric regression model, which will be
discussed in Section 2, was proposed by Rice (1984).

The organization of the paper is as follows:

In Section 2, the initial variance estimators are discussed, including some
optimality considerations. Section 3 contains an investigation of the final
kernel-smoothed local variance estimators. The results needed here on uniform
convergence rates for weighted averages of m-dependent random wvariables,
which are of interest in their own right, are compiled in Section 5. In Section 4,
applications of the variance estimates to various statistical problems are pro-
posed.

2. Initial local variance estimates. For the error variables we make the
following:

AssuMPTION A. The error variables (¢;) are independent, E(e;) = 0, and
there exist a constant y € (0,1] and a.function ¢%(¢) € Lip ([0,1]) such that
E(e?) =0%(¢t), 1 <i<n.

Here, the local variances are assumed to vary smoothly (i.e., to be Lipschitz
continuous of order y). We consider the local variance at ¢, , an interior point of
[0, 1], and write o = o*( t,,) and g, = g(t, ). The proposed class of initial local
variance estimates at ¢, is given by

2
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(2.1) d = ( )y Y,
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where m > 2 is a fixed integer and j, = —[m/2], j, =[m/2 — }]. Here [a]
denotes the largest integer < a. In order to obtain an asymptotically unbiased
estimate, we have to require that

J2 Jo
(2.2) Yw=0 and ) «f=1.
J=h J=h

Furthermore, we assume that there exists a function p () € Lipy([0, 1]) for some
B € (0,1] s.t.
(2.3) . E(e}) =pyt) <o, forl<is<n,pgo=mp4t,)
We require the design (;) in the regression model (1.1) to be a regular sequence
in the sense of Sacks and Ylvisaker (1970) generated by a design density f, i.e.,
¢, i—1 .

(2.4) fof(x)dx—m, i1=1,...,n,
where f € Lip,([0,1]) is positive on [0,1]. Obviously, this implies that
max, _; (¢ — t;,_;) = O(n™1).

LEMMA 2.1. Assume that Assumption A and conditions (2.2)—(2.4) hold and
that g € Lip,([¢,, — 2, t,, + z]) for some z > 0. Then

() E(52) = o + O(n~mnee7),

(2.5)

Jo
(i) Var(62) = (pgo— 30¢) L @} + 204 + O(n~ ™0 (*ED),

J=h
PRrOOF.
J2 2
(i) E E wj(8j+vo+g(tj+vo)))
J=N

=K

Ja Ja 2
> w;gi, t+ 8 > w; + o(n™%)
J=h J=h

Jo
= o5 Z w?+0(n77) + O(n~2%), by Assumption A and (2.2).

J=h

(i) Var(é?)=E

J2 ' 4
ZWWJOMﬂH—¢+me“W

J=h
J
= 4o Yy wf + 3 Yy w?wj?o(;‘ — a4+ 0(n™%)
J=h )
+0(n=#) + O(n—minCxM),
By (2.2), we obtain (2.5)(ii). O
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Observe that p, o — 304 = 05 v2, Where v, = (p4,0/0 }) — 3 is the kurtosis [see
Kendall and Stuart (1969)] If the error variables (¢; ) are normally distributed,
then y, = 0, and hence in this case the variance of 67 does not depend on the
choice of weights, provided (2.2) holds.

In other cases it is possible to minimize the variance if one knows whether vy,
is positive or negative. In case m = 2 the weights («,) are completely determined
by (2.2) to be w; = 1/V2, wj, = -1/V2. ConSIdermg cases m > 3, we write
w = (w;, ;,)- Minimizing the variance of G2 corresponds to minimizing or
maximizing (accordlng to the sign of v,) S(w) = 212_ 2 i wj under the side condition
(2.2).

The following results on this variational problem can be obtained:

(i) If m = 3, we see that S(w) = § for all weights satisfying (2.2).
(i) If m=2p, p>2, S(w) is m1n1m1zed by the weights w* = (—-1)%/vm Vm,

J1 £J < Jp, where e; € {+1} and Z‘,J?_Jel = 0; these weights y1eld S(w*) =1/m.

(i) If m = 2p + 1, p>2, S(w)is minimized asymptotically (for large m) by
the weights

2 . . .
. { £/ (p(p+ 1)p + 1)), h<i<itm
2 . . .
F(p+ 1)/ (s + D@+ 1) it <i<iy

or any permutation, yielding S(w*) = (#® + (p + 1)3)/m%u(p. + 1).
(iv) If m > 4, S(w) is maximized asymptotically by the weights

en | ER =D/ (m(m = 1), =g,
’ F1/(m(m - 1))%, L <J <

or any permutation, yielding S(w**) = ((m — 1)® + 1)/(m*(m — 1)).
(v) Examples are for

m=3: W= %(1,—2,1), S(w)=%,
m=4: w* = l(1, -1,1,-1) S(w*) = ~1—
2 ’ ’ 4’
w**=—1—(—1 -1,3,-1) S(w**)=l
2/ 7 T 7 12’
1 7
m=5: w* = E(Z -3,2,-3,2), S(w*) = 30’
w**=—1—(—1 -1,4,-1,-1) S(w**)=£3~.
o5 b TbA LD, 20

In order to estimate a constant global variance in a nonparametric regression
model, Rice (1984) proposed the special cases for m = 2 and m = 3 of the above
estimators. A related idea was already discussed by Breiman and Meisel (1976).
Another approach that was, e.g., considered by Silverman (1985), is to estimate a
global or local variance by taking a moving average of squared ordinary (or
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deleted) residuals. An analysis of the latter proposal shows that (2.2) is ap-
proximately satisfied, but the remainder terms in (2.5) get worse. This reflects
the empirical finding that this method entails a relatively large bias as compared
to our approach.

3. Kernel smoothing of initial local variance estimates. Within the
framework of Assumption A and condition (2.4), which we assume in the
following, we proposed initial variance estimates in Section 2 that, however, are
not consistent according to Lemma 2.1. In order to overcome this difficulty and
to obtain consistent estimators, it is a natural approach to smooth neighboring
values of 62 exploiting the smoothness properties of o2(-).

For this purpose, we view the initial estimates 6% as measurements coming

from the following regression model:

(3.1) 62, =0%(t;,,) +&, 1<i<n.

In order to analyze this model, we assume that the original error variables in
Assumption A [see (1.1)] satisfy, in addition,

(3.2) E(le)**) <M < 0, forl <i < nandsomes > 1.

Now it is easy to see (using Lemma 2.1) that the error variables &, , satisfy the
following Assumption B with p = min(2¢, y) (for a see Lemma 2.1, for y see
Assumption A).

AssUMPTION B. The error variables ¢; = (¢; ,);_;, , form a triangular array
of rowwise (m — 1)-dependent r.v.’s [m > 1, see, e.g., Billingsley (1979): ¢, ¢, are
independent for |i — j| > m — 1] and satisfy E(Je; ,|°) < M < co for some s > 2
and max, _;_,|E(e; ,)| = O(n™") for some p > 0.

For carrying out the smoothing procedure, we apply the kernel estlmators [see
Gasser and Miiller (1984)]

=‘,21fs k|2

(3.3)
t:+ ¢t
with s =0,s,=1,s; = ’—2;“,15j5n—1.
The sequence of bandwidths b = b(n) has to satisfy
(3.4) b—->0, nb- o0, asn— o,

and K denotes the kernel function. leen an integer 2 > 0 and a { € [0, 1], we
require that K € #,  ,, where

M= {heLip([-1,1]): support(h) = [-1,1],
(3.5) 0, 0<j<]k+¢[,
/1 h(t)t/dt =1, j=0,
o By #0, j=1k+¢l,
where ]k + {[ denotes the smallest integer > & + {.
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For the following main result we introduce the smoothness classes

S, :([0,1]) = {g € €*([0,1]) and g™® e Lip,([0,1])},

where { € [0,1], £ > 0, is an integer and Lipy([0,1]) := #([0,1]). A straightfor-
ward application of Theorem 5.1B and Lemma 2.1 now yields the following
convergence properties of the estimators (3.3), observing that the assumptions
made imply Assumption B with p > 1 for model (3.1).

THEOREM 3.1. Assume that o%(-) € S, ([0,1]) for some integer k> 0
and some 0 < { <1, such that k+ ¢ > 3, and that g € Lip([0,1]) for some
a > . Furthermore, suppose that K € #, . N Lip,(R) and that for some
§>4+2k+§)7Y E(e)*) <M< o, 1<i<n, in the model (1.1). If the
bandwidth in (3.3) is chosen according to b ~ [log n/n]"@**+)*D we obtain

log )(k+§)/(2<k+§>+1>)

a.s.,

(3.6) sup |6%(¢) — o%(t)| = O((
tel
for any compact subinterval I c (0, 1).

REMARKs. (i) Using modified boundary kernels [compare Gasser and Miiller
(1984)] or assuming that data are available on [—2,1 + z], for some z > 0, the
uniform consistency result extends to [0, 1].

(i) In case we replace in (3.6) the a.s. convergence by convergence in probabil-
ity, the moment requirements can be weakened, assuming only s> 2 +
(k + §)71; according to Theorem 5.1A they depend on the rate to be attained.

(iii) Carroll (1982) assumes for his related Theorem 5.1 that 2 =1 and ¢{ = 0
and obtains in the linear regression model n~1/# as the rate of convergence.
Under the same smoothness assumptions, we obtain in the nonparametric model
a rate of (log n/n)'/3. If ¢%(-) is sufficiently smooth, the rate can be improved
further.

Our rates correspond to the optimal ones given for a different model by Stone
(1982).

(iv) The bandwidth for 6(-) can be chosen by cross validation suitably
modified for (m — 1)-dependent data. Preliminary simulation results are encour-
aging.

(v) The result remains unchanged if we have multiple measurements at each
point ¢;, that is,

Yi=g(t)+e;, 1<i<nl<j<m>l1,
and
1 ™ —1\2
5 = X (Y,-%).

mi_ 1j=1

(vi) Our approach generalizes easily to the multivariate regression problem g:
R¢ > R, for some d > 1. Here we base the initial estimates (2.1) on the m
nearest neighbors of a given point ¢t € R% Then we use multivariate kernel
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estimators, as described in Miiller (1983), and obtain again a uniform conver-
gence result if 2k + d > kd and K € #, ,, (obvious generalization): the rate of
convergence is (log n/n)%+$/@k+8+d)

4. Applications of local variance estimation.

4.1. Possible applications of local variances. We suggest here several appli-
cations of local variance estimation and explore two proposals further.

(i) Controlling the error of measurements over time. Considering, e.g., longi-
tudinal regression studies, there is a genuine interest to observe the behavior of
the error variance over time. The main objective is to draw conclusions on the
underlying mechanism generating the data, but another aim is to control the
accuracy of the measurements that may decrease during the course of time
because the measurement devices lose precision or the measurement team works
less carefully.

(ii) Choice of optimal design in nonparametric regression. If, in a 'nonpara-
metric setup, a constant bandwidth kernel estimator is used to estimate g, we
can find for a follow-up study the optimal design density f *, given by f *(¢) =
o(t)/[jo(x) dx [see Miller (1984)] and a natural estimate for f* would be
f*(¢) = 8(2)/[{3(x) dx, employing (3.3).

(iii) Improvement of the estimation of the regression function itself.

(a) A first possibility, applicable to parametric and nonparametric regression,
is the transformation of the data towards homoscedasticity by Y; — Y,/4(t,),
fitting then a parametric or nonparametric regression curve g (e.g., by ordinary
least squares in the parametric case). Afterwards we retransform and obtain the
estimate g(¢;) = &(¢,)6(t,).

(b) In the case of parametric regression under Assumption A, we know by the
Gauss—Markov theorem [see, e.g., Rao (1973)] that an optimal unbiased linear
estimator for the parameters is given by the weighted least-squares method. The
optimal weights are 1/0%(¢;) and can be estimated by 1,/62(t;) [6(t;) defined in
(3.3)]. We will show in Section 4.2 that weighted least-squares estimators with
weights 1/6(¢;) are asymptotically efficient. A related procedure for linear
regression models was investigated by Carroll (1982), Matloff, Rose and Tai
(1984) and Rose (1978).

* (¢) In the case of nonparametric regression one could use 4(-) to do weighted
kernel estimation. This is of interest if the local variance changes considerably on
intervals of length b, since the smoothing window of the kernel estimate is
[¢ — b, t + b]if the curve is to be estimated at ¢. But asymptotically (for a large
number of observations) this method is equivalent to the ordinary kernel
estimate since then b — 0 and o?(-) is approximately constant on [¢ — b, ¢t + b].
Another improvement of kernel estimation is to choose estimated local optimal
bandwidths instead of global (constant) bandwidths by applying 6%(-). Details
will be given in Section 4.3, where we shall show that the integrated mean
squared error (IMSE) can indeed be reduced by this local bandwidth choice.
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4.2. Data adaptive efficient parametric regression. In this section we deal
with the following parametric model (4.1), which is a special case of model (1.1):

(4.1) Yi=a(t,)"0+e, 1<i<nO<t<- <t <l,

where a(t)T = (a,(t),.. a,(t)) is a vector of p < n linearly independent given
functions on [0,1]; then the matrix A = (a,(t,))7 ,-, has full rank p for
sufficiently large n, where the points of measurements (tk) follow (2.4). 6 € R? is
a vector of unknown parameters that have to be estimated. Furthermore, we
assume that (4.1) is heteroscedastic, that is, Assumption A is in force and that we
can neglect boundary effects. It is well known that the best linear unbiased
estimator in the sense of the Gauss—Markov theory is the weighted least-squares
estimator f, the minimizer of

(4.2) h o_Q(tj)(Y} - a(tj)Tﬂ)2 =min! wurt.0 € R”.
j=1

Usually, ¢%(+) is unknown and our suggestion is to estimate 8 by 6, which is the
minimizer of (4.2), with 0~2(-) replaced by ~%(-), the variance estimate (3.3).
The following result shows that this adaptive procedure is asymptotically
efficient and that we lose nothing when replacing o2(-) by 6%(-) in (4.2) in terms
of the asymptotic distribution.

THEOREM 4.1. Assume that for the heteroscedastic regression model (4.1)
under Assumption A and (2.4) we have E(|¢;)|?*) < M < oo for some s > 2,
l1<i<n, o))€e L1p1([0 1]) and infj, 1]o(t) > 0. Furthermore, assume that

a,(+) € Lip,[0,1] for1 < i < n, for some a > L. If b and § are defined as above
and if we use for the kernel smoother (3.3) defining 62(-) bandwidths b satisfying
b —> 0, nb® > oo and liminf,_, (1/n2)(nb/logn)*"> 0 as n — oo for some
1 € (0, s — 2), then we have

n%(§-6)->,0, asn— .

Therefore, 8§ is asymptotically efficient since n*/%(6 — 8) is asymptotically nor-
mally distributed.

REMARKs. (i) Under the assumptions of Theorem 4.1, a weaker version of
Theorem 5.1A gives sup,cpg158%(t) — 0%(t)] = 0,(1) as n — oo according to
Remark (ii) after Theorem 5.1.

(i) In the case of simple linear regression, a similar result was obtained by
Carroll (1982), Theorem 1, where the (,) are assumed to be random.

(iii) A multivariate version is possible [compare Remark (vi) after Theorem
3.1].

PROOF. Subtracting the normal equations for the weighted least-squares
estimators § and 6 one from another, we obtain [writing a;, = a,( t;), 0; = o(¢;)
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and 6; = 6(¢;)]

p=1 i=1 i i
p 1 2 a,a, [62
~ iAY i
= X6 -6)| - X 5|5 -1
p=1 ni-y 07 |0
1/2 A (a9 2
+n2 Y 02A2(0,~ o; )s,, 1<A<p

Writing

we find, using Riemann sums for integrals, that

QTQ'*Q=(f (t)ay(t) fZ(()) ) l1<i,k<p,asn— oo.

Q is positive definite, hence regular and thus @' has bounded elements.
Observing now that

nl/z(ﬂu - 0;) = 0,(1), max |o — 02| = 0,(1) [see Remark (i) above]

and that the equation above can be written

QT@n*(8 — 6)(1 + o,(1)) = n—1/2(

n

a A n
:32 (0i2 - 0i2)£i + 0,(1),
i=19i0; A

it suffices to show that the right-hand term in the last equation tends to zero in
probability in order to prove Theorem 4.1. This can be shown by tedious
calculations, demonstrating that the first two moments tend to zero, where we
use

62— o2 = b[(

the compact support of K, the dependence structure of (& 2(t )) and (e;): ((6(¢;))
are (m — 1)-dependent and G(¢;) and e; are independent if |j — i| > m/2, the
uniform boundedness of the a;, and the fact that E(6%(t;)) — o) = O(1/n) by
Lemma 2.1. O

) ( (t ) — o/ ) + 0(1), uniformly in i,

4.3. Improvement on nonparametric regression. The idea here is to vary the
bandwidth in nonparametric kernel regression locally and to smooth more at
points where high residual variances occur. We show that such a procedure,
which is a generalization of local bandwidth variation as proposed by Miiller and
Stadtmiiller (1987), reduces the integrated mean squared error (IMSE) of kernel
estimates.
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Given a function b,: [0,1] = R ,, we define variable bandwidth kernel estima-
tors in the model (1.1) by

(4.3) &t,b) = + f [ K(t; u) duy,

t

If b, = b= const, i.e, if § is a global bandwidth estimator, we refer to it as
G(-, b).

Minimizing the asymptotic mean squared error (MSE) of (4.3) w.r.t. the
bandwidth & yields under suitable assumptions (g € S, , and using a kernel
K € #,) the locally optimal bandwidth

e e [LLY o2(t) \VEHD
(44) © 7\ n 2k BE f(2)g®(t)?

where V = [K(x)%*dx and I?k = (—1)*/K(x)x* dx/k!. For the globally optimal
bandwidth b* of G w.r.t. IMSE see Gasser and Miiller (1984). From (4.4), local
bandwidth variation would be desirable w.r.t.

, provided g®(¢) # 0,

(a) local variance of the error (heteroscedasticity) o%(-);
(b) local nonequidistancy of the design f(-);
(c) local curvature of the true function g(®(-).

A complete procedure for (c) was worked out in Miiller and Stadtmiiller
(1987), using pilot estimators of g‘*)(¢). The simulation study provided there
demonstrates for various examples the superiority of local bandwidth choice over
global bandwidth choice already for small samples. Silverman (1984) showed that
smoothing splines adapt locally like (b), but not with the correct exponent. In
the general situation one would like to adapt w.r.t. (a)—(c) jointly. This can be
done by replacing in (4.4) ¢%, f and g® by consistent estimates, obtaining a
consistent estimate of b,. From a theoretical point of view such a procedure
might be quite noisy [compare Hall and Marron (1987)] but our simulation
results are encouraging. .

If we use a density estimator f for f (e.g., kernel estimator) if f is unknown, &
for o (3.3) and G® for g®, we obtain under mild conditions that these
estimators are weakly consistent for any ¢ € [0,1] (neglecting or modifying for
boundary effects). Such conditions are given by Parzen (1962) or Rosenblatt
(1956) for f, by Gasser and Miiller (1984) for G® and by Theorem 5.1A,
observing Remark (ii) after Theorem 3.1, for §. Writing b, for the resulting
estimate of b* and setting

bY = inf{bt*, vn‘l/(““)}
and
b, = inf{I;t, on~1/@%+DY - for some large v > 0,
we arrive at

(4.5) b/b) >,1, asn— co.
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Applying the results of Miiller and Stadtmiiller (1987) and the uniform integra-
bility lemma of Stadtmiiller (1986b), we can show

THEOREM 4.2. Under the assumptions above and [ig™®)(¢)?dt > 0 we have
(4.6) limsup (IMSE(£(¢, b,)) /IMSE(G(¢, b*))) < 1,

n—oo

and if g®(t) # 0 on [0,1], the limit of the l.h.s. of (4.6) exists and is equal to

JRCEOY0) A FE0) K dt/ (['o*r1(0 dt)Zk/(zkH)
(47) °° 0

b

1/@k+1)
X (flg(k)(t)z dt)
0

which is at most 1 by Hélder’s inequality.

Theorem 4.2 shows that a local bandwidth estimator with consistently esti-
mated local bandwidths behaves never worse than a constant bandwidth estima-
tor using the optimal bandwidth b w.r.t. IMSE. Moreover, the result shows that
in case of equidistant data, i.e.,, f =1, local bandwidth variation is especially
rewarding if o(-)2%/2%*D and g(*¥)(-)2/@#*D are close to be orthogonal in L2,
that is, e.g., if o(-) is approximately antisymmetrical and g*)(-) is approxi-
mately symmetrical around 0.5 or vice versa.

5. Rates of uniform convergence. In this section we prove a rather
general result on strong uniform convergence of weighted averages in Lemma 5.2,
which is applied to kernel estimates in Theorem 5.1. We assume here that the
error variables (¢;) = (¢; ,) of model (1.1) follow Assumption B (see Section 3).

First we give an exponential inequality for bounded m-dependent r.v.’s.

LEMMA 5.1. Assume that the (¢; ,) satisfy Assumption B but E(e; ,) = 0.
Furthermore, suppose that |¢; ,| < M < o0 and E(¢} ,) < R? ,,1 <i < n. Then
we have for S, = X_j¢; , and all x € [0,2/M ]

(5.1) E(exp(xS,)) < exp(g(m + 1)x? i Rin).

Jj=1

Proor. If m = 0, this inequality is well known [see, e.g., Lamperti (1966),
Chapter II, Section 11, Lemma 1]. If m > 0 we separate S, into (m + 1) partial
sums SV, 8P, ..., S{™*D with independent random variables in each sum and
use Holder’s inequality to obtain

E (”ﬁlexp(xséj’)) < ﬁl(E(exp(x(m + 1)59))V )

Jj=1

and then apply (5.1) for m = 0 to the r.h.s. of the last inequality. O
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Now we consider weighted averages

n

(5.2) g.(t) = T W, (0)Y,

i=1
as estimators of the regression function g in the model (1.1). The kernel estimate
(3.3) and other curve estimates like smoothing splines are a special case. We
derive rates of strong uniform convergence for the estimator (5.2) under Assump-
tion B Cheng and Ling (1981) have derived related results under Assumption A
for kernel estimators. A bound for the stochastic deviation is given in the
following lemma, where indices n have been omitted whenever appropriate.

LEMMA 5.2. Assume that the regression model (1.1) follows Assumption B.
Furthermore, assume that the weight functions W,(t) satisfy for some 0 < § <1
and Lg> 0

(5.3) sup |Wi(t)) — Wi(8,)| < Lylt, — 8,/°, forallt,, ¢, € [0,1]

l<i<n

and for some ¢ > 0

(5.4) max |W,(¢t)| > cn™?, uniformly fort € [0,1].
l<i<n

Finally, suppose that there is a sequence a, |0, and constants n € (0, s — 2)
and K > § s.t. forall t € [0,1]

(5.5) n*¢=m max |W(¢t)|logn < a,/K
l<i<n
and
n 1/2
(5.6) ( Y W2(t)log n) <a,/K.
i=1

Then sup, < 0,11/8(2) — E(8,(?))| = O(a,,) a.s.

REMARK. Conditions (5.5) and (5.6) relate the variance of a weighted sum of
r.v.’s with the maximum weight; conditions of this type are common for limit
theorems of weighted averages.

ProoOF. Defining p=3/8, r =s — n and I = [0,1], we consider a sequence
of n~*-neighborhoods U, covering I. Choosing proper middle points 7, for U, we
need O(n*) sets U,. Let U (7,(¢t)) be s.t. t € U,(7,(t)). Using (5.3)-(5.5), we find
(with some constant K )

2+1/r

n sup max sup |W(t) - W,(u)|

tel 1Sisn ye U (n,(t)

< Lyn V" < K’ max |W(¢)|n/" < a,/K,

1<i<n

(5.7)

for n sufficiently large.
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Defining &, = ¢,x(l&;| < (in)"/"), h(t) = TWi(t)e;, h(t) = LW(t)E,, we proceed
as follows (where || - ||, = sup,| - |):
lg.(-) = E(gn(-)l., <I2() = R() |, +]|2C) = R(m())],
+[[R((-)) = E(A(7,())) ..
+| E(R(r(-) - E(R())]..
+| E(a(-)) - E(R(-))].,-
Using P(|¢;| > (in)'/") < E(|¢;|°)/(in)*/" and the Borel-Cantelli lemma we show
that for almost all w of the underlying probability space 2, there exists N, s.t.
for n > N, we have [¢; (w)| < (in)"/" < n*",1 < i < n. It follows that the first
and the last term in the inequality above can be bounded by

n p
o(sup max [W()] 3 z|zi,,,—e,-,,,|),
tel l<i<n p=1i=1

resp., by
0(n* sup max |W,(2)]),

te] 1<i<n

and both terms by O(«,,) almost surely resp. strictly according to (5.5), bearing in
mind that the ¢; = ¢; , form a triangular array.
For the second and fourth terms we apply (5.7). For the third term we define

Ba(t) = a;® max |W(£)n* (log n)*, m,(t) = a,B,(t)

and apply Lemma 5.1 to the random variables B,(¢)W,(¢)(¢; — E(E;)), choosing
x = (Bn(t)n2/rmaxlsisnlvvi(t)|)_l/2-
Observing P(S, > a) < e~ %*E(e*5+), we obtain for any constant T' > 0

P(B()(Z Wi(2)(&; — E(5))) > Tn,(2))

c _
'n*max, _; | Wi(2)| {B.(t)n* "max, _,_,|Wi(¢)|}

< exp 1z

K 2—¢,T
Snl 2’

with suitable constants c;, ¢, > 0, where (5.6) is needed to establish the last
inequality. By symmetry, we conclude that

o0

5. PIB(0) - RO, > o) <€ 5 sk o7 <.,

n=1

for T sufficiently large. The assertion follows from the Borel-Cantelli lemma. O

REMARK. In case the (¢;) form a linear scheme, the term n2/(*=™ in (5.5) can
be replaced by n'/¢*~™, which implies that it suffices for Lemma 5.2 that the
moment requirement in Assumption B is satisfied for s/2. The same holds if we
consider bounds in probability.
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Lemma 5.2 gives a result for the stochastic part of the deviation of weighted
averages (5.2). For the bias, the deterministic approximation properties of (5.2)
have to be investigated. This is done for the special case of kernel estimates for
&(t) in the model (1.1), i.e,,

69 Ca0-3X [K|

t—u

b

)qui,

where we assume that b —» 0, nb —» o0, as n — oo. Then we obtain for the bias
part of the deviation, applying Taylor expansions with Lagrange and integral
remainder terms [see Miiller (1984)]:

LeEMMA 5.3. Assume that in the model (1.1), g € S, ; (k > 0, { € [0,1]), that
the kernel used in (5.8) satisfies K € #,., [see (3.5)] and that the error
variables (¢;) satisfy Assumption A or B. Defining £ = min(1, k + ¢, p) (for p
see Assumption B), we have for any compact subinterval I c (0,1)

(i) E(£,(t)) — &(t) = g®(t) - b*B;, + o(b*) + O(n™*),
uniformly on I [where B, is defined after (4.4)];
(ii) SUI;|E(én(t)) —&(t)| >0, asn— oo,
te

andif R + ¢ > 0, then
SuglE(én(t)) — g(t)| = O(b**¢ + n7*).
te

(iii) If the error variables satisfy Assumption A, then

Var(8,(t)) = %S)fn)_bv(l + 0(1)), uniformlyonl,

where

V= f K(x) dx.
Summing up, we obtain

THEOREM 5.1. Assume that g€ S, . and K € #, . and that the error
variables satisfy Assumption B with some given p > 0. Assume that K is
Lipschitz continuous on R.

(A) Let £ = min(1, &k + {, p). If b satisfies for some 8§ > 0 and some n €
(07 s — 2)

(5.9) liminf nb'*® > 0,
n—oo

(5.10) liminfnéb**+¢ > 0,
n— oo

(5-11) liminf(nb/log n)1/2n—2/(s—71) >0,
n— oo
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then we have on any compact interval I c (0,1) for the estimator (5.8)

of (5"
sup |£,(¢) — g(¢)| = (( nb
tel o(1), ifk+¢=0,

1/2
) + b’”f), ifk+¢>0,

B) If R+ > 3, in Assumption B p > § and s > 4 + 2/(k + {) and if we
choose b ~ (log n/n)*+9+D then we have

log n )(k+§)/(2(k+{)+1))

a.s.

s;lglén(t) - g(t)| = 0((

Proor. Observing that K € Lips(R) for all 0 < § < 1, we conclude from (5.9)
that (5.3) is valid.

The fact that YW,(¢) =1 for kernel estimates (5.8) implies (5.4). Setting
a, = (log n/nb)'/?, (5.5) follows from the fact that sup,. max,_;_,|Wi(t)| =
O((nb)~ ') and from (5.11). (5.6) follows using Lemma 5.3(iii). (5.10) and Lemma
5.3(ii) yield the bias term O(b**?%). (B) is an immediate consequence of (A). O

REMARKS. (i) If we apply smooth boundary kernels near the ends of the
interval [0, 1], the result extends to I = [0, 1].

(ii) In case we deal with a linear scheme of (¢;) or we want to obtain results on
convergence in probability, condition (5.11) in Theorem 5.1A can be relaxed to
liminf, , (nb/logn)"/2n~/(~" > ( (see the remark after Lemma 5.2), and
accordingly we need then in Theorem 5.1B the weaker condition Ele; ,|° < M <
oo with s > 2 + 1/(k + §).

(iii) Of related interest are results by Bierens (1983) on the uniform con-
sistency of the kernel estimator which he obtained for correlated data in the
random design regression model under stationarity assumptions.

(iv) The results can be extended to the estimation of derivatives as well as to
higher dimensions. If we estimate a mixed partial derivative of the orders
(1, ¥, ..., 74) of a regression function g: R? > R and write » = », + -+ +,,
the choice b ~ (log n/n)/@*+9+d) ynder appropriate conditions (which are
obvious generalization of the conditions of Theorem 5.1) yields the uniform rate
O((log n/n)k+$—"/@k+9)+d))
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