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EXTENDED-PAULSON SEQUENTIAL SELECTION

By DoN EDWARDS

University of South Carolina

Principles of multiple comparisons with the best treatment are used to
construct a sequential procedure for selecting one of k£ normal populations
with equal, known variance. The procedure makes a stronger confidence than
traditional Indifference Zone procedures, without (asymptotically) inflating
sample sizes. It is shown to be substantially superior in asymptotic sample
size behavior to existing procedures making the stronger statement.

1. Introduction. Let 6, be a location parameter for the probability distribu-
tion of independent X;, i =1,..., %, [ =1,2,.... Suppose a large 6, implies a
good treatment, and the experimenter’s goal is to select the best treatment, or
one very nearly best. Let (k) denote the index of any treatment with largest 6;,
and let 6* > 0 be a specified constant.

DEFINITION 1.1. A treatment i is §*-best if 6, — 0, < 6*.

Let (k) denote the index of a treatment selected according to some rule using
the data. Confidence statements at level P*,1/k < P* < 1, regarding treatment
(k) have to date come in two varieties:

(1.1) AsSERTION 1.1 (Indifference Zone). “Treatment (k) is the
8 *-best treatment, if there is only one 8 *-best treatment.”

(1.2) AsSERTION 1.2 (Confidence Bound). “Treatment (k) is a
8 *-best treatment.”

Assertion 1.2 can also be written “, — 0.,y < 6*,” hence its name. Any
procedure satisfying (1.1) but not (1.2) is not safe for use, since it cannot assert
selection of a good treatment when there is more than one good treatment.

Sequential methods for choosing (k) have been extensively studied for X;, ~
N(9;,6%), 62 known. The problem is not adequately solved even in this simple
setting. Procedures which eliminate inferior treatments early in the experiment
have been proposed by Paulson (1964), Kao and Lai (1980), Hsu and Edwards
(1983) and many others. Some of these [Paulson (1964) and Kao and Lai (1980,
Section 3)], referred to here as Indifference Zone procedures, can make assertion
(1.1) at P* confidence, but have not been shown able to make assertion (1.2).
Other procedures [Kao and Lai (1980, Section 5) and Hsu and Edwards (1983)]
have been developed to satisfy (1.2), but do so at the expense of considerably
slower elimination of inferior treatments. These latter procedures will be referred
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450 D. EDWARDS

to as (k)-retaining procedures and will be formally defined in Section 3. [It
should be said that the Hsu and Edwards (1983) procedure makes even stronger
inference than (1.2).] In Edwards (1985), a procedure which can make assertion
(1.2) at P* confidence was outlined. In Section 2 of this article a slightly
different, more general procedure called an extended-Paulson sampling plan is
proposed. In Section 3 it is shown to have asymptotic (P* — 1) sample size
properties identical to the Indifference Zone procedures, and superior to the
(k)-retaining procedures.

2. Extended-Paulson sequential selection. The principles of multiple
comparisons with the best treatment were established by Hsu (1981), who gives
Lemma 2.1 below for the fixed-sample-size normal case. The version here can be
found with proof as Corollary 1 of Edwards and Hsu (1983). Let x* = max(x, 0).

LEMMA 2.1. Foranyfixedj,1<j <k, let U/, i=1,...,k, i+, be random
variables satisfying

(2.1) P{n [6,- 0, < U{]} > P*,

J#i .
for some probability measure P. For

(2.2) U, = (max Uij)+,

i Lo
J*i

it will follow that
k
P{ N [0 — 6: < U,-]} > P*.
i=1

Let TX;; n) = T(X;;, Xi5, ..., X;,) be defined for each n, satisfying T(X; +
6L, n) =6 + T(X; n) for any § and T(X;/0; n) = T(X;; n)/o for any o > 0.
T(X; n) will often be the arithmetic mean X;, but robustness considerations
may dictate a different choice. Let n; < n; be experimenter-specified minimum
and maximum sample sizes, allowing n; = oo, and b(n) a boundary function
defined for every n;<n <n;,. Let P, , denote probability computed under
0 =(0,,...,0,) and o > 0. The boundaries used herein must satisfy the following
probability requirement for each j:

nr
(2.3) Po,l{ N N [T(X;n) - T(X;n) > —b(n)]} > P*,
i#jn=n;

For T(-) = X, this is the requirement of Paulson (1964) with ¢b(n) = a/n —
(A=68%),0 <A <é* and a > 0. It is the requirement of Kao and Lai (1980,
Section 3), who choose ob(n) = g, '[(k — 1)/(1 — P*)] for g,(x) defined by
their equation (7), using & for our §*. For our extended-Paulson procedure we
will require (2.3) and ob(n;) < 8*. Typically, ab(n) will decrease in n, and n,
will be the first integer for which ob(n) < 6*.
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LEMMA 2.2. Let N, be any stopping times such that n; < N; < np a.s. Let
N;; = min(N;, N)). If b(-) satisfies (2.4) for each 1 < j < k, then
(2.4) U/ = U/(N) = min [T (X;; n) — T(X,; n) + 8b(n)]

ny <n<N,

satisfy (2.11) with P = B, , for each 1<j<k,0,and e >0.

The proof is very similar to the proof of Lemma 2.2 of Edwards (1985), and is
omitted. Lemma 2.2 shows that the boundary requirement (2.3) is quite strong,
allowing a great deal of flexibility in the choice of a sequential sampling plan.
This flexibility has not been acknowledged in other papers on this subject.

Having taken n; observations from treatment i, i=1,..., &, we are at
sampling point n = (nl, ., ng). Let n;; = min(n;, n;), and deﬁne U’(n) as in
(24) with n;; for N;;. Let U(n) [max; . ;U; {m)]*, and stage(n) =
max(n,,..., n,). Any samphng plan with n; < N; < n, a.s. will give U(N) to be
simultaneous P* X 100 percent confidence bounds for 6, — 6;, i =1,..., k. The
strategy, then, will be to make sure the sampling plan prov1des one U (N) <é*
[one index i such that U; ’(N) < 8*,V j # i], with as little sampling of inferior
treatments as possible.

Such a plan is defined below, in two phases, after sampling n; observations
from each treatment. The quantities U,’(n) and U,(n) must be updated with
every change in n.

A. Paulson phase: At each stage(n) (= n,n;+1,...) let
(2.5) G(n) = {j: Uj(n) > 6%,V i #j}.

(i) If |G(n)| > 1, sample once for each treatment in G(n).
(i) If |G(n)| < 1, let (k) be the index such that

Uipy(n) = min{U;(n): n; = stage(n)}.

If Uy, < 8%, stop, and redefine (&) (if necessary) so that U, = min {Un)}.
Else, go to B.

B. Resampling phase: Define the resampling set
R(n) = {j: U{}e)(n) > 8*}.

Let j’ be the index such that U, (n) = min{Uj(n), J € R(n)}. Sample repeatedly
from treatment j’ until one of the following occurs (these are hierarchical):

(i) min;{U,(n)} < 8*. If so, stop, and redefine (k) (if necessary) so that
Uy = mln,{U(n)}
(i) j’ drops out of R(n). If so, revise R(n) and j’ and resume the resampling
phase.
(iii) n; =n 5y = stage(n). If so, sample one observation at a time from both
the treatments J" and (k) until (i) or (ii) occurs, or Us*’(n) < §*. In the last
case, redefine (k) = j’ and go to B.
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REMARK. The Paulson phase (which will be executed only once) can be
reexpressed as follows: at each n = stage(n), sample from treatments not previ-
ously eliminated, eliminating treatment j if max;. {T(X; n)} — T(X; n) >
ob(n) — 8* (=“U/ < 8* for some i # j”). The maximum is taken over un-
eliminated treatments. If the same treatment has largest T(-) at each elimina-
tion point, this one will be treatment (k) after the Paulson phase, and

. +

In this case, the resampling phase is not necessary. If, however, there are some
treatments j such that U{k>(n) > §* [i.e., R(n) # ¢] resampling from these is
prescribed. It is intuitive to sample from the better ones first [those with small
Uj(n), recalling ,, — 6, < U(n)]. The resampling phaSe above creates a kind of
“duel” situation, with the winner to be the new (k) candidate.

With T(-) = X, the Paulson phase reduces to the Paulson (1964) or the Kao
and Lai (1980, Section 3) procedure, depending on choice of b(-). The above
discussion then shows that these procedures can make the confidence bound
assertion (1.2) if the same treatment eliminates all other treatments.

THEOREM 2.1. If b(-) satisfies (2.3) and ob(ny) < 8*, the extended-Paulson
sequential procedure gives simultaneous P* X 100 percent confidence upper
bounds U(N) for 6, — 0, i=1,..., k, and

min U(N) = U, (N) < 8*.

ProoF. It is implicit to the procedure that when stage(n) = n; is reached, it
will be reached by more than one treatment. Let m denote the index of the
treatment with largest T(X;, ny). Then for each other treatment i with n; = np,

(2.6) Ui(n) < T(X;; np) — T(X,,; np) + ob(ng) < ob(ng) < 8*.

It follows that there will be no further sampling on any treatment reaching
n = np. Hence, the procedure satisfies n; < N; < np, i=1,..., k, and so the
U,(N) are simultaneous confidence bounds for §, — 6;, i = 1,..., k. The proce-
dure stops when min ,{U/(N)} < 8*, or when all treatments reach n = nr. In the
latter case, (2.6) implies U, (N) < é*. 0

3. Sample size comparisons. Let N,(P)and N,(EP) denote the treatment
sample sizes after the Paulson phase and after the extended-Paulson procedure,
respectively, i = 1,... k. This section discusses the asymptotic behavior of these
and other stopping times as P* — 1, with §* > 0 fixed. Let §;,= 6, — 6,
i=1,..., k. Let n; be fixed and for each P*, let b(n) = b(n; P*) be defined for
all n, n;<n < np=ng(P*). Assume b(n; P*) is decreasing in n, satisfying
(2.3) and ob(np(P*); P*) < 8*. Connect the points b(nj; P*), b(n;+
1; P*),...,etc., to form a continuous decreasing function defined for all real
n € [n;, np(P*)]. Let g(x; P*) be the inverse of this function, defined and
decreasing for all x € [b(ng(P*); P*), b(ny; P*)]. For x < b(ngp(P*); P*),
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define g(x; P*) = np(P*). Assume

(i) T(X;n)—0,as,i=1,...,k n— oo;
(8.1) (ii) np(P*) » oo, P* - 1;
(iii) b(n; P*) - o0, P* — 1, for each n > n,.

Note that (ii) and (iii) will usually follow from (2.3), and will imply g(x; P*) — oo,
P* - 1, for each x. Finally, assume dg(x; P*)/dx = g’(x; P*) exists for each
P* and x, and

g'(x; P*)
g(x; P*)

for some B(x) < co. Lemma 3.1 below generalizes Perng’s (1969) result on N,(P)
under Paulson’s choice of b(-) and T(-). It also strengthens it, since it applies to
all 0, not just those with §;, > 0 for all i # (k). For every procedure discussed
herein, N;,/max,, {N;} — 1, so we need deal only with the properties of N;
for i # (k).

. i Li
(3.2) @) lim

< B(x),

LEMMA 3.1. Under the assumptions stated immediately above,
N,(P)
g[(8; + 6%)/0; P*]
in probability, as P* — 1, for each i # (k).

-1

Proor. By Egoroff’s theorem, for any ¢ > 0, 3 B,, P(B,) < ¢, and n, such
that off the event B;,

(3.3) |T(X;n) — 6] <e,

forall1 <i < k and n > n_. Note that, off B, for all n > n,,

(3.4) | max T(X 5 n) = T(X4y; 7)| < 2e.

In the Paulson phase, a treatment j is sampled at stage(n) if

(35) U/(n)= min [T(X;;n) — T(X; n) + ob(n; P*)| > 8%, i+
n,snsn,-j

Let B, be the event that [min;N(P) < n,]. Choose Pj* such that for all

P* > P* b(n; P*)is sufficiently large for each n < n, to insure P(B,) < & Off

the event [B; U B,] the following inequalities hold at stage(n) = N,(P) and
N,(P) — 1 [using (3.4)]:

T(X;; Ni(P)) — T(X(y; Ni(P)) + ob(N(P); P*) < 8* + 2¢,

(3.6)
T(X;; N(P)— 1) = T(Xy; N(P)— 1) + 6b(N,(P) - 1; P*) > §*— 2.
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These, with (3.3), give
b(N;(P); P*) < (8* + 8, + 4¢) /o,

(3.7)
b(N,(P) — 1; P*) > (8* + 8, — 4¢) /o.
These imply
gl(8* + 8, — 4¢)/o; P*] + 1 N,(P)
69 gl(6*+8)/5 P*]  ° 2[(8* + 8)/0; P*]

g[(8* + 8, + 4¢) /o; P*)
g[(8* + 8,)/0; P*]

First-order Taylor series expansions of g(-) about (§* + §,)/0 on both the left-
and right-hand sides of (3.8) give, for P* sufficiently large,

N,/(P)
gl(8* +8,)/0; P*]
off [B, U B,]. P(B; U B,) < 2¢, ¢ arbitrary, completes the proof. O

—1|< —553[(8* +8,)/0]

REMARK. If every 8> 0, i # (k), and & < (min, , (5,3,)/2, then (3.3) yields
max,;T(X;; n) = T(X,; n) for n > n,, off B,. In this case, off B, U B,,

Uy (N) < T(X ;5 N(P)) — T(X 4 Ni(P)) + ob(N(P), P*) < 8%,

for each i # (k), after the Paulson phase. Hence, the extended-Paulson proce-
dure reduces to the Paulson, and N(EP) = N(P),i=1,..., k.

COROLLARY 3.1. Under the assumptions of Lemma 3.1, and assuming §; > 0
fori # (k),
N,(EP)
_— 1
N(P)

in probability, as P* - 1,i=1,..., k.

The (k)-retaining rules follow the format of the Paulson phase, with one
major change. With appropriate choice of 7(-) and b(-) satisfying (2.3) and
ob(np; P*) < 8%, they specify G(n) of (2.5) replacing 8 * by 0, and then impose
the restriction that sampling stop at n;. Under these rules, treatment (%) is
retained, with probability P*, in the set of treatments sampled at each stage(n).

If N(KR) is the sample size for treatment i under a (k)-retaining rule,
clearly N,(KR) > N,(P), i = 1,..., k. The difference is'quantified in Lemma 3.2.

LEMMA 3.2. Under the assumptions of Lemma 3.1,
N(KR)
min[n7(P*), g(8,/0; P*)]
in probability, as P* — 1, i # (k).

1
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Proor. Follows the proof of Lemma 3.1, replacing 6* by 0 in (3.5). Now,
either the modified inequalities (3.6) hold, or N(KR) = n,(P*). The expressions
(3.7) then become

b(N(KR); P*) < max[b(ny(P*); P*),(8; + 4¢) /o]
and
b(N;(KR) — 1; P*) > max[b(ny(P*) — 1; P*),(5, — 4¢)/o].

The remainder of the proof follows as before. O

Combining Lemmas 3.1 and 3.2, we can gauge the approximate savings in
using the extended-Paulson procedure over a (k)-retaining rule, with the as-
sumptions of Lemma 3.1 and §; > 0 for all i # (k): .

N(EP)  g[(8;+38*)/0; P*]
N(KR)  g[(8/0); P*]
for i # (&), noticing that n,(P*) = g[(d,/0); P*] for §;, < §*.
It would appear that the (%&)-retaining rules take no sample-size advantage of

the fact that the experimenter considers any treatment with §, < 8* to be
essentially a “best” treatment.

<1,
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