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ON TESTING WHETHER NEW IS BETTER THAN USED USING
RANDOMLY CENSORED DATA

By YosHiki KuMazawa

Shiga University

Under a model of random censorship, we consider the test H: a life
distribution is exponential, versus H,: it is new better than used, but not
exponential. This paper introduces a class of tests by using the Kaplan—Meier
estimator for the sample distribution in the uncensored model. Under some
regularity conditions, the asymptotic normality of statistics is derived by an
application of von Mises’ method, and asymptotically valid tests are obtained
by using estimators for the null standard deviations. The efficiency loss in the
proportional censoring model is studied and a Monte Carlo study of power is
performed.

1. Introduction. A life distribution F(x) is said to be new better than used
(NBU) if

F(x+y) < F(x)F(y) forallx,y=>0,

where F(x) =1 — F(x). This criterion was first introduced by Hollander and
Proschan (1972), and the NBU class of life distributions has proved to be very
useful in reliability studies.

We consider the problem of testing the null hypothesis H,: F(x) =1 —
exp(—x/p), x = 0 (p unspecified), versus the alternative H,: F(x) is NBU, but
not exponential. In the uncensored model, where we get a complete sample, the
class of statistics

(1) [ [0 - (s + )} dF(x) dFy(5)

was proposed for the above testing problem by Koul (1978), where F,(x) denotes
the distribution function (d.f.) of the sample and ¢ is a weight function. The
purpose of this paper is to construct the optimal test that minimizes the
efficiency loss and has good power performance against NBU alternatives in the
proportional censoring model.

To describe a randomly censored model, let X;, X,,..., X, denote indepen-
dent identically distributed (i.i.d.) random variables (r.v.’s) having a common
continuous life d.f. F(x). Independent of the X;’s, let Y}, Y,,..., Y, also denote
iid. r.v.’s having an unknown continuous d.f. H(x). The Y;’s are treated as the
random times to the right censorship. Finally, let Z; = min{X;,Y;} and §; =
ITX; < Y] for 1 <i< n, where I[ A] denotes the indicator function of the set
A. We are interested in testing H, against H, on the basis of an incomplete
sample (X, 8,), (X,,8,),...,(X,,5,).
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Now we introduce a class of statistics
S, =[7[ 1—FAnx+ dFA’nx dF (y),
(W) = [ [ (1= Fla + )} dF () dE()
where ﬁn(x) is the Kaplan—Meiér estimator defined by

B(x)=1- TI {(n-i)/(n-i+1))°

(i Zyy<x)
and ¢ is a suitable weight function. Here Z,) < Z, < --- < Z,,, denote the
ordered values of the Z’s and §),8y),...,8,, are the §,’s corresponding to

Zays Zigy, - - 5 Z(py, respectively. The test based on S,(y) rejects H, in favor of H,
for small values. Chen, Hollander and Langberg’s statistic (1983) is obtained by
putting ¢(t) = t. Koziol (1980) introduced versions of goodness-of-fit statistics
with randomly censored data and performed a Monte Carlo study of power
comparison.

In Section 2 we state the asymptotic normality of a suitably normalized
version of S,(¢) under some regularity conditions on the d.f’s F and H and the
function ¢, and give a proof by applying the von Mises’ statistical functional
method. In Section 3 the efficiency loss based on Pitman efficacy is computed in
the proportional censoring model and the optimal tests are discussed based on a
Monte Carlo power comparison against the Weibull alternative in the propor-

tional censoring model.

2. Asymptotic normality. We establish the asymptotic normality of S,(i/)
defined in Section 1 by the application of results on the Kaplan-Meier estimator
and von Mises’ calculus. Let {¢(¢): 0 < ¢ < oo} be a Gaussian process with mean
zero and covariance kernel defined by

E[o(s)o(t)] = F(s)ﬁ(t)/os{ﬁ(u)ﬁ(u)“’}“dF(u) for0 <s <t < oo.

We impose the following conditions on the d.f.’s F and H:

(A.1) Both F and H have support [0, c0),
(A2) [{H(u)) ™ dF(u) < co.

Then Theorem 2.1 of Gill (1983) implies that the weak convergence of ¢,(x)
nV¥F(x A T,) — F(x A T,)} to ¢(x) on [0, 00) holds as n — oo, where T,
max; Z;,. We can state the following result.

- THEOREM 2.1. Assume that the function i is continuous, nondecreasing
and piecewise differentiable with bounded derivative on [0,1]. Define T(F) =
I&ISV{F(x + y)} dF(x) dF(y). Then under Conditions (A.l) and (A.2),
n'’%(S(¢) — T(F)} converges in distribution to a normal r.v. with mean zero
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and finite variance ¢% as n > o, where
o = [ [T [T [TElo(x + )W (Fx +9)) =260y - W (F) [y = 2])

x {o(s + t)W'{F(s + t)} —2¢(t — s)¥'{F(¢)}I[t = s1}]
X dF(x) dF(y) dF(s) dF(t).
COROLLARY 2.2. Let ¢(u) = u® a > 1. Under the null hypothesis H, and

Conditions (A.1) and (A.2), n'/*(S(u*) — (a + 1)~%} converges in distribution
to a normal r.v. with mean zero and variance

(2.1) ol = [L{F(x)} (K(x)) " dF(x),
where f(s) = a%(a + 1) 4{(a + Dlog s + 1}’s2%*! and K(x) = F(x)H(x).

We first show the Hadamard differentiability of the statistical functional
T(F). For a continuous d.f. F, we have

T(F) = fO‘fO‘\ph — F{F~\(s) + FY(u)}] dsdu,

where F~Y(u) = inf{x: F(x) > u}. Let DtO, 1] be the space of functions on [0,1]
that are right continuous and have left-hand limits.

LEMMA 2.3. Let 7 be the functional induced on D[0,1] by 7(G) = T(G° F)
for G in D[0,1]. Then t is Hadamard differentiable at I with derivative

7(G) = — folfoquu — F(F~(s) + F7(¢)))G o F{F~\(s) + F~\(t)} dsdt

+2/‘/‘GoF{F-l(t) — FY(s)} dsy'(1 — ¢) dt,
0’0
for G in D[0,1], where I(v) = u for 0 <u <1.

ProoF. Following Fernholz (1983), it suffices to show that 7 can be expressed
as a composition of Hadamard differentiable transformations. For fixed F and ¢,
we define

71(G)(s) = F~1eG7Y(s),
(V) (s, u) = V(s) + V(u),
‘Y3(U2G)(s’ u) = ‘P{l - G°F[U(s, u)]},
and
v(U) = [ ['U(x, y) deay,

for G in D[0,1], V in L'[0,1], U in L'[0,1] X [0,1] and 0 < s, u < 1. Then from
Propositions 6.1.1, 6.1.2 and 6.1.6 of Fernholz (1983) it can be seen that the .
preceding transformations are Hadamard differentiable. Since (G) =
Y4 ° ¥5(Y2 ° 7:(G), G), 7 is Hadamard differentiable at I and some calculation
yields the derivative 7/(G). O
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PrROOF OF THEOREM 2.1. We first note that
n?{T(F,(-)) - T(F(-))} = {T(F,(- A T,)) = T(F(- A T,)) }1

L7 (P +5)) dF(x) dF(y)

< n"%{F(T,)}F(T,) »,0 asn— co.

Hence, we consider the asymptotic behavior of nY*(r[F(F '(-)AT,) —
r[F(F~'(-) A T,)]}. Since Proposition 4.3.3 of Fernholz (1983) also holds for the
stochastic process {¢,(F '(¢)): 0 <¢ <1}, the asymptotic distribution of
7/{¢(F 1)} can be derived from the continuous mapping theorem and the fact
that 7/(-) is a bounded functional on D[0,1]. O

= pl/2

Corollary 2.2 shows that the asymptotic variance of S,(z*) depends on the
unknowns p and H. In order to perform the test based on S,(u*), we must
estimate the variance o2 from the observations (Z,, §;). To this end, we set

62 = njo°°f,,{1 — B (t =)} {1 = B¢ =)} {Y™(2)} 2 dN™(2),

where Y))(¢) = X7 ,I[Z, > t]and N"(¢) = " ,I[Z; < t, §; = 1]. Then we have
the following result.

LEMMA 2.4. Under H, and Conditions (A.1) and (A.2), the estimator G?
consistently estimates the variance o2.

PrOOF. We define {H™(s)}? = nf {1 — F(s — )}{1 — E(s — ){Y"(s)} %
Since H(")(s) is a predictable process and Y™)(s)/n converges in probability to
K(s) uniformly in s as n = o0, Theorem 4.1.1 of Gill (1980) implies

/Ot{H(”)(s)}2dN(”)(s) -, jo‘fa{ﬁ(s)}{z?(s)}"dF(s) as n — oo

for any ¢, 0 < ¢ < oo. To prove the case t = oo, it suffices from Corollary 2.3 of
Andersen, Borgan, Gill and Keiding (1982) to show that for any & > 0,

lim limsupP(foo{H(n)(s)}zy(")(s){ﬁ(s)} “rdF(s) > s) =0.
ut® pose u

Then Theorem 1.1 of Van Zuijlen (1978) and Theorem 3.2.1 of Gill (1980) yield

that

P({H™(s5))’Y"(s) < B~MF(s)*(K(s)} " for0 < s < o) = 1 — o(B°)

as 10 uniformly in n for some constant M such that f(t¢) < Mt. Hence the
desired result follows from Condition (A.2). O

Corollary 2.2 and Lemma 2.4 show that the test rejecting H, in favor of H,
for small values of J,(a) = n*/%(S(u*) — (a + 1)7%}4, ! is consistent against all
continuous NBU alternatives.
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TABLE 1
Monte Carlo properties of 62 and the normal approximation for J,(a) when F is
exponential (1), H is exponential (\), and n = 50 (25).

Test of  Aved SD(§) P(J(@) < —250) P(I(a) < —2905)
A=1
J,(1) 0.014712 0.01566  0.004349 0.028 0.024
(0.01561) (0.004177) (0.063) (0.045)
J,,(%) 0.010767 0.01216  0.002570 0.026 0.018
(0.01267)  (0.002952) (0.062) (0.034)
J,,(g) 0.008533  0.00949  0.001457 0.021 0.017
(0.01018) (0.001992) (0.057) (0.030)
J,(1.874) 0.006163 0.00675  0.000606 0.030 . 0.015
(0.00744)  (0.001058) (0.052) (0.029)
A=3
J(1) 0.023713  0.01346  0.009897 0.515 0.471
(0.01275)  (0.006160) (0.523) (0.452)
J,,(%) 0.016307 0.01221  0.008866 0.293 0.229
(0.01148) (0.005551) *  (0.334) (0.267)
J,,(g) 0.018470 0.01046  0.007457 0.141 0.114
(0.00999) (0.004715) (0.191) (0.137)
J,(1.874) 0.007873 0.00799  0.005368 0.056 0.031
(0.00788) (0.003472) (0.080) (0.047)

Table 1 investigates the performance of 62 and the accuracy of the normal
approximation to J,(a) in the case where F(x) =1 — e * and H(x) =1 — e~ ¥,
for the choices A = 1 and A = £. Column 2 of Table 1 gives the values of ¢
computed from Corollary 2.2. Column 3 gives the average value of é> over 1000
Monte Carlo replications. Column 4 gives the sample standard deviation of the
1000 6?2 values. Columns 4 and 5 give the frequency of the event {J(a) < —2,}
where 2, is the 7 percentile of a standard normal distribution. The normal
approximation of J,(a) with small values of a is not good for A = { and the
J,(a) test with large values of « is conservative for the random censorship model.

3. Efficiency loss and power comparison. We shall compare the perfor-
mance of some NBU tests J,(«) in the proportional censoring model. To this end
we consider the Pitman efficacy of the statistic V, defined by

(3.1) otf(V,) = lim {dE,[V,]/dbly-0}*/(nVar,[V,]),

where E,[-] is the expectation under some alternative Fy with exponential for
6 = 0 and Var[ -] is the null variance. Then the efficiency loss due to censoring is
defined by eff(V/?)/eff(V,), where V¢ denotes the statistic constructed for the
censored model and V, the one for the uncensored. The discussion of the use of
the Pitman efficacy is given in Chen, Hollander and Langberg (1983). For the
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TABLE 2
Monte Carlo power comparison for the Weibull alternative Fy(x) = 1 — exp(—x
H(x) =1— (1 — Fy(x))* and n = 50 (25). Entries are frequencies of samples declared
significant with 5% significance level.

0+1)
s

=t A= 8

Test 0 =025 6 = 0.50 8 =025 6 = 0.50

Jy(1) 0.232 0.728 0.588 0.746
(0.228) (0.572) (0.560) (0.690)

(%) 0.210 0.702 0.372 0.548
(0.200) (0.508) (0.374) (0.502)

o) 0.216 0.708 0.186 0.388
(0.186) (0.478) (0.218) (0.344)

J,(1.874) 0.238 0.718 0.064 0.234
(0.172) (0.556) (0.102) (0.204)

censoring d.f. H(x)=1—e ™, 0 <X <1, Theorem 4.1 of Koul (1978) and
Corollary 2.2 yield that the efficiency loss of S, (u*), a > 1, with respect to
Koul’s statistic is given by

(2a — X + 1)%(2a2 + 2a + 1)/[(2a +1°{(a + 1)* + (a =)}

This expression reveals that the efficiency loss increases with « and decreases
with A. Note that, as is to be expected, this value tends to 1 as A tends to 0
(corresponding to the case of no censoring).

Next we compute the efficacy (3.1) for the Weibull alternative Fy(x) =
1 — exp(—x'"?). The efficacy of S (u®) is 2a — A + 1)*(a + 1) (a + 1)% +
(a — N)?} 7%, which reaches its maximum given by a positive solution of
2a(a + 1) (@ —20) =1+ A+ N+ A For A = 1 and %, the approximate solu-
tion is given by a = 0.8928 and « = 1.874, respectively, but Corollary 2.2 implies
that when A = } the optimal statistic is S,(«). It can be seen that the optimal
value a increases with A and such a result holds for the other NBU alternatives.

Table 2 gives results on 1000 Monte Carlo samples drawn from Weibull
alternative Fy in the proportional censoring model and each entry represents the
percentage of samples declared significant by J,(a) with a 5% significance level
for some values of a. The J,(a) test with small values of a has good perfor-
mance, but has a large probability of a type I error. We recommend the J,(1.5)
test for this testing problem from the preceding results.
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