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IS THE SELECTED POPULATION THE BEST?

BY SAM GUTMANN AND ZAKHAR MAYMIN

Northeastern University

Random variables X; ~ N(0;,1), i = 1,2,..., k, are observed. Suppose
Xg is the largest observation. If the inference 65 > max;.q0; is made
whenever Xg — max;, sX; > ¢, then the probability of a false inference is
maximized when two ; are equal and the rest are —oo. Equivalently, the
inference can be made whenever a two-sample two-sided test for difference of
means, based on the largest two observations, would reject the hypothesis of
no difference. The result also holds in the case of unknown, estimable,
common variance, and in fact for location families with monotone likelihood
ratio.

1. Introduction. We observe independent X;, i =1,..., k, where X; has
density p(x — 6,) where p is normal (or, more generally, has monotone likelihood
ratio). The best population corresponds to the largest §; the selected population
corresponds to the largest X;. The goal of this paper is to attach the best
possible p-value to the inference: the selected population is the best. (This is not
a standard hypothesis testing problem, because the hypotheses are set up after
viewing the data.)

Let S be the random variable such that Xg = max;X;. Suppose we infer that
the selected population is best, i.e., g > max;, ¢0;, whenever (X,,..., X,) € T.
Then the probability of an error is [with § = (6,,0,,...,6,)]

(1.1) B((Xy,..., X,) € T, 6s < maxd,)
i#S

and the probability of correct inference is

(1.2) B((X,.... X,) € T, 6> max®,).
i8S

Subject to ensuring that (1.1) < a for all 4, we want to maximize (1.2).
Let the ordered sample of the X ’s be denoted
Xe=Xp=2Xg 2 0 =Xy,

In Section 2, we choose T = {Xg — Xy > c}, and prove in Theorem 1 that the
supremum of the probability of error,

i+S

(1.3) supPe(XS - Xy >c,0s< maxﬂi),
0
is attained when two 6, are equal, and the rest are — co. Thus (1.3) reduces to
(1.4) 2P(Y, - Y,>c¢),
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where Y; = X; — 6, are independent with density p. This result is independent
of k.

Under the hypothesis of logarithmically concave distribution function (weaker
than monotone likelihood ratio), Bofinger (1983) constructed (1 — «) confidence
intervals of the form

05 — 0,>Xs— X, —d,,
s Iga;‘ i s @ k

where d,, satisfies

k k-1
PlU(Y-Y,>d}|= @,
Qo) -5
for iid. Y; = X; — 6,. These intervals allow the inference 65 > max, 0, when
Xs— X > d,. Here d,>c, (= for k=2) where ¢, is chosen to make
(1.4) = a. Also note that d, = o0 as k£ — o0. (On the other hand, Bofinger’s
intervals provide additional information, e.g., the inference 65 — max,_ 40, > —d,
is always warranted.)

Fabian’s (1962) confidence bounds for min(fs — max; ., ¢6;,0) and Hsu’s (1981)
simultaneous intervals for §; — max;f,, j=1,..., k, allow the inference 65 >
max; . s0; whenever Xg — X, > b, where b, satisfies

k
P(U{Yi_Yl}>bk)=“
i=2
with Y, = X; — 0,. Again, b, » o as £ — oo, but for £ small, b, can be smaller
than c,. The reason is the distinction between the inferences g > max;, ¢0;, and
0s > max; , ¢0; a distinction made clear by examining the case k£ = 2. Suppose
X, ~ N(6,,1) and a = 0.05. We can infer 6, # 6, only if |X, — X,| > 1.96/2 (in
which case we can infer the stronger f; > max, . ¢0;). But we can infer 6, > 6, or
0, > 8, (according as X, > X, or X, > X,) if |X, — X,| > 1.645V2.

For the normal case with a = 0.05, we have c, = 1.96/2 and b, = 1.92/2,
b, = 2.06V2, so that the more conservative Fabian—Hsu inference is made less
often already when % = 4. [The situation is similar for a = 0.01; see Table I of
Gupta (1963).]

By Theorem 1 below, the inference 65 > max; . ¢6; cannot be made whenever
Xs — X5 > ¢, for any ¢ < ¢, if the error probability is to be bounded by a. An
additional optimality property is described in Section 3. Among procedures
which regard larger values of the gaps X — X as stronger evidence for
05 > max, , 50;, the procedure which infers 65 > max,, ¢6; when Xg — X5 > ¢,
makes this inference correctly as often as possible for each . This is the content
of Theorem 2. The paper concludes with a mention of a possible reinterpretation
of the results in terms of conditionally testing hypotheses set up after looking at
the data.

2. Main results. The proof of Theorem 1 relies on the following lemma,
which follows readily from an old inequality of Chebyshev [see Hardy,
Littlewood and Polya (1952)].
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LEMMA 1. Let u, f and g be nonnegative functions defined on some interval
of the reals. Assume that u is nondecreasing and /g is nonincreasing—or vice
versa. Then

Juf Jf
— S —
Jug ~ Jg
where the integrals are taken over the domain of the functions.

2

In this lemma and everywhere below we interpret a/b < c¢/d as ad < bc
whenever a, b, ¢ and d are nonnegative numbers.
The next two definitions, and Lemmas 2 and 3, can be found, essentially, in
' Barlow and Proschan (1975), Chapter 3.

DEFINITION. The density p(x) has monotone likelihood ratio (MLR) if and
only if for every ¢ > 0 we have p(x + ¢)/p(x) is nonincreasing in x.

DEFINITION. With F(x) := 1 — F(x), any distribution function F(x) is said
to have increasing failure rate (IFR) if and only if for every ¢ > 0 we have
F(x + ¢)/F(x) is nonincreasing in x.

As usual we say that a random variable has MLR (or IFR) if its density (or
distribution function) does. [Strictly speaking, it is the location family formed
from p(x) that has MLR.]

We note that MLR can be defined for integer valued random variables as well,
and that the results below will apply in that case almost without change.

LeEmMA 2. If X and Y are independent, X has MLR and Y has IFR, then
X + Y has IFR.

LemMA 3. If X has MLR, then X has IFR; if X has MLR, then —X has
MLR.

We now state and prove the main result.
THEOREM 1. Assume that p has MLR. Then
sgpPo(Xs - Xg >c,0s< lgaézﬂi) =2P(Y, - Y, > ¢),
where Y, and Y, are independent with density p(y).

PROOF. The probability Py(Xg — X > ¢, 05 < max, , 50;) equals

(2.1) Z Py(S = S)I(0s = mgxﬂi)Po(Xs - X,>c|S=3),

s=1
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where I(A) = 1 if A is true and 0 otherwise. Now

k
(21) < Y P(S=35) sup Pp(Xg— Xz >clS=35)

s=1 0, <max 6;
i#s
(2.2) = sup Py(Xg— Xg>clS=1)
0, <max 6;
i#1

by the symmetry. Now Py(Xg — X5 > c|S = 1) equals
P(X,—X,>c,i=2,3,.... kX, — X, 20,i=2,3,..., k)
(2.3) =P(Y,-Y,2c+6,—- 6,
i=2,3,.. kY,—Y,>0,—0,,i=2,3,...,k),

where ¥,= X, - 60,, i=1,...,k. Now let v,=6,— 0, for i =2,...,k, so that
(2.3) equals

P(Y,-Y,>c+7v,i=23,....kY, — ¥, >v,i=2,3,...,k)

k k
= [TIF(y = e = v)p(») dLV/fl_IF(y - 1)p(y) dy,
2 2

where F is the distribution function of Y, that is, the distribution function
corresponding to p. The null hypothesis corresponds to the case that at least one
v, is nonnegative, and we will now evaluate the supremum of the expression in
brackets in (2.4) over the null hypothesis. The sup will be attained when a single
y; is 0, and the rest are — oo.

Without loss of generality, assume vy, > 0. Then (2.4) can be rewritten

JTIAF(y — v,)F(y — v2)p(y + ¢) dy
JTIEF(y — v))F(y — v2)p() dy
JF(y = v.)p(y + ¢) dy
JF(y = v,)p(y) dy
by a direct application of Lemma 1. Now (2.5) equals

[F(3 == Ip(x) s [F(3 = v)p()

=P(Y1_Y2>Yz+c)/P(Y1_Y2>Y2)-

By Lemmas 2 and 3, Y, — Y, has IFR, so, since v, is greater than or equal to 0,
it follows that

(2.4)

(2.5)

(2.6)

(26) < P(Y,— Y,>¢)/P(Y, - Y,>0)
=2P(Y, - Y, > ¢).
Thus we have shown that

(2.7) P)Xs— Xg > c, s < ﬁage,.) <2P(Y, - Y, > c).
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To complete the proof, choose 8, = 0, and let §, > — o for i > 2. Then (2.7)
becomes an equality, and the proof is complete. O

REMARK. If the X; have density 6 ~'p(s " '(x — 6,)) where ¢ is unknown, and
an independent estimator § is available such that 6/0 has known density g(?),
then, as in the above proof, we obtain

sup Py o671 (Xs — X)) > ¢, b < masxﬂi) = 2P(4,(Y, - Y,) > ¢),

0,0 i#

where 6, has density g(¢), and Y; and Y, are independent with density p(y).
Thus the inference that the selected population is best can be made exactly when
a two-sample two-sided t-test based on the largest two sample means would
reject the hypothesis of no difference (in the normal case).

3. An optimality property. The next result, which follows from Theorem
1, establishes an optimality property (analogous to “uniformly most powerful”)
for the procedure discussed above. Suppose we make the inference g > max; ¢,
whenever (X, X,,..., X,) € T, where T has a natural monotonicity property,
namely: If (x,...,x,) €T and y, — ¥; = xq) — X, for each i>1, then
(¥15---5 ¥p) € T. Thus larger gaps between the maximum and other observations
are interpreted as stronger evidence that 6 > max; ,  0,.

THEOREM 2. Among T with the above monotonicity property satisfying
sup Py((Xy,..., X;) € T, s < max6,) < a,
0 i#S

we have
P)(Xs— Xy > co, 05> ma;wi) > P((X,,...,X,) €T, 6> maxé,), v,
15

i+S

where c, is chosen to satisfy 2P(Y; — Y, > ¢;) = a.

Proor. Under the hypothesis of monotonicity, T = {x: g(xy — %),
Xy = X@y+--» Xy — X)) = 0} for some g nondecreasing in each argument.
With g(¢) = sup,, .., 8(¢ us,..., u,), let

T* = {x: g(xg — xg) = 0}.
Then TC T* and T* = {x: x;) — X9 > a} (possibly > a; WLOG take a > 0).
Thus P(X € T, 0y <max,.d0,) < P(X € T*, 60g<max,,s0;). For 6=
(0,0, m, m,..., m) however, as m - — oo both Py(X € T, 05 < max,;,¢0;) and
Py(X € T*, 65 < max, , g0;) converge to 2P(Y, — Y, > a). Since by Theorem 1

supPo(X eT* 6 < max0,~) =2P(Y, - Y, > a),
9 i+S

.....

it follows that
P|XeT, < 0,) = Pl XeT* 6, < 0,
S‘;p o( » Us = THax 1) S‘;P 0( s = rax )

and hence that a > c,. Thus T' C {x: x;) — x5 = ¢} and the result follows. O
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Both Theorems 1 and 2 have conditional analogues. Because of the condi-
tional technique of the proof of Theorem 1, the procedure can be interpreted as a
test of a retrospective hypothesis,

Hy(s): 0, < max,,
1#8§

formed after observing S = s. Theorem 1 calculates the “size,” or maximum
probability of type I error conditional on S = s, for the test which rejects when
X, — X5 > c. The conditional version of Theorem 2 asserts that

P((X,,...,X,)€TIS=5s) < Pg(Xs - I?stXi > ¢o|lS = s),

for all § & H,(s) if T is monotone with

sup P((Xy,...,X,)€TIS=s) < a.
deHy(s)
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