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VARIABLE BANDWIDTH KERNEL ESTIMATORS OF
REGRESSION CURVES

By HANS-GEORG MULLER AND ULRICH STADTMULLER

University of Marburg and University of Ulm
In the model
Y, =g(t) + &, i=1,...,n,

where Y, are given observations, ¢; ii.d. noise variables and ¢; nonrandom
design points, kernel estimators for the regression function g() with variable
bandwidth (smoothing parameter) depending on ¢ are proposed. It is shown
that in terms of asymptotic integrated mean squared error, kernel estimators
with such a local bandwidth choice are superior to the ordinary kernel
estimators with global bandwidth choice if optimal bandwidths are used.
This superiority is maintained in a certain sense if optimal local bandwidths
are estimated in a consistent manner from the data, which is proved by a
tightness argument. The finite sample behavior of a specific local bandwidth
selection procedure based on the Rice criterion for global bandwidth choice
[Rice (1984)] is investigated by simulation.

1. Introduction. We consider kernel estimates of regression curves in the
fixed design case. Estimators of this kind have been proposed by Priestley and
Chao (1972), Cheng and Lin (1981) and Gasser and Miiller (1984) and constitute
an attractive alternative to smoothing splines.

Observations Y, ..., Y, are generated according to

(1.1) Y,=g(t,)+¢, i=1,...,n,

where g € Lip([0,1]) is the curve to be estimated and 8i are i.i.d. noise variables
satisfying Ee, =0, Ee? = 02 < 0. The design ¢,,..., ¢, is fixed in advance as
= i/n. In order to avoid consideration of boundary effects, we assume that
data are available on both sides beyond 0 and 1. Also, the assumption of
equidistance is not essential for our main results.
As kernel estimator of g(¢) we consider

(1.2) G(t, b) = é (t_t)Yi.

This estimator depends on the kernel function K and a sequence of bandwidths
b = b(n) which has to satisfy

(1.3) b-0, nb% - 0, asn — .

It is a well-known phenomenon that estimators (1.2) exhibit an increased bias
near peaks of g [compare Gasser et al. (1984)]. Since the bias near peaks may
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contribute especially a large portion to the integrated mean squared error
(IMSE) of the estimate, IMSE might be reduced by decreasing the bandwidth
and therefore local MSE near peaks, and increasing the bandwidth in flat parts
of the curve. These ideas motivate the choice of locally varying bandwidths. The
corresponding kernel estimator is

(1.4 0) = o S x| 5y,
t i=1 t
given some function ¢ - b,, t € [0,1].

In the following, the notion of optimality always refers to minimization of the
leading terms of asymptotic expressions (2.5) of the MSE /IMSE. We prove the
following result in Section 2: Let b*, b}* be the optimdl bandwidths for (1.2) and
(1.4) and assume that b* is a truncated version of b} (there is a cut-off if b}*
gets too large). Then

(15) lim n?*/Ck+*DIMSE(4(-, %)) < lim n2*/C*+DIMSE(G(-, b*)),

if g € €*([0,1]) for some k£ > 2 and K € #, ,, where for 0 < » < k

0 j=0,...,k_1’
. 1 ~ , 7#,
» = f € Lip([-1,1]), f—lf(x)xfdx - (=1)"»! J=v
# 0, =k

While inequality (1.5) is expected to hold on general grounds since the class of
variable bandwidth estimators contains the class of fixed bandwidth estimators,
it will be of interest to derive explicit expressions for the terms on both sides in
(2.8)—(2.10).

In Section 3, we show that if b, is a consistent estimator of b, i.e.,
5, /b =, 1, as n > o, then 4(-, 5,) behaves asymptotically as well as g(-, b* )
By a tlghtness argument, we prove that n®/G*+D(g(¢t, rn=/@k+D) — g(t)) (¢
fixed) converges in distribution to a Gaussian limit process on €([r, s]) for some
7-interval [, s], and hence any consistent estimator for b will be asymptoti-
cally efficient (Theorem 3.1). Results of the type, IMSE(4(¢, b )/
IMSE(G(t, b*)) < 1, can be inferred under additional assumptions (Theorems
3.2 and 3.3). Weak conditions under which these results apply are given in
Theorem 4.1 (Section 4).

In Section 5, we propose a specific method for local bandwidth choice with
nice finite sample properties, applying an asymptotic relation between optimal
bandwidths for estimators of different orders of derivatives. This relationship
allows to derive consistent procedures for bandwidth choice for the estimation of
derivatives from consistent procedures for the estimation of the curve itself. A
different proposal for bandwidth choice for derivatives is due to Rice (1986).
The starting point of our procedure is a consistent method of global band-
width choice for the curve itself introduced by Rice (1984). Other methods
of global bandwidth choice, e.g., the testgraph method of Silverman (1978),
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cross-validation or generalized cross-validation [Craven and Wahba (1979)] and
related methods [Rice (1983)] could be used in the initial step of our method, too.
Section 6 contains a brief discussion.

The choice of variable bandwidths is also implied by nearest-neighbor estima-
tors [Stone (1977)], but these are not applicable in our situation which is based
on an equidistant design fixed in advance. Other proposals in density estimation
consider bandwidths varying across the sample [Breiman et al. (1977) and
Abramson (1982)], whereas we discuss variation of bandwidth with respect to
local curvature at ¢. Qur approach is related to work on asymptotic efficiency of
estimated bandwidths at a point in density estimation, due to Woodroofe (1970),
Krieger and Pickands (1981) and Abramson (1982a).

2. Auxiliary results. Let 2> 2, 0 <v <k, be given and assume that
ge€ ¢¥[0,1]) and K € A ,.

The proposal of Rice (1984) for' global bandwidth choice in the case of the
estimator (1.2) is to choose the minimizer of

A

(2.1) %i@'G@J»—“+E—ﬂ®

w.r.t. b. Here, 6 denotes any consistent estimator of o [obtained, e.g., by fitting
constants to successive triples of points, see Rice (1984)]. We denote this
minimizer by b. According to Rice, the estimator b is consistent in the sense that

b— b
(2.2) o -,0, asn— oo,

where b* denotes the optimal global bandwidth. Rice states this result for
k = 2, but the proof may be easily extended to cover the case & > 2. The kernels
have to satisfy certain smoothness properties and the existence of eight moments
of the noise variables is required.

Since the method of local bandwidth choice to be introduced in Section 4
requires estimators of g, we extend the estimator (1.2) to the estimation of
g®)(¢t) [compare Gasser and Miiller (1984)]:

A 1 n t - ti
2. _-— 4
(23) G = Ele( - )Y,,

where K, € A, ,. Such a kernel is said to be of order k. In the same way, § may
be generalized to 8,.

LEMMA 2.1. Assume that nb?***2/(log n)? - o and K, is Lipschitz continu-
ous on R. Then

sup |G (¢, b) - G(")(t)| -0, n-ow a.s.
te[o,

Proor. The assertion follows from Theorem 3.2 of Miiller (1983), choosing
m =1, B =[0,1] and r = 2. That the requirements for Theorem 3.2 are satisfied
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under the present assumptions follows from the proof of Corollary 4.1C, from
Lemma 3.2 and from the first part of the proof of Corollary 4.5 of Miiller (1983).
That sup, ¢ o, 1]|G(")(t) - Eéy(t, b)| > 0 under K, € 4, ,, g € ¢"(0,1]), may
also be easily verified directly by making use of the fact that the support of K, is
compact. O

Related results can be found in Cheng and Lin (1981) and Stadtmiiller (1982,
1986).
In the following, we assume that &2 > ». Define

Bi= (k)" [K(x)x*dx and o, ,= [KX(x)ds.

Standard calculations involving a Taylor expansion yieid

(24)  E3,(t,b,) - &”(t) = b} (B, ,2®(2) + o(1)) + O((nb}) ")
and
E(8,(t, b) - g"(t))’
(2.5) o2 T
= —nb?vﬂ (v, +0(1)) + X v)('Bv’kg( )(t)? + 0(1))’

and we obtain the locally optimal bandwidth
2r+1 o, o 1

(2.6) %=\ k=) B2, g e

)

)1/(2k+1)

provided that g*)(¢) # 0.

Analogously, (2.5) holds for CA#,( t, b), and the o-terms are uniform in ¢ € [0,1]
by (1.3). In this case we may therefore integrate (2.5) over [0,1] and obtain the
optimal bandwidth (assuming that [jg®)(¢)? dt # 0) w.r.t. the IMSE, namely,

)1/(2k+1)

(2.7)

)

20+1 v, o? 1

b* = ) 2,
2(k =) Bx og®(t) de 1

in analogy to (2.6). Inserting (2.7) into the integral of (2.5) again yields

E fo (G (t, b*) — g(2))’ dt
(2.8) = n—2(k—v)/(2k+1)[c(v, k)(ozvv,k)2(k—v)/(2k+1)

@v+1)/2k+1)
)" +o(1)],

X (BJ", k fo g ®(t)? dt

where c(», k) is a constant depending on », k only.
In order to derive a similar result for £,, we note that (g®)? is limited above
but can be zero, and therefore we truncate b* (2.6) and define b} =
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(d/n)/@k+D A b* where d > 0 is a constant s.t. (d/n)/@*+D > b* [see (2.7)].
In practical applications, the choice of d has to be a compromise between this
requirement and the necessity to avoid boundary effects by choosing d not too
large. Given an estimate b* of b*, our recommendation is to choose d s.t.
(d/n)l/(2k+1) = 2h*,

Define S, := {t € [0,1]: b* = b}} and S, := [0,1]\ S,. After insertion of b}
into (2.5), o-terms are uniform over [0,1] since ninf,b*2 — co, sup,b* — 0 as
n — oo. Therefore we may integrate to obtain

Ef (¢, Bx) — g™(¢)) dt
(29) = n—2(k—l')/(2k+1)[c(v’ k)(ozuy’k)ﬂk—”)/@k“)

X(By’k)2(2y+1)/(2k+ I)Lg(k)(t)2(2v+1)/(2k+1) dt + o(1)
1
and

E[ (&t 52) - g(t))" dt

Sy

(2.10) = n—2(k—v)/(2k+1)[d—(2v+1)/(2k+l)vy’kf oldt

2
+d2k—r)/@k+ 12 k/ g®(t)’ dt + 0(1)].
kg,

If inf,|g®)(¢)| > 0 and d is chosen large enough, the right-hand side of (2.10)
vanishes since then S, = &.

By Holder’s inequality it follows from (2.8) and (2.9) that (1.5) holds for
integration performed on S, and also for integration performed on S,, since there
b* < (d/n)/Ck+D < px, Thls yields some insight into the possible gain of
IMSE(Z,(+, b}*)) as compared to IMSE(G (-, b*)).

Let b(")* denote the asymptotically optlmal global bandwidth for the estima-
tor G,. If we compare estimators G,, G, with kernels K, € ./ on K, €M, 4,
then we obtain from (2.7) the asymptotic relation

bO" (o Ba 2(k=v) 1)V

2.11 — = _—
( ) b(v) VkBOk 2v+1 2k

=d,, say.

The right-hand side d, , is a known constant depending on the kernel functions.
Therefore, this relation may be used to derive a consistent estimate of 5" from
a consistent estimate of 5©".

3. Asymptotic behavior of kernel estimators with data-based local
bandwidth selection. In this section we show that for any consistent estima-
tor b, of b¥, 2(t, b,) behaves asymptotically as well as 2(t, b*), as far as
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convergence in probability is concerned. Throughout this section we assume that
v<k, K, ed,, K exists, K/ € Lip(—1,1] and g € ¥*([0,1]). For simplic-
ity we consider the case » = 0 only.

LEMMA 3.1.  Assume that g®(t) # 0 for some t € [0,1]. By (2.6) there exists
0<7*<o00s.t bf=1*n"YC* D Assume thatr,s with 0 <r<t* <s < oo
are fixed constants. Then, writing b(t) == tn~/@k+D),

Y (1) = n*/@RD(4(¢, b(7)) - g(2))
is a random function on ¢([r, s]) and
o x
(31) Y(r) »p ¥(r) = 7 [K( =) dW(x) + 748y sg®(e), asn > oo,
T T

on ¥([r,s]) endowed with the sup-norm, where W(-) is a standard Wiener
process.

REMARKs. (i) In case K(x) = jx[_1,13(%), (3.1) can be seen by Donsker’s
invariance principle, and the first term of the limit process can be written as
(W(7)/7)o [compare Krieger and Pickands (1981) who investigated this case in
density estimation but used a different approach based on Poissonization].

(ii) A related tightness argument was used by Abramson (1982a) in density
estimation.

Proor. We split Y, (7) into two parts,
n*/CED(4(t, b(7)) — E4(t, b(r)))
+n*/CHD(ER(¢, b(r)) — g(t)) = Z,(7) + B,(r), say.
According to (2.4)
B,(7) = 78, ,8(¢t), asn — oo, uniformlyon[r,s].

By Theorem 8.1 and Theorem 12.3 of Billingsley (1968) it is sufficient to show for
the first part:

(i) Appropriate convergence of the finite-dimensional limit distributions of
Z,(7).

(i) Z,(7*) is tight.

(iii) There exist constants y > 0, « > 1, and a continuous function F nonde-
creasing on [r, s] s.t.
(8.2) E(lzn(“'z) - Zn(‘rl)ly) S|F(7'2) - F(’Tl)rx,
forall r < <7, <sandall n.

(ii) and (iii) imply tightness of Z (7).

(i) Under our assumptions,

2
Vo

’k), for any fixed 7 € [r, 5]
.

o
Z,(r) s m(o,
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[compare, e.g., Stadtmiiller (1982, 1986)]. Furthermore, an application of the
Cramér-Wold device (see Billingsley) yields for ;, <, < -+ <1, €[r,s]

(Z(7),---, Z,(7,)) =0 #(0,C),

where the elements of the covariance matrix C are

o? x x o
c;j= — K| — | dx, 1<i,j<m.
Ti“_-f T; 1"1

The derivation is based on similar algebra as in (2.5). Hence the limit distribu-
tion coincides with the distribution of (Z(r,),..., Z(1,)), where

Z(r) = ng(é)dW(x). ‘

(ii) Follows from E(Z2(7*)) < ¢ < oo for all n [compare (2.5)].
(iii) We show that there exists a constant ¢ > 0 s.t.

33)  E(|Z(n) - Z(n)[) < e(r, — m)’, forall m, 1, & [, 5],

which implies (3.2) with F(7) = Vc .
For (3.3) we proceed as follows, setting b, = r,n~/@*+D  p, = 7,n~1/@k+1D);

E((Zn('rz)_zn("'1))2) ‘
[i(n%ff(t;f) (5 )
1 P 2 e ORI

with b, € [b,, b, ].

We conclude with K(x) = K(x) + xK ’(x) and 7, = byn/?#*1 such that
n 3/(2k+1)o 1 n 5 (t _ tl)

K2

E(Z(7) - Z ("'1)) <(n-mn)’ T;b_; i=1 bs

= p2k/2kt1g

<c(r,—m)?, foranyr e[r,s],i=1,2
Observe that L2, K%(t — ¢,)/bs) = O(nb,), since supp(K) =[—1,1]. O

As a consequence we obtain

THEOREM 3.1. Let the assumptions of Lemma 3.1 hold; in addition suppose
that there is a sequence of r.v.’s ¥ = 7(n) s.t. T >, 7* as n > oo. Then

(3.4) n*/CRD(8(8, b(#)) — &(t, b(1%))) =, 0, asn - .

REMARKS. (i) Since

020 k
nk/(2k+1)(g(t’ b(,,.*)) — g(t)) =g N T*kﬂ(),kg(k)(t)’ T:’ ’
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(3.4) implies that a kernel estimator supplied with a consistent estimate of the
optimal local bandwidth behaves asymptotically as well as the optimal estimator
in terms of the limiting distribution.

(ii) An analogous result can be proven for g,(-, -).

Proor. Given a, 7 > 0, by Lemma 3.1 we can choose § > 0 s.t.

p( max n*/CRD|a(¢, b(7)) — 8(¢, b(r*))| > a) <2,

l[T—7*|<é

for n large enough. Hence
n
P(n*/C*0)| g(¢, b(£)) — 8(¢, b(*))| > o) < 5t P(F =¥ >8) <m,
for n large enough. O

In practice it is more useful to consider a truncated bandwidth estimator like

7, ifr<7<s,
(3.5) po={r, iff<r,
s, elsewhere.

For the choice of s compare the discussion following (2.8). In the following we
want to analyze the behavior of 2(¢, b(p,)) w.r.t. IMSE. Given a consistent
estimator 7, s.t. f, >, 7,* (as n — o), where b} = 7,*n~/@**1 is the optimal
local bandwidth, there is some § > 0 depending on s and the constants in (2.6)
s.t.

x {T,*, it [g®(e)] > 8, ., o

pt - P
s, elsewhere,

According to (2.7), the optimal global bandwidth is b* = 7n~*/@**1 with some
7> 0, provided that [}[g*)(¢)]?dt > 0. Using this notation we state

THEOREM 3.2. Assume that [[(g®(¢))®dt > 0 and r < 7 < s. Then
sup limsup ['E[n?/@**1(4(t, b(p,)) — &(t))" A o] dt
0

a>0 n—ooo

< lim n?*/@k+DIMSE(G(t, b*)).

n—o

If in addition E(&!) < oo, the right-hand side of the inequality equals
sup lim sup flE[nzk/(Zk“)(é(t, b*) - g(t))2 A a] dt.
0

a>0 n-o
Proor. We split the interval [0, lj into the sets
T, = {t[0,1]:|g®(¢)| 2 8} and T,=[0,1]\ T}
Observing that X, — Y, —, 0 implies (X, A @) — (Y, A @) =, 0, we obtain by
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Lemma 3.1 and the dominated convergence theorem for any a > 0,

hmsupf E[nzk/(zk“)(g(t b(5,)) — g(t))* A a] dt

n— oo

hmsupf E[nzk/(z”“)(g(t b¥) — &(t))’ A a] dt

n—oo

lim sup f E[n2%/@k0(g(¢, br) - g())] dt,

n—oo

IA

and by the considerations following (2.8) in Section 2,

sup hmsupf E[nzk/@k“)(g(t b(5,)) —&(t))* A a] dt

a>0 n—-oo

< limsup f E[n?/ek0(G(2, b%) — g(2))’] dt.
If E(ef) < o0, we get E(nk/@k“)(é(t, b*) — g(t))* < c < o for all n, and
hence .
lim limsupE(nzk/(zk“)(é(t, b*) — g(¢))” v a) =0

A=® pooo

[see Loéve (1977), page 164ff.]. Therefore

hmsupf E[nzk/(zk“)(G(t b*) — g(¢)) ]dt

n— oo

= lim limsup E[nzk/(zk“)(G(t b*) — g(t)) /\a] dt.

A2>0 posoo
For ¢t € T, observe that
lim n?*/C**DMSE(4(t, b(r,))), r<l[r,s],

n—oo

is smallest if 7, = s and that §, >, s,as n - co on T,. O

In case the kernel employed is the rectangular function (hence k = 2) the
following stronger result can be derived. The restriction on the rectangular
kernel is only a technical point.

THEOREM 3.3. With the notation of this section we assume that E(e}) < o,
K(t) = x-1,11(8)/2, [3(&®(t))*dt >0 andr < 7 < s.

@) Then
Tim { /0 "MSE(8(¢, b(3,))) dt/IMSE(G(s, b*))} <1

i) If, in addition, |g®(¢)| = § on [0,1] for some & > 0, then

{ f MSE((¢, b(3,))) dt/ f MSE(4(¢, b)) dt} -1

n—»oo
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The proof is based on

LEMMA 3.2. Let (X;) be a sequence of independent r.v.’s with EX;= 0,
EX?=0%< o0 and E(|X,|") < M < o for some y > 2. If there exists a con-
stant c, > 0 s.t.

Y m v/2
X, )soyE(ZXf) , forallm,

i=1

m
D
i=1

then there exists a constant d., > 0 (independent of m) s.¢.

Y

E maxZX

l1<j<sm i=1

m ¥/2
sdyE(ZXiz) ;  forallm.

i=1

ProoF. Use the generalized Kolmogorov inequality, Loéve (1977), page 275.
O

LEMMA 3.3. Under the assumptions of Theorem 3.3,
3

t
. 6/5 t =0(1),
(36) E|n®® max nb(f) Z 2 XI- 11](b( ))Y &(t) 1)
asn — oo forall t €[0,1].
ProoF. Let I,:= {i: th—m* <i<in+ 'rn“/5} and define
Q)= 3o T Ri(n)= g T ale) - a(0)

2nb( iel,

tEI

The left-hand side of (3.6) is bounded by
n%E( max |Q,(r) + R,(r)['
r<rt<s
< 19| B9/ max|@,(r)|") + 3max | R,() B max|Q.(r)[)

+38max|R,(7) |2E1/2(max|Qn(1-) |2) + max |R,(7) |3]

By (2.4),

(3.7) = O(n~%).

op g( ) -s0

Furthermore, since the ¢; are i.id.,

n
4/5 ;

max
r<r<s

! T

—_— max
4/5 i
2m / 2rnY/®<j<2sn'/®|;

max |Q,(r)| =) max
r<t< i=1

r<r<s|2Tn
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Observing the independence of the ¢;, an application of Lemma 3.2 yields
(3.8) E(rglgsmn(f)r) <cn /5 fory=2,3 4.

(3.6) follows from (3.7) and (3.8). O

ProoF oF THEOREM 3.3. (3.6) implies that the sequence

Sy = [n*Pmax, . _,I18(2, b(r)) - &(2)]]*

is uniformly integrable. Hence it is possible to interchange limit n — oo and
expectation. Similar considerations as in Theorem 3.2 complete the proof. For
part (ii) observe that the set T, defined in the proof of Theorem 3.2 is empty, and
because of the tightness we do not need the truncation at a. O

4. Consistent local bandwidth selection. By the results of the preceding
section, kernel estimators with data-based local bandwidth selection behave
asymptotically well provided that the selection procedure is consistent. Here we
assume that g € #%(0,1]) and that a kernel K € .# o, of order % is used, on
which we want to do bandwidth variation.

Assume that v = 0 and % > 2. The basic idea is to apply the formula

[ ) ds
‘ g®(t)?

’

1/(2k+1)
(4.1) )

which follows from (2.6) and (2.7).
Assume that there are known constants 0 <r <s < oo s.t. for b* =
fn~1/Ck*D and b¥ = 7,*n~/@k+D we have r < 7 < s and r < inf,7*.

LeEMMA 4.1. Suppose that
() b is a consistent estimator of b* s.t.
nl/CkD(f — p*) -,0, asn - oo;

(i) 8® is a consistent estimate of g® s.t.

27 R (8P} -, a0 dt, asn oo,
i=1 0

Then, if

(4.2) 7, = nl/@k+ 1)5( 1/n):;'=1g(k2)(ti)2 )1/(2k+1)’
' 2M(t)

the estimator ,:= 7, A s salisfies

) ﬁ_)p{’rt*’ 7SS sn o oo,

s, else,
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REMARK. (4.3) is just the requirement for the results of Section 3 which then
apply to g(¢, i,n~/Gk+D),

Proor. If |g®(t)| > 0,

1,(k) 2 1/2k+1)
o gm psenen (e _ | HEO)
Ty Ty n ) g(k)(t)2
+ l/(2k+1)3 folg(k)(x)2dx 1/@k+1) 1/n2?=1§(k)(t,~)2 1/2k+1)
—)p ()’

by the assumptions. If g®(¢) =0, 7, A s —, 8. The result follows. O

Lemma 4.1 can serve as the basis of many different consistent local bandwidth
selection procedures. Condition (ii) is satisfied if, e.g.,

(4.4) sup [8®(¢t) — g®(t)| »,0, asn— .
te[0,1]
The following result gives sufficient conditions.

THEOREM 4.1. Assume that b is a consistent estimator of b* s.t.
nl/(2k+1)(5 - b*) -, 0, n- o,

further that g € €*%(0,1]), the kernel K, € M, , used in G, is Lipschitz
continuous on R and that nb?**2/(log n)? > o« for a sequence b — 0. Let

l/anLle(ti, b)2 1/(2k+1)
Gy(t, b)°

and assume that the estimate g(t, b(7)) employs a kernel K € # o,k Then
Theorems 3.1 and 3.2 apply to £(t, b(7)), and Theorem 3.3, if K = jx;_, j (or
is of simple structure).

NS

F= nl/(2k+1)5[

Proor. By Lemma 2.1 (4.4) is satisfied and therefore Lemma 4.1 applies. O

5. A specific procedure and simulation results. In the following, we
describe a procedure which allows bandwidth variation for small-to-medium
sample sizes as they are usually encountered in practical applications. We
assume g € €**%([0,1]) and estimate curve and second derivative with kernels
of the orders %, respectively, (k + 2). We worked out an example for 2 = 2 and
found that the performance of the procedure depends on the choice of kernels of
the correct orders and of sufficient smoothness. The kernels chosen have been
described in Miiller (1984) and satisfy the smoothness requirements of Rice
(1984).
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Step 1. Compute the minimizer b of the Rice criterion, using the kernel
Py,3= 31 —3x®+ 3x* — x)x;_,,,; which is in .#,, [according to (2.2),
Lemma 4.1(i) is satisfied].

Step 2. Compute the minimizer & of the Rice criterion, using the kernel
Py,3= 3{3(3 20x” + 42x* — 36x° + 11x%)x,_, ,; which is in .

Step . Compute b(7,) = frtn ~1/5 according to (4.2), substltutmg 89 =

2(t bd2 4), where d, , = 0.9 is determined according to (2.11). Choose a suffi-
ciently large cut-off to determine b(4,). Hence bd, an'? = 6®"nl/® [any choice
b=1n"'9 1> 0, implies (4.4) and hence (ii) in Lemma 4, 1]

Step 4. Estimate g(t) by 2(¢, b(%))).

Simulations for this procedure were based on the following seven curves of
different type:

&g,(x) = h(0.5,0.1) + 16x(1 — x),

where A(u, o) is a Gaussian density with mean p and variance 0%
&,(x) = h(0.25,0.05) + h(0.5,0.1);
&@)—&@)+0—2x—bﬂx+0®)

84x) = 6x — 2;
(x) = 16x, 0<x<05,
85 16(1 — x), 05<x<1;
8x + 4, 0<x<0.25,
_)—20x+11, 025<x<05,
86(%) = { 19x — 5, 05 < x < 0.75,

—24x + 22, 075 <x<1;
8:(x) = 4sin(27x).

These curves were computed on [—0.5,1.5] and observations were extended
accordingly in order to avoid boundary effects. Curves g, g, were included as
examples of nondifferentiable functions. Curve g, was included since g;’ =0
which is an interesting case in view of (2.6)—(2.10). No gain for local bandwidth
choice can be expected in this case. We allowed for n = 50 observations per curve
and the results were averaged over N = 125 random samples. The noise variables
generated were normal with standard deviation o = 0.1(max,g(¢) — min,g(?)).

We found: that the estimation of residual variance necessary for the Rice
method works sufficiently well if constants are fitted to successive triples of
points. In general, the Rice method for global bandwidth choice produced good
results for all curves. An impression is given in Table 1, where we used the kernel
Py 41 = 53— 1022 + Tx*)x;_y 1

The last column of Table 1 displays the finitely optimal global bandwidth
(w.r.t. IMSE). This bandwidth was computed by the finite evaluation technique
described in Gasser et al. (1984): If the true curve g and ¢ are given, for any
linear estimate g(t) = XW)Y; of g(¢) we compute

varg(s) = oS W and Bias(é(t))=§w,~g(t,-)—g(t),
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TABLE 1
Quality of estimated global bandwidth b by the Rice
method(kernel By , 1), N = 125

Optimal value w.r.t. IMSE
&;(x) Mean of b Variance of & (finite evaluation)
& 0.203 0.003 0.21
& 0.107 0.00036 0.11
&3 0.107 0.00036 0.11
& 0.365 0.012 045
&5 0.264 0.0028 0.27
86 0.20 0.0036 0.22
&7 0.28 0.006 0.27

-
w
) a —b
1 t
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+ —-Db
b
X —
@
v t
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o
~
~
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bandwidth ->
O.IIS

. 0.16 0.32 0.48 0.64 0.8 0.96 1.12

F1e. 1. Estimated local bandwidths ( b,), finitely optimal local bandwidths (b)) and estimated
global bandwidth (5). Results for b,, b for one sample; curve is g;.
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—%

a —Db
+—Db
x—bt

T T T T T T T T T T T 1

0.16 0.32 0.48 0.64 0.8 0.96 1.12
t ->

F1G. 2. Same as Figure 1, but for g, (one sample).

TABLE 2

Relative gains of IMSE of variable bandwidth estimator versus global bandwidth estimator, N = 125

Estimated bandwidths,
comparison with higher
&:(x) Optimal bandwidths?® Estimated bandwidths® order kernel®

& 29.6 111 3.8

& 422 234 17.3

&3 42.3 23.3 17.4

& 0.0 -03 31.0

&s 49.0 28.3 26.9

& 327 149 10.7

p 9.5 7.7 —426

#Possible gain in percent of IMSE(g(¢, b)) against IMSE(G(-, b*)) using kernel By s 3.
bAverage gain in percent of IMSE(Z(¢, 5,)) against IMSE(G(-, b)) using kernel By, 3.
“Average gain in percent of IMSE(g(¢, 13,)) using kernel F,,; against IMSE(G(-, b)) using kernel

P41
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and thus we can evaluate IMSE (G(-, b)). The minimizers w.r.t. b, b, are
denoted by b*, b*, called the finitely optimal bandwidths.

The results for g, must be interpreted with care, since bandwidths were cut
off at 0.45 in order to avoid boundary effects (as data were available in
[—0.5,1.5]). It turned out that for the present application it is slightly better to
oversmooth G,(t) somewhat. Therefore we chose d 2,4 = 1.1 instead of the correct
value d, , = 0.9 (Step 3).

We lnvestlgated the behavior of estimated local bandwidths b compared to
b¥ for t € [0,1]. Figures 1 and 2 show these bandwidths and the global
bandw1dth estimate b for the functions 8, and g;.

The gains (in percent) of our local bandwidth choice as compared to the Rice
method with the comparable kernel P,,; € #,, and with the higher-order
kernel Py, , €#,, are given in Table 2. The first column contains the gain
using finitely optimal local, respectively, global bandwidths (computed by the
finite evaluation method), using the kernel P, , ;. These gains are close to the
asymptotic values given by (2.8) and (2.9). Results for g, again must be
interpreted with caution, since for the kernel P, , ; sometimes larger bandwidths
than 0.45 would have been optimal. The.second column shows that for these

s - variance using global bandwidth b
= x —bias using global bandwidth b

| + —variance using local bandwidth b.

t
o —bias using local bandwidth B;

variarce, bias ->

T T T T T T T T T T T T 1

0. 0.16 0.32 0.%8 0.54 0.8 0.96 1.12
t ->

F1G. 3. Local variance and bias using finitely optimal local bandwidths b, respectively, finitely
optimal global bandwidth b*.
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s —variance using global bandwidth %
+ X — bias using global bandwidth g
+ —variance using local bandwid}h %t
¢ - bias using local bandwidth bt

bias ->

variance.,
1

T T T
0. 0.16 0.32 0.48 0.64 0.8 0.96 1.12
t -

F1G. 4. Local variance and bias using estimated local bandwidths 13,, respectively, estimated global
bandwidth b. Same sample as in Figure 2.

examples, data-based local bandwidth choice is always better than global band-
width choice and generally better than using higher-order kernels. An exception
are sinus-type functions, where |g®)| is of the same order of magnitude as |g®)|,
which implies by (2.4) that bias is decreased appreciably if higher-order kernels
are used, since usually |B, 4] < |B, |- In such cases it is preferable to use a
higher-order kernel supplied with a global bandwidth estimate.

In Figure 4 we compare local variance and bias of kernel estimators with
global bandwidth choice (Rice) and our local bandwidth selection procedure for
8, for one sample. Figure 3 shows the same quantities, if finitely optimal
bandwidths are used. As is to be expected, the local procedure reduces bias near
peaks and variance in flat parts of the curve. For the same sample as in Figure 4,
Figure 5 displays observations, true curve and estimated curves with global and
local bandwidth selection. :

6. Discussion. We assumed that the regression model (1.1) is homoscedas- -
tic. A referee pointed out that in view of (2.6), local bandwidth variation would
be of particular interest for heteroscedastic models [i.e., Ee? = 6%(t;) for some
smooth function ¢2(-)]. A closer analysis of (2.8) and (2.9) and application of
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o — data points

© J —g(t),( true curve )

g 4 + - &(t,b), (global bandwidth
° kernel estimator)
R ; x = §(t,5,) (1ocal banawidth

\ kernel estimator)

estimators ->

data, true curve,

F1c. 5. True curve g,, data points and estimated curves by local/global bandwidth kernel estima-
tors. Same sample as in Figure 2.

Holder’s inequality shows indeed that in this case we obtain
IMSE (local optimal bandwidths) /IMSE (global optimal bandwidth)

1/@k+1)

) E([GZ(t)]z(k_”)[g(k)(t)Z] @+ 1))‘ )
_: ([fola(t)2 dt]Z(k_v)[ng(k)(t)Z dt](2v+ 1)) /@R D)

<1, provided g®(¢)”> 0on[0,1].

Therefore adaption to heteroscedasticity is expected to yield similar gains as
those by adaption to local curvature. Carroll (1982) proposes to estimate o( t)? by
means of Priestley—Chao kernel estimators applied to squared residuals in the
context of estimating weights for linear regression. A similar procedure could be
thought of in the present situation. Any uniformly consistent estimate of local
variance allows to extend Lemma 4.1 and Theorem 4.1 to the heteroscedastic
case [applying an extended version of (4.1)].

Another important point concerns choice of the orders of the kernels used.
Theorem 4.1 allows to perform bandwidth variation on a kth-order kernel if




200 H. G. MULLER AND U. STADTMULLER

g € ¥%([0,1]) and therefore no loss is incurred in the asymptotic rate of
convergence and constants are improved. But this requires estimating g® by a
kth-order kernel which yields a poorly behaved estimate for small sample sizes.
In order to overcome this difficulty, we employed in the simulations and the
finite sample procedure of Section 5 a (k + 2)th-order estimate for g® and a
kth-order estimate for g. As the referee remarked, there might be two problems
with this procedure: First, it is not clear, whether the (%2 + 2)th-order estimate
of g® suffices to make bandwidth variation competitive against the possibilities
of kth- as well as (& + 2)th-order global bandwidth estimation; and second, this
procedure is suboptimal from an asymptotic point of view since the rate of
convergence is better for the ordinary (k2 + 2)th-order estimate of g than for the
kth-order variable bandwidth estimate.

~ For the first point, we refer to the simulation results displayed in Table 2,
columns 2 and 3, which show that for rather different curves the method is
competitive. To address the second point, we want to emphasize that the
procedure of Section 5 was specifically devised for the small sample situation.
For large samples, bandwidth variation can be based on Theorem 4.1 (see above).
A realistic asymptotic theory for our specific procedure (and of kernel estimation
in general) would have to take into account varying the orders of kernels with
increasing number of observations. A definite evaluation of our specific procedure
is not possible until such a theory exists.

Acknowledgments. We wish to thank Friedrich Loffler for help with the
simulation and John Rice for providing us with pre-publication versions of his
papers. Further thanks are due to a referee for his detailed comments and his
criticisms, which are discussed in Section 6.
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