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A COMPARISON OF CROSS-VALIDATION TECHNIQUES IN
DENSITY ESTIMATION?

By J. S. MARRON
University of North Carolina, Chapel Hill

In the setting of nonparametric multivariate density estimation, theo-
rems are established which allow a comparison of the Kullback—Leibler and
the least-squares cross-validation methods of smoothing parameter selection.
The family of delta sequence estimators (including kernel, orthogonal series,
histogram and histospline estimators) is considered. These theorems also
show that either type of cross validation can be used to compare different
estimators (e.g., kernel versus orthogonal series).

.

1. Introduction. Consider the problem of trying to estimate a d-dimen-
sional probability density function, f(x), using a random sample, X,,..., X,,,
from f. Most proposed estimators of f depend on a “smoothing parameter,” say
A € R*, whose selection is crucial to the performance of the estimator.

In this paper, for the large class of delta sequence estimators, theorems are
obtained which allow comparison of two smoothing parameter selectors which
are known to be asymptotically optimal. An important consequence of these
results is that either smoothing parameter selector may be used for a data based
comparison of two density estimators, for example, kernel versus orthogonal
series. Another attractive feature of these results is that they are set in a quite
general framework, special cases of which provide simpler proofs of several recent
asymptotic optimality results.

In Sections 2 and 3 the family of delta sequence estimators and the smoothing
parameter selectors are given. The theorems are stated in Section 4, with some
remarks in Section 5. The rest of the paper consists of proofs.

2. Delta sequence estimators. A delta sequence density estimator, as
studied by Watson and Leadbetter (1965), Féldes and Révész (1974) and Walter
and Blum (1979), is any estimator which can be written in the form

f’;\(x) =n"! Z sx(x» Xi)’
i=1

where the function 8,(x, y) is indexed by the smoothing parameter A € R™.
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Examples include:

Kernel estimators. Given a kernel function K(x), let
8:(x, X;) = AK(N/9(x — X)).
Histogram estimators. Let B denote a bounded subset of R? and suppose

that A,,..., A, form a partition of B. For 2 =1,..., A, let 1,(x) denote the-
indicator of A, and let p denote Lebesgue measure. Define, for A € Z ¥,

A
a\(x, X;) = > M(Ak)_llk(x)lk(xi)-

k=1

Orthogonal series estimators. Given a nonnegative weight function w and a
sequence of functions {y,(x)} which is orthonormal and complete with respect
to the inner product

Joa() e (x)w(x) dz,
define, for A € Z ¥, |

A
(%, X;) = kglth(x)‘Pk(Xi)w(x)-

See Walter and Blum (1979) for a rather extensive list of other delta sequence
density estimators.

3. Smoothing parameter selectors. The two methods of choosing the
smoothing parameter A that are discussed in this paper are the Kullback—Leibler
and the least-squares methods of cross validation. Both make use of the leave-
one-out estimators:

f (x)=(n-1)"L8(xX), Jj=L..,n

i#j

The Kullback-Leibler (also known as pseudo-likelihood) method first ap-
peared in Habbema, Hermans and van den Broeck (1974) and was modified in
Marron (1985). This involves choosing A to maximize

KL(\) = I1 [ 72 - (x;)“Fes)],
i

where f{ ,;~(x) is the positive part of f;\, (),
fAiL,j"(x) = f)\,j‘(x) v o,

where u(x) is a nonnegative weight function which is supported on a set where f
is bounded above 0 (for example the indicator of such a set), and where

B(N) = [A(x)u(=) d.
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The least-squares method was introduced by Rudemo (1982) and Bowman
(1984). This involves choosing A to minimize

LSO = [A@) ulx) de - 207 B fr ()l X),

where w(x) is a nonnegative weight function.
For purposes of comparison of these two smoothing parameter selectors, the
natural connection between the weight functions « and w will be seen to be

u(x) = w(x)f(x).

4. Theorems. In this section it will be demonstrated that choosing A by the
methods in the last section is, in a strong sense, asymptotically equivalent to
minimizing the following distances:

Average square error.

da(fr f) = g [ (X)) - FX)] 1(X) ™ w( X))

Integrated square error.
d/(f 1) = [[ ) = f(x)]"w(=) dx.

Mean integrated square error.

dy( o 1) = Ef[ A(x) — f(2)]"w(x) dx,

where w(x) is a nonnegative weight function.
Note that d,, admits the variance-bias square decomposition

(1) dy( o 1) = [nvarl8y(e, XD w(x) dr + [B(x)u(x) ds,
where B(x) denotes the pointwise bias,
(4.2) . B(x) = [8y(x, 2)f(y) dy — f(2).

Marron and Hardle (1986) have shown that, for large n, under reasonable
assumptions, these distances are essentially the same in the sense that

. da( o ) = du(hr f)
4.3 1 = =0 S.,
(43) nesee ren, du(Fur ) as
. di(fi £) —du(h f)
. 1 = =0 S.,
(“4) s | ) as

where A , is a finite set whose cardinality grows algebraically fast.
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The approximations (4.3) and (4.4) are vital to the theorems of this paper.
Other assumptions include the existence of constants C,C’, § > 0 so that

(4.5) #(A,) <nC,

(4.6) C'n®<A<Cn'™? AeA,,
(4.7) w(x) <C, =x€R,
(4.8) fx)<C, =xe2,

where % denotes the support of w,
(4.9) B(x)<Cn™®, AeA, ze,

fva.r[ox(x, X;)] w(x) dx

4.10 lim su —1|=0.
(4.10) A Neh, C'A
Another useful assumption is that for 2 = 2,3, ... there is a constant C, so that

for m=2,...,k,
(4.11) / [ fsx(xix’ x}l) “ee ‘Sh(xi,,’ xjh) dxl R dxm < Ck>\k_m/2,

where i,, ji,..., i, J, = 1,..., m subject to i; # j,,..., i, # J,, and to each of
1,..., m appearing at least twice in the list i,, jj, ..., i, j;. In the case of kernel
estimation (4.11) is a consequence of integration by substitution. Marron and
Hardle (1986) show how such a condition is satisfied for the histogram and
orthogonal series estimators.

Additional assumptions needed only for the KL cross-validation function
include the existence of a constant C so that

(4.12) S(x,x) <CN, =x€R,
(4.13) f(x) =C™, xeZ,
(4.14) sup |f>\,j-(x) - f(x)l -0 as.,
J’ ’x
where sup; , , denotes supremum over j =1,...,n, A€ A, x €Z.

Observe that (4.13) requires S to be compactly supported. One effect of this is
that it avoids the potentially disastrous “tail effects” first reported by Schuster
and Gregory (1981). For a detailed analysis of this problem, see Hall (19864, b).
Assumption (4.14) is stated in this form because sufficient conditions for this
vary somewhat depending on the particular type of estimator being used. By the
calculation (6.1), the uniformity over j may be easily handled. The uniformity
over A and x may be obtained as in Lemma 1 of Hirdle and Marron (1985).
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Before starting the theorems, it is convenient to define

R=n"! i::lf(Xj)w(Xj) - E[f(Xj)w(Xj)]’

n

(4.15) S=2n"" Y [u(X;)(1 - log f(X;)) - R],

T= —ff(x)Qw(x) dx — 2R.

It is important to note that R, S and T are independent of A. For this reason,
the fact that both maximizing KI(A) and minimizing I.S(\) are asymptotically
equivalent to minimizing the distances d,, d; and d,, is demonstrated by (4.3),
(4.4) and

THEOREM 1. Under the assumptions (4.3), (4.5)—(4.14)
—2n"ogKL(A) =d,(fo, F) + S+ o(dy(fy, )),
in the sense that
2n " Uog KL(N) + d(fo, f) + S
dy(F f)

lim sup =0 a.s.

n— o AeA,

THEOREM 2. Under the assumptions (4.5)—(4.11)
LS(N) = d;(fy, ) + T+ o(du( 1y 1)),

in the sense that

LS(A) —dy(f, f)-T
du(fr f)
Theorems 1 and 2 are stated in this nonstandard form because this provides

the best comparison between KL and LS. Easy consequences of Theorems 1 and
2, respectively, are:

=0 a.s.

lim sup

n—w ze),

COROLLARY 1. Under the assumptions (4.3)—(4.14), if A is the maximizer of
KIL(A) over A, then

lim d( fx’ fﬂ) =1 a.s
n—> o0 inf}\eAnd( fas f) o

where d is any of d 4, d; or dy,.
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COROLLARY 2. Under the assumptions (4.3)-(4.11), if X is the minimizer of
LS(A) over A, then

- d(fs. f)
m - =
n—oo infy 5 d( f, f

=1 a.s.,
)

where d is any of d4, d; or dy,.
5. Remarks.

5.1. The main point of this paper is comparison of the KL and LS cross-
validation functions. Theorem 1 shows that KL(A) . is based on the distance
d 4 ( f,\, f), while Theorem 2 shows that LS()) is based on the somewhat more
compelling distance d( f,\, f). A more significant advantage of LS(A) is that the
term o(d,,( fr, f)) in Theorem 2 represents error from one source, while in
Theorem 1 it represents error from three sources, one of which is the same as
that of Theorem 2. A final disadvantage of KL is the stronger assumptions
required, especially the uniform convergence assumption (4.14) and the fact that
(4.13) requires ¥ to be compact. '

5.2. Despite the poor showing of KL(A) in the above respects, it should be
noted that KL and LS are not really comparable because for LS, w must not
depend on f, while for KL, w = u/f, with u independent of f. This is an
advantage of KL because for the important applications of density estimation to
discrimination and to minimum Hellinger distance estimation, the latter form is
more natural.

5.3. A very important problem in density estimation is that of how to choose
between the many available estimators (e.g., histogram, kernel, orthogonal series).
Rudemo (1982) has proposed approaching this problem by selecting the estima-
tor which gives the smallest minimum KL(A) [or LS(A)]. The second important
point of the results of this paper is that they provide theoretical backing to this
idea, by indicating that the selected estimator should have the smallest d 4( f, o)
[or d( fx, f), respectively]. Hans-Georg Miiller has pointed out that care needs
to be taken in interpreting these results with respect to the problem of kernel
selection in the kernel estimation case (i.e., use a kernel with several vanishing
moments, and hence a higher rate of convergence, or use a nonnegative kernel?).
In particular, the n — oo asymptotic results of this paper do not provide proper
quantification of the trade off that must occur in kernel selection. It is conjec-
tured that when suitable methods for studying this are found, Rudemo’s idea
will still be seen to apply.

5.4. As noted in the introduction, the general framework of the results of this
paper contain all or part of the results of a number of recent papers as special
cases. These include the results of Burman (1985), Hall (1983, 1985), Marron
(1985) and Stone (1984, 1985). In most cases the techniques of the present paper
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provide a substantial simplification of the proofs in the earlier papers. Also, the
unified approach makes it seem easy to provide theoretical backing to some
interesting heuristics of Bowman, Hall and Titterington (1984).

5.5. To save space, some of the assumptions of the theorems of this paper
have been made more restrictive than necessary. For example, (4.5) can be
weakened to A, an interval by a straightforward continuity argument [see
Hirdle and Marron (1985) for details]. The condition (4.6) can also be substan-
tially weakened [compare Burman (1985), Stone (1984) and Stone (1985)]. Another
straightforward extension is to the case of A vector or matrix valued as discussed
by Deheuvels (1977).

6. Proof of Theorems 1 and 2. It is convenient {:o define, for j =1,..., n,
fr (X)) - {(X;) (X)) = (X))
A= : 1,.(X;), At = 1,.(X;).
/ [ ixy A A ixy

Note that by (4.13) and (4.14),

sup|Af| < sup|A;| > 0 as,

JyA JyA
where the suprema are taken over j=1,...,n, A€ A . For n=1,2,... define
the event '

= {A;r =Ajforeach)\eAnandeachj= 1,...,n}.

Note that
lim P[U,] = 1.

From the above, it follows that (on the event U,,)

—2n"ogKL(A\) — S = -2n7} Zn) [u(X;)(1 + log(1 + A))) - B(A) - B|

Jj=1

_ opt él[u(xj)(l +4;) - p(A) - R]

+d1’1( fm f) -2n7! Z rju(Xj)y

J=1

where d is the leave-one-out version of d, given by
dA( o f - Z [fx i (X) f(X)] f(X w(Xj)’

and where 7; denotes the remainder term of the log Taylor expansion. Theorem 1
follows eas11y from this, (4.3), (4.14) and the following two lemmas.
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LEMMA 1. Under the assumptions of Theorem 1,

dA(f}\’ f) _d;l(f}\’ f)

lim =
e dy(Fur )

n—w \e),

’=0

LEMMA 2. Under the assumptions (4.5)—(4.11),

5 n"'Th b, (X)w(X)) = [ix) f(x)w(x) dx — R
m sup

= =0 .S.
noo Aeh. du(Fa 1) @8

The proof of Lemma 1 follows in a straightforward manner from

f}\,j’(x) - fx(x) =(n- l)wlfx(x) - (n- 1)_18,‘(x,x)

and the assumption (4.12). The proof of Lemma 2 is in Section 7.
An interesting feature of the mathematical structure here is that Lemma 2
contains the hardest part of the proof of Theorem 2 as well. To see this write

LS(A) =d,(f. f) —2n7" E f)\,j—(Xj)w(Xj)
(6.1) /=1
+2n7t [f(x) f(x)w(x) dx ~ [{(x)'w(z) d.
Theorem 2 follows easily from this, (4.15) and Lemma 2.

7. Proof of Lemma 2. The conclusion of Lemma 2 may be written as

LU,

i#j

sup n Y (n—-1)"" dM(fA,\,f)_l—>0 a.s.,

AEA,

where

U, ;= 8\(X;, X))w(X;) - fb‘,\(x, X)) f(x)w(x) dx — f(X;)w(X;)

+ j f(x)w(x) dx.

For j=1,...,n,let
W= E[U, X))
and for i # j define

Vi=U,i= W
Observe that
E[V, X, = E[V, ,X;] =0,
(7.1)

B[w)] -o.
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To finish the proof of Lemma 2 it is enough to show fhat

(7.2) sup n” % YV, ; dM( fr f)—l -0 as.
)\EAn l?ej

and that

(7.3) sup n7Y| Y W, |dy( i, F)7' -0 as.
A€A, j=1

To verify (7.3), note that by the Borel-Cantelli Lemma, it is enough to show
that for ¢ > 0,

0

(7.4) Y #(A,) sup P
n=1 A€A,

> de( fm f)} < 0.

For this, using the notation (4.2), write

W, = B(X;)w(X;) - fB(x)f(x)w(x) dx.

From the assumptions (4.7), (4.8) and (4.9) it follows that
|Wj| < Cn~°,
o’=varW, < CZfB(x)zw(x) dx.
Now Bernstein’s inequality [see (2.13) of Hoeffding (1963)] with (in Hoeffding’s
notation)
A=bt/e?, r=nt/b, b=Cn? t=edy(ff)
gives

nt Y W

Jj=1

P > edy( frs f)] < exp(—nt?/2(o® + bt/3))

< exp(—nesz( fr, f)/2Cz)
< exp(—n%?%/2C?),

for n sufficiently large. (7.4) is a consequence of this.

To verify (7.2), as in the proof of (7.3) above, together with the Chebyshev
inequality, it is enough to show that there is a constant y > 0, so that for
k=1,2,... there are constants C, so that

2k

sup E|n"2 Y. Vidy(fr f )7 <

A€, i#j

But by the cumulant expansion of the 2kth centered moment [see, for example,
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Kendall and Stuart (1977)], this may be obtained from
_ ok
(7.5) |ndy( fr )" Toumy(V; joeees Vi, )

where cum, is the kth order cumulant and ¥ denotes summation over
Ly Jipeeesbpy Jp=1,..., n subject to i, # j,,..., i, # Jp.

To check (7.5), note that by (7.1) and the moment expansion of cum ,, most of
the terms in the summation will be 0. In particular, cum, can be nonzero only
when each of i;, ji,..., i, j, is the same as one of the others. For each such
term, let m denote the number of unique elements of {1, ..., n} appearing among
i1y Jis+++s ip, Jp- By assumption (4.11) there is a constant C,, so that

Vi, )| = ez,

But there is also a constant C, so that for m = 2,..., k, the number of nonzero

terms in the summation of (7.5) with exactly m distinct indices is bounded by
C,n™.

Hence, by (4.1) and (4.10) there is a constant C, so that the left side of (7.5) is

bounded by '

< Ckn—‘yk,

1272

Icumh(vi

. k k
Ckn—Zk(n—l}\)—k E nmNe—m/2 = Ck Z poktmy-m/2

m=2 m=2

A consequence of this is (7.5). This completes the proof of Lemma 2.
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