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LIMITING BEHAVIOR OF FUNCTIONALS OF HIGHER-ORDER
SAMPLE CUMULANT SPECTRA'

By DaNIEL MacRAE KEENAN

Brown University

This paper is concerned with establishing a broad class of estimators
(and the limiting behavior, thereof) for parametrizations of higher than
second-order structure. This includes parametrizations which reflect, for
example, such properties as nonlinearity and/or non-Gaussianity and/or
time irreversibility. Asymptotic distributions, almost-sure convergence, and
probability-one bounds for such estimators are established. Several applica-
tions of such estimators are discussed. *

1. Introduction. Time series analysis is a body of techniques that have been
developed to study the dependence structure of processes evolving over time.
The processes that have typically been studied are those that are stationary (in
one of its various forms) and linear; the methods which have been developed
have primarily been based upon second-order structure. One future direction,
however, appears to be toward broadening the framework to include more
general processes (e.g., nonlinear).

This paper is concerned with developing a broad class of estimators (and the
limiting behavior, thereof) for parametrizations of higher than second-order
structure. This would include parametrizations which reflect, for example, such
properties as nonlinearity and /or non-Gaussianity and /or time irreversibility. A
very important example of such a parameter concerns that component of the
asymptotic variance of the quasi-maximum likelihood estimator [see Hosoya and
Taniguchi (1982)] which is an integral of a certain function w.r.t. the fourth-order
cumulant spectra [see Brillinger (1975), Theorem 5.10.1]. Taniguchi (1982) has
constructed a consistent estimator of this integral. Below we suggest a modifica-
tion [expression (2.28)] to the estimator suggested by Taniguchi, obtaining one
which is simpler both in its form and its variance. An application of Theorem 3.3
below gives a bound on the rate of its convergence. For linear processes,
estimators (of parameters) defined via a minimization procedure (under regular-
ity conditions) will not contain this integral term because the fourth-order
cumulant spectra factorizes as a product of second-order spectra; otherwise there
will typically be such a term. In Keenan (1985a) estimators defined via integral
minimization are considered; the result of Taniguchi (1982) applies to the
corresponding asymptotic variance component of these estimators. Taniguchi’s
result allows for the construction of confidence intervals in these cases. Weiss
(1975) has shown that for linear, stationary (more specifically, ARMA) processes,
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HIGHER-ORDER SAMPLE CUMULANT SPECTRA 135

Gaussianity and time reversibility are equivalent; Cox (1981) has suggested
third- (and higher-) order cumulant analogues of the variogram as potential
measures of time irreversibility. Such statistics also fit the framework of the
present paper.

Higher-order cumulant spectra [first suggested by Kolmogorov, but see
also Tukey (1953)] have been studied by various authors, e.g., Brillinger and
Rosenblatt (1967a, b). Brillinger and Rosenblatt (1967a, b) develop consistent
estimators of higher-order cumulant spectra via spectral windows (analogous to
what is done in the second-order case). The present work is not concerned with
the estimation of higher-order spectra, which is local in nature, but rather with
the global concern of estimating functionals of the higher-order spectra. If we
wish to consider higher-order parameters other than the cumulant spectra itself,
then a framework for their estimation is needed. The parameters (estimators)
which we will consider are those representable as an integral of a kernel function
w.r.t the kth (> 2)-order (sample) cumulant spectra. In this paper we will
establish the asymptotic distributions, almost-sure convergence and probability
one bounds for such estimators. Two approaches are considered in this paper;
one approach taken in the construction of said estimators is motivated by
Taniguchi (1982). We will construct consistent estimators via recursion; the bias
depends on lower-dimensional parameters and, consequently, we will build up
from consistent estimators for second- and third-order parameters. The second
approach excludes the contributions due to those points which cause the biases;
the covariances of these estimators have a simpler form. This approach of
excluding such points was also used by Brillinger and Rosenblatt (1967a, b) in a
related context.

2. Background and construction of estimators. Let {X;| — o0 <i < o0}
be a zero-mean, real-valued, strictly stationary process satisfying [see Brillinger
(1975), Section 2.6]:

ASSUMPTION 1.

o0

(2'1) Z |vj| |C(Dl, CCTRRE vk——l)l < 00,

U1, Ugy000y Op_1= — 00
for j=1,2,...,k—1, k=2,3,...,where c¢(v,,0,,...,0,_;) is the kth-order
cumulant of {X(0), X(v,),..., X(v,_1)}.

In the case of a Gaussian process the cumulants of order greater than or equal
to three are all zero. The kth (> 2)-order cumulant spectrum is defined as

f(k)(xh >\27"" }‘k—l)

] I k-1
(2.2) _ 1/(2w)k—1 Y N exp{i( ;l}\jvj)}c(vl,...,vk_l)-

U1, Ug,eee, Up
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We could consider R”-valued processes, the generalization being straightforward.
The kth-order cumulant spectral distribution is defined to be the complex-
valued measure constructed as the integral of f ®:

(2.3) F®(A) = [ BN, Agyeee Mmy) dN,
A

where A is a Borel set in the (k2 — 1) toral group, (S')*~!, S! being the unit
circle. [Stationarity has reduced the integration on [0,27]* to that on the
(k — 1)-manifold, {\|X*_ A, =0 (mod27)}, i.e., [0,27]* 1] The same symbol
F®(.), will be used to represent both the integrated kth-order cumulant
spectral distribution function and the complex measure. Let 4 be a C’-valued
function of bounded variation [see Hobson (1927), pages 343-346] defined on
(8Y)*~1 and G(F®) be a parameter of interest defined by

(24) O(F®) =deff(sl)kﬁlh(>\1, Agseros Ap_) AEOAL Ay, ens Apy).

That is, the present generalization of bounded variation to more than one
dimension, which we will refer to as Hobson bounded variation, is the following.
We assume that the real and imaginary parts of each of the g components of &
are of bounded variation in j variables, 1 <j < k — 1, for all values of the
remaining k — 1 —j variables, where bounded variation in the j variables
means that supremum over all rectangular decompositions of [0, 27 ]/ is finite for
the absolute value of the additive rectangle function (i.e., jth difference) con-
structed from h. Let 6(F®) and h/-) correspond to the jth, 1<j<r,
(complex-valued) component of 6(F®) and h(+), respectively.

To illustrate such parameters, consider the following examples of expression
(2.4). Hosoya and Taniguchi (1982), Keenan (1985a), among others, consider
second-order vector-valued parameters (0) and their estimators (0) defined via
minimization (in ¢) of integral expressions (for the true and sample spectral
distribution functions, respectively, substituted for G):

(2.5) [ *"o(¢, t, 8(£)) dG (%),

where p is a function satisfying certain regularity conditions and g is a (gener-
alized) derivative of G. A component of the asymptotic covariance matrix of 6 is

0 f(4)(a B 277—3)) (3707/.(4)(“737277—3))

ap
[, |t ,
(2.6) “ro,2712L 06 a0
Xf“(a, B,27 — B) dadp,
which is of the form of expression (2.4) with

R(A, Ag) = (A1, Ag, Ag)n(Ag + Ay3),
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where
9 (©)
$(Ay, Ag, Ag) = %(xl, 0, f O(A, Ay, 27 — X))
(2.7)
dp
X =7 (X0, 0, TN, Ny, 27 = 1,)

[n(+) is defined by (2.10) below]. Note that this example differs in form from (2.4)
in that the integration is over (S')*~2 rather than (S')*~!, k = 4. Taniguchi
(1982) handles this by using a spectral window on this extra dimension. A
generalization of this can be taken for parameters defined via integration only
over some submanifold; because of Lemma 2.1 below, such integrals are common
in higher-order spectral theory. Another example concerns second-order parame-
ters and estimators defined via integration of a kernel function. A component of
the asymptotic variance of these estimators is again of the form of (2.4) with a
different A(-) function than in (2.7) [see (3.9), Keenan (1983)]. Weiss (1975) and
Cox (1981) have proposed diagnostics for time irreversibility of a strictly sta-
tionary process. The parameters of interest are

(2.8) (E(X,- X,,)",1=1,2,..., Ly m=3,4} (L fixed)
appropriately standardized. For A(A;, A,,..., A, _,) defined as
(2.9) R(Apy.eos Apoy) = exp{i(N - )},

where j = (Jy, Jor--+» Jo_1) € Z*71, 0(F®) is the kth-order joint cumulant
evaluated at j and thus the results of this paper apply to finite linear combina-
tions of joint cumulants such as (2.8). That is, Corollary 2.5 and Theorem 3.3
(below) give the asymptotic normality and probability one bounds (and
almost-sure convergence) for the sample versions of (2.8) used in testing time
reversibility. More generally, the trigonometric polynomials in k& — 1 variables
are possible A(-) functions for (2.4).

CONVENTION. The following notational form [also used by Brillinger and
Rosenblatt (1967a, b)] will be employed throughout Section 2 as a matter of
uniformity in representation. We write the functions [e.g., f ¥’ and h] as if they
were functions of & variables, £, ..., £, (rather than & — 1), with the restriction
that T* ¢, = 0 (mod 27) is always intact in addition to possibly other linear
constraints of the same nature, e.g., L_ £, = 0(mod 27), 1 < p < k. Throughout,
when we refer to submanifolds it is always to submanifolds defined by these
constraints. The integration (of these functions) is to be interpreted as over the
l-dimensional torus where [ is the number of free variables; the number of free
variables in the integration is identified via the multiplication by the Dirac comb
(or a product of),

(2.10) WA= T 8(A+2m)),

J=—o
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where 8(-) is the Dirac é-function. For example, the integral in (2.4) defining
0(F®) will be written in its equivalent form

k
[ sk)n( > si) AFOE,, .., £y £).
i=1

Define E(*)(-), based upon {X,, X,,..., X,}, as
E®ALAg, s Apy)

(2.11) _ (2_,”)k—l v I(k)( 2'rrr1’“., 2mry,_, 27rrk)

bl
n @mry) /() <A, n n n
J=1,2,..., k-1

where I{¥)(-) is the kth-order periodogram [Brillinger and Rosenblatt (1967a, b)]

v a0

(212)  IP(A, Ay, ) = (27) R {Zk:

Jj=1

n{ -} being the Kronecker comb and

(2.13) d () = T Xexp{—ire}

t=1

the finite Fourier transform, and

8(F®) = [h(Ayyees Mpmy) dEP(A oy Ny

k—
=(2_ﬂ.) 1 i h(271'r1’”.’271'rk)I'(lk)(271'r1,.“’277rk).

n T Toyeeey T =1 n n n n

For k=2, F® is a good estimator of F® [and, consequently, 6(F®) for
0(F )] because there is sufficient, natural smoothmg built into its construction
and because there are no further submanifolds of £*_ A\, = 0 (mod 27) besides
(0,0) and (w, 7); for k = 3 the same is also true (assuming mean zero for the
process). For & > 3, the submanifolds create inconveniences. The following two
well-known lemmas are due, respectively, to Leonov and Shiryaev (1959) [see
Brillinger (1975), pages 20-21] and Brillinger and Rosenblatt (1967a).

LEmMMA 2.1. For Yj, Jj=L12,...,d, i=12,...,1, a two-way array of
random variables and

Ji
= n Yl’j’
Jj=1
the joint cumulant of {Z,, Z,, ..., Z;} is given by

Z chm( U,]Glli) ’

» Li=1
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the summation being over all indecomposable partitions, v, of the two-way
array: {(i, j), j=1,...,d,i=1,...,I}.

ProOOF. Leonov and Shiryaev (1959). O

LEMMA 2.2. Under Assumption 1, we have
cum{d,(A,),..., d,(Az)}

(2.14) _ k k
= @m) A, T A fer o s(Arseo Ay + O(),

j=1 j=1

where
2wrj

)\j = T, r; € Z,

and
n—1
A,(A) = ¥ exp{ it}

(2.15) =0

/o, A # 0 (mod 27),
"\ n, A = 0 (mod 27),

and the error term O(1) is uniform for all A,,..., A, _1, A,.
PrROOF. Lemma 1, Brillinger and Rosenblatt (1967a). O

Applying the preceding lemmas, in the case I =1, one can calculate
E[6(E™®)]. Since h and {f*), j=1,..., p} are of bounded variation we have

E[o(F®)]

P
= 0(F®) + Z,/(Sl)kh(sly §25--05 §k)[l_[ f(aj)(§j5 Ji € ”j)

(2.16) j=1
[ » @ 3
<\ [o| 26, | [T+ 0,
J=1 \i=1 =1
where the outer sum is over all v = (v,...,7,), p > 1, and «; > 1 is equal to the

number of elements in v

DEFINITION. Let Q® be the collection of (A,,...,A;) in (S!)* such that
):ﬁ-;l}\ ;= 0 (mod 27) but is not contained in any further submanifold of the form
j‘=1)\i,~ =0 (mod2w) where (i;, j=1,...,8) is a proper subset of
(1,2,..., k}. Let E®(A,,..., A,) be defined the same as FP(A,,..., A,), given
by (2.11), except that the sum in (2.11) is now only over (2wr,/n,...,27r,/n)

which are contained in Q.
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By the construction of §(F (), the summation in (2.16) will be void (since the
sum is over further submanifolds) and, consequently,

E[8(EP)] = 6(F®) + O(n™).

Alternatively, by constructing consistent estimators of all possible integrals w.r.t.
products of cumulant spectra (of various orders), e.g.,

(2.17) fslkh(g,...,g)lf[f(“ﬂ(g,ﬁ,i= 1,. ,a)l'[n(Zé,,)l_[dﬁz,

i=1 =

where a; = |}, Xii,§;, =0 (mod 27), XF_,a; = k, we can (followmg the next
lemma) construct con51stent estimators of 0(F(’°)) (and, in particular, of
F®(& L ¢,,..., &,)). We will first consider the latter approach.

DEFINITION.  If p = (py, By, ..., 1) and v = (v}, v,,..., %), I = p, are parti-
tions, then p is said to be finer than v if for every i < j < p, there exist members
of p. whose union is »;. The greatest integer function is denoted by [-].

LemmMma 23. If {X,} is a zero-mean, strictly stationary process satisfying
Assumption 1, h(-) is a C'-function of Hobson bounded variation on [0,27]% !
p, keEN*, p<[k/2], v=(vy,...,¥,) is a partition of {1,2,...,k},
L (27r;/n) = 0 (mod 2m), where |v | a;, then

. € Vj)]

= 2 2 Bl T e (5

<l 2

L
x{ I fO(B;, ji€ “J.)} dp,dB, - dB,

Jj=1

+0(n7Y),

where the summation over p. is over all partitions p. finer than v and |u,| = §; > 1,
J=1...,1L

ProoF. The left-hand side of (2.18), because there are only k& — p freely
varying variables, can be written as

{zn: En; . i h(zm-l ’271'rk)

n=1rn=1 rp_1=1 n

xE[n“’ijIl"{ i ?}Ed"(%%)]}

i=1

(2.19)
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and the term in square brackets is equal to

2ar 2ar
“P{nf® - L)+ oa }
n {nf ( T T ) 0o(1)

(2.20) +n‘”{lg X ﬂ[f‘“5(2— J,Gu,)+0(1)]}

p=(pg,es ) 8

A 3 Al

I=p  p=(py,---, ) 5=

= ,L,) " 0(1)}}

where Eff'=12vrrji/n =0 (mod2w), §; = |p,| and the summations are over all
partitions, p. The first two terms in (2.20) are O(n!); the remaining term is a
sum of terms O(n'"?), p <1< [k/2]. The partitions p = (u,...,u,;) place I
linear constraints on {27r,/n,...,27r,/n}, and so fewer than k — p of the
discrete frequencies can vary freely in (2.11). The largest number of freely
varying discrete frequencies is £ — [ and this can occur if and only if p is a finer
partition than v. O

DEFINITION OF §(F{=?). We can construct estimators of (2.17) with a; =2
or3, j=1,..., p, whose bias is O(n '), since there are no finer partitions Wthh
need be included in (2.18). We can, therefore, construct estimators of (2.17) with
a; < 4 except for one exactly equal to 4, since estimators of terms over finer
partitions were constructed in the first step and by induction we can construct,
recursively, estimators of §( F¥)) whose bias is O(n~!). This estimator, given by
the above recursive construction, will be denoted by 6(F(=?) because it uses
FY)(+), 2 < j < k, in the construction. For A,(- ) defined by

1, ngAj,j=1,2,...,k"‘1,
0, otherwise,

221) Bk b)) = {

this estimator of F® at \ will be denoted by F{<* at \ and
(2'22) E(Fn(Sk)()\I’"" >‘k—-l)) = F(k)()\l"-" }\k—l) + O(n—l)’

where the error term is uniform in N = (A,,..., A,_)).

LeEmMma 24. If {X,} is a zero-mean, strictly stationary process satisfying
Assumption 1, {h)7-,, m > 2, are complex-valued functions of Hobson bounded
variation on [O,27r]k ~1 {p)r., are integers, 1 < p, < k, such that for each s,
v, = (v{, v§°,...,¥\9) is a partition of {1,2,..., k} for which

als)
J ko
)) 7'}58); r® e v}s)) =0 (mod27), where |r/”| = a!,

i=1
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and X" p, =t > m, then

k- (s) (s
cum[n1/2(2_ﬂ) 1 i i e zn: h (27”1 277 ))
- s e

MY - " "

2ar (s

X I,(L"‘}")(—"' ;e v}s)); 1<s< m]
n L3

(2.23) »,
Jj=

1
_ O(n—t+(m/2)+8)’

where 8 is equal to either zero or one.

ProoF. Using the fact that the joint cumulant of several linear combinations
of random variables is a linear combination of the joint cumulants [Leonov and
Shiryaev (1959)] and Lemma 2.1, the summations in (2.23) are

m n n
P |s=1 ,-%s)=1 ’1(¢8—)1=1 ’

where the outer sum is over all indecomposable partitions of an m X k array,
and, consequently, the inner sums are constrained to also satisfy, in addition to
its ¢ linear constraints, the linear constraints of the given partition P. The
argument from here on is the same as that in the proof of Theorem 4, pages

185-186, Brillinger and Rosenblatt (1967a), where their proof is for p, =1,
1 < s < m; this difference has no effect on the basic argument. O

COROLLARY 2.5. If {X,)} is a zero-mean, strictly stationary process satisfy-
ing Assumption 1 and {h, )™, m > 1, are Hobson bounded variation, complex-
valued functions defining parameters 9(F®), 1 < s < m, by expression (2.4),
then the real and imaginary parts of the random vector,

(2.24) (n2[0,(F=P) = 0,(F®)],..., 0 2[8,(F=P) - 8,(F®)]),

are asymptotically joint multivariate normal with mean zero and a covariance
matrix A, determined by Lemma 2.4.

PrOOF. By the construction (recursive) of each of the functionals 6( F(=h)
and ,(F(=®), s = 1,2,..., m (the overbar denotes complex-conjugate), each is a
sum of a finite number of terms, each term being of the form of (2.23), with
varying values of o{® and p,, j=1,..., p;, s=1,..., m. By Lemma 2.4, the
joint cumulants of all orders converge, the limits being zero for all orders greater
than two. The result now follows from Lemma P4.5, page 403, Brillinger (1975).

O
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For example, for £ = 3, the asymptotic covariance of two elements of (2.24),
l1<a,b<m,is

lim Cov(n'/20,(F®), n'/28,( F®))

n— oo

(2.25) = Zf[o gt f[o . R (A0, XD, XD) 2y (AD, XD, AD)
.. v 27 1 a |%p

p e p %
X 'l_llf(aj)()\j'; J; € Vj)n( Z ) l—[ l_Il d}\J
j= 1 =1 i
where v = (7,,..., »,) varies over all indecomposable partitions of the array
AD, AD, AD
(2026) (12) (z) (?2))
AP, AD NG

for which the row sums are zero (mod 27), a; = |»|,and 1 < p < 3.

An analogous result holds for F{=%*)(-) replaced by F®; because the submani-
folds which introduce biases are left out in the calculatlon of F®)(.), the
covariances are much simpler than those of (2.24).

COROLLARY 2.6. Under the assumption of Corollary 2.5 with O(F{=5)
replaced by 6 (ﬁ (M), 1 <j < m, in (224), the real and imaginary parts of the
random vector are asymptotically jointly multivariate normal with mean zero
and covariances of the complex components given by

n Cov(0a(F'n(k)) , 0b(F',fk)))
oy = T o0 RO, DTN 5 n)

S
X I—[f(""‘)()\i.; i; € ”i) dND N,
i=1 ’
where the sum is over all indecomposable partitions, v = (vy,...,v,), || > 0, of
the 2 X k table
AL AD .. AQ
) R X )] ce —A®
1 2 %

where the rows are contained in Q® and such that each component of v is the
union of elements from both rows.

PrOOF. Same as Corollary 2.5 except that the exclusion of all further
submanifolds of {£*_;A; = 0 (mod 2w)} is taken into account. O

As an application of Corollary 2.6 we can consider the estimation of that
component of the asymptotic variance [(2.6) above] of the quasi-maximum
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likelihood estimator which is discussed in Taniguchi (1982). Taniguchi replaces
the strict constraint n(A, + A;) in (2.7) by a spectral window which asymptoti-
cally imposes the constraint. Taniguchi’s estimator, given by Theorem 2,
Taniguchi (1982), involves three sums, the latter two needed to remove the biases
due to the inclusion of further submanifolds in the first sum. Our estimator is the
first of the three sums where we restrict the summation to points in @®:

27\

L P WEREACH WA W
[910)

and where ¢ is given by (2.7), H(x) = B, 'H(B, 'x), H(-) being a nonnegative

function of bounded variation on R, zero outside [0, 2], an even function about

7, with B, = 0, B2n — co. The asymptotic variance of the estimator is given by

a7 2 —
[ Hw)dw) T [ AP )FO,XD)n(0 +29)n(3 +29)
-7 v (sH*

X TTn(EA iy n)f (hys iy € ) dXP aX NP a3,
i=1 7 .

i O
where the sum is over the same partitions as in (2.27) with & = 4.

REMARK 1. Grenander and Rosenblatt (1957) [generalizing a result of
Bartlett (1954) for Gaussian white noise] showed that for a linear, Gaussian
process (under dependency conditions), the process {NY2[F®(A) — FO())],
0 < X < 7} converges weakly (in D[0, 7]) to a Wiener process under transformed
time (and were, consequently, able to find the distribution of the sup functional).
Their Kolmogorov—Smirnov analogue in this setting cannot delineate between a
misspecification of the parameters and non-Gaussianity. If one wishes to assess
the appropriateness of a Gaussian assumption, one direction is to expand the
perspective to that of {n'/2E®(N\), \ € [0,27]?).

The following two corollaries are applications of Corollary 2.5. The first
concerns the (partial) construction of a test of Gaussianity of a stationary
process; under a Gaussian assumption the weak limit is related to a two-dimen-
sional analogue of a Wiener process under transformed time. The second con-
cerns a test of time reversibility of a process. One advantage which these tests
would have (over alternatives) is that natural smoothing is built in and, conse-
quently, the consideration (and need) of spectral windows is removed.

DEFINITION.  For N = (A, X,), p = (g, Bg) € [0,27]7 let r(N) = (A5, X)),
the reversal of order, N\ A p = (min{A,, p,}, min{A,, p,}), and

A={N=(,1,) e[0,20 ], <A, A < 27— 21
COROLLARY 2.7. If {X,)} is a zero mean, strictly stationary process satisfy-
ing Assumption 1, then
(2.29) (n2[EP(N) = FO(N)], N e [0,27]°)
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converges weakly [in D([0,27]%)] to a zero-mean process {Y(\), \ € [0,27]%}
whose real and imaginary parts form a two-dimensional Gaussian process with
Cov(Y(N), Y(p)), given by (2.25), where h,(-) and h,(-) are given by (2.21).

If {X,} is a zero-mean, stationary, Gaussian process satisfying Assumption 1
[which reduces to ¥|v||c(v)|] < o], and, consequently, linear with spectral
density denoted by f,,(-), then

{nl/an(3)()\), Ne A}
converges weakly to a zero-mean, real-valued, Gaussian process {Y(\), N\ € A}
with
Cov(Y(N), Y(p)) = H(N A p) + H(N A 1(p)),
where

(2.30) H(N) = [ M [ " (@) oo B) oo + B) dadB.

REMARK 2. Under the Gaussian assumption the {Y(\), N € A} process can
be, equivalently, viewed as

(2.31) Y(N) = 27 2[WOHE(N) + WOH(r(N))],

where W (a two-dimensional analogue of a Wiener process under transformed
time) is a zero-mean, Gaussian process on [0,27]? with covariance function

(2.32) Cov(WOH(N), WOH(i)) = H(\ A p).

Although the corollary is given for £ = 3, the proof for expression (2.27) goes
through for arbitrary k.

Proor. By (2.22) E[E®(N\)] = O(n'), uniformly for N\ € [0,27]% Let
Y® = (n'2[E®P(N\) — E(F®(N))], N\ €[0,27]%}. By Corollary 2.5 the finite
distributions converge to zero-mean Gaussian distributions with covariances
given by (2.25) where \, p € [0,27]% and A,(-) and h,(-) are given by (2.21). By
Theorem 3, Bickel and Wichura (1971), a Chentsov-type inequality (as in the
one-dimensional case) is sufficient for tightness of the family {Y®(\), \ €
[0,27]%}. If B = (N}, ;] X (N, ] and € = (pi, py] X (B, po] are (disjoint)
neighboring rectangles [see Bickel and Wichura (1971)], where p, < A, py < Ay,
then it suffices to show that there exist a L > 0 and a finite measure, v, on
[0,27]2 with continuous marginals such that for all B, C

(2.33) E([v(B)[ve(0)f) < Llx(BU ),
where for
D= (&,&] % (&,&] c 0,277,
V(D) = [YO(4,, &) — YO(4, &) — YO, &) + YO, )]
(el ) - sl 52 |

b
non n n n

(2.34)

the summation being over {r, r,|¢} < 27r;/n < §;, j = 1,2}.
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We will take » to be Lebesgue measure on [0,27]2. The remainder of the
proof is a two-dimensional version of the one-dimensional proof for Theorem
7.6.3, page 439, Brillinger (1975), where Brillinger’s reference to Theorem 7.6.1,
Brillinger (1975), is replaced by Corollary 2.5 and noting that the O(1) terms (due
to the repeated application of Lemma 2.2), after integration, contribute at most
[O()(A; — p))(Ag — 1f)] to (2.33). Consider, now, the process restricted to the
compact subset, A, of [0,27]2 Let {r,)®_; be the restriction to D(A) of the
distributions on (D([0, 27]?), D) associated with the {Y,,} process; it follows that
the {»,)2_; are tight on D(A). There are 15 indecomposable partitions of the
array (2.26) for which there are three elements of the partition, each containing
two members. Because of the constraints defining the set A, only two of the
integrals in (2.25) will be nonzero in this case; the.two are H(\ A p) and
HN\ A r(p)), for \,peA. O

REMARK 3. Since the limiting process is continuous the convergence is in
fact w.r.t. the finer topology of uniform convergence, for which the sup func-
tional is continuous. The remaining obstacle to a Kolmogorov—Smirnov type test
of a Gaussianity assumption is a closed-form expression (or reasonable approxi-
mation) to the sup of the process, {W°? + WOHr(\), \ € [0,27]?%}, defined in
Remark 2. Also, if one employs the integrated third-order periodogram instead of
F(-), then D?[0,27] in Corollary 2.7, could be reduced beyond C2[0,27] to
appropriate Lipschitz spaces [see Brillinger (1969)], with topologies finer than
uniform convergence, with an expanded space of applicable continuous (a.e.)
functionals (of the process) whose distributions one can consider.

A strictly stationary process, {X,)® ., is said to be time reversible if for all £
and (¢,..., &), (X,,..., X, ) and (X_,,..., X_, ) have the same distribution.
Consequently, for a real-valued, time reversible process, all of the cumulant
spectra (k > 2) are real-valued (if they exist). Consequently, the following
application of Corollary 2.7 gives the framework for a potential test of time
reversibility. Let Im(-) be the function from C to R which maps the imaginary
part.

CoROLLARY 2.8. If {X,} is a zero-mean, strictly stationary time reversible
process satisfying Assumption 1, then

{(n2Im(F®(N)), N € [0,27]°)

converges weakly to a zero-mean, real-valued Gaussian process whose covari-
ances are given by the real part of (2.25) with h, and h,, given by h,(-) and h ()
defined by (2.21).

ProOF. Define Im(-) from D®[0,27]? to D'f[O,27r]2 as
Im(Z(¢), t € [0,27]%) = (Im(Z(¢)), ¢ € [0,27]°).

Since Im(-) is a continuous mapping between the two metric spaces and since the
imaginary components of the finite distribution of the complex-valued process,
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Y(+), given by Corollary 2.7, are real-valued multivariate normal whose covari-
ances are the real part of the complex valued covariances, the result follows. O

3. Probability 1 bounds and almost sure convergence. In this section
an additional assumption will be made concerning the cumulants of the X,
process. The assumption is Assumption 7.7.2 of Brillinger (1975), page 264. We
will assume for j € N

AssUMPTION 2. C;=XP, ., _ ole(y,. .., 1)l is finite where
c(vy,...,v;_;) is the jth-order cumulant of {X(0), X(»,),..., X(¥;_;)}. We will
also assume that for a fixed 2 € N* (k > 2)

00 ZL
(3.1) El;(c"*c"z C"»)'L_! < o0,
for Z in a neighborhood of zero, where the inner summation is over all indecom-
posable partitions v = (v}, »,,..., »,) of the table

1 9 R
k+1 k+2 - 2k
(3.2) : : :
R(L-1)+1 k(L-1)+2 --- kL
with »; having n; > 1 elements, j = 1,..., p. The next lemma uses an approach

of Keenan (1983) which itself was based upon an approach of Brillinger (1975) for
obtaining probability one bounds. We will show that
(3.3) sup |FEB(A L Ay Ag1) = FONL gy, Ay

At Agyeees A1)
is O(n~'%(log n)"/?), w.p.1. We will then use this result to show that this
same rate passes through the integration of well-behaved functions w.r.t.
d[E{=®(-) — F¥(.)] and, consequently, is inherited by our estimators.

THEOREM 3.1. For a fixed k € N* (k> 2), if Assumptions 1 and 2 are
satisfied, then ||[E{=® — F®)| = O(n~"*(log n)*/*) almost surely. The same
result holds for F{=® replaced by E‘®.

ProOOF. The proof is analogous to that of Keenan (1983), Lemma 4.1, except
that A € [0,27] is replaced by (A, Ap,..., Ap_;) € [0,27]%7 1, the n jumps in
[F(-) — EF®(-)] are replaced by n*~! jumps in [F{=¥(-) - E(F{=H()]
in the present proof; consequently, the n in the bound given by expression (4.4)
in Keenan (1983) is replaced by n*~!. The functions ¢(n), a(n) and a(n) are
changed by having (2 + §) replaced everywhere by (k& + §). By (2.22), above,
IE(FSSBA, ooy Apm) — FO, o0, A )| = O(n™') uniformly in
(Ap,--+5 Agp_) and the result follows. O

The following corollary is an application of Theorem 3.1. An estimate of the
kth-order joint cumulant at j = (j,..., j,_;), analogous to the circular
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autocovariances, is

(3.4) &) = [ el dF(=M(N\).
[0,27]%"!
COROLLARY 3.2. Under Assumptions 1 and 2, if J, = o(n'/*(log n)~1/?) is
an increasing sequence of positive integers, then for j = (Ji, Jor--+» Jp—1)
(3.5) sup 18,(Jseevs Joe1) — €(Jisenvs Joo1)| =0(1) w.p.1.

(11| <y 1<s<k-1}

PROOF. The function [E{=¥)(-) — E(F{=®(-))] has jumps at the n*~! dis-
crete Fourier frequencies and |EF(=" — F®)|| = o(n~'/2). For the moment
consider a given realization. Define M{¥)(-) as the piecewise linear version of
[F{=R(-) — E(F{=%)(.))]; the sup over any rectangle with endpoints at discrete
Fourier frequencies has not changed. The real and imaginary parts of M(*)(-) are
the differences of two functions of normalized bounded variation (N.B.V.) and
the same symbol, M{®, will also be used to represent the corresponding Borel
complex measure on [0,27]*"L Since M(® is absolutely continuous w.r.t.
Lebesgue measure on [0,27]%*~ 1, denote by

AMP
53

the corresponding Radon—Nikodym derivative and define m () as

de)
(3.6) M Naseers M) = [ [ [ = (s)]

Since m,(-) is differentiable Lebesgue-almost everywhere (w.r.t. r distinct com-
ponents, 1 < r < k — 1), by induction we have

gr-t s
an o, (o)
(3.7) (r)e'G-N) d*1=Dm (N\)

Z(Z)a)\,-

where the inner sum is over all (%= 1) choice of r components. Since the term
being differentiated on the left- hand side of (3.7) has real and imaginary parts
which are the differences of functions of N.B.V,, its integral w.r.t. Lebesgue
measure on [0, 27]% ! is

* aA[r aAlr“ e aAlkil,

M,Ek)([O, 27 ] k_l),

which by Theorem 3.1 is o(1), w.p.1. Since d*~'~"m(N)/dA, -+ IA,
1<r<k-1,is of NB.V. and its absolute value is equal (w.p.1) to the
Radon-Nikodym derivative (w.r.t. Lebesgue measure) of the absolute value
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Borel measure associated with m,(-), we have

aMel(j - N a*=1""m (N
[0,217]"_1 GAII et 3>\lr

Iy, e INy
= |jl1 'jl2 T jl,an(Sk) - EFn(Sk)"oo’

and, consequently,
sup |6.()) —c(j)|=‘f )
Gl sl <d,, 1<s<k—1)} [0,27]%"!
and by Theorem 3.1
<o(1) + JO(||F{=P — F=h)| ) = 0(1) w.p.l. O

ei(i~)~)d[Fn(sk) _ F(sk)]()\)l

The following theorem establishes probability one bounds and, consequently,
almost sure convergence for our estimators, ( E{=").

THEOREM 3.3. For k> 2 (€ N™), §(F{=P), 0(F®), 1 <j < q, defined by
(2.4) and (2.21) with h(-) being of Hobson bounded variation, if Assumptions 1
and 2 are satisfied, then

n1/2|0~ F(sk)) — 9. (F(k))|

3.8) lim sup <1,
( n— oo (2A log n)

almost surely where A ; is the (j, j)th element (assumed to be positive) of the
matrix A defined by Corollary 2.4. The same result holds for f{=" replaced by
E™ and A given by (2.27).

ProOF. The proof uses Theorem 3.1 in the same manner that Theorem 4.4,
Keenan (1983) used Lemma 4.1, Keenan (1983), which was for the case & = 2.
The proof is parallel to that of Theorem 4.4, Keenan (1983), except that

n[ESED(A, A gyevs Apsy) = FO(N ., 0 y)]
k—1
_ n(gz) 5> [I,(,”)(%sl,..., Zwsk_l)
k-1 n

n @ms;/n)<Aj, j=1,..., n

_f<k)(2”s‘ 2”:“ )] +0(1)

n

is replaced by

2\ k1 n 2ms 27s, _
e

n n

ygeecey

I,.( 2ms, - 2wsk_1) B f(k)( 2ms, 2wsk_1) } 1 o),
n
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where 4 and f ® are of bounded variation and the difficulty with the supremum
over [0,27]%"! is avoided since we are smoothing over all of [0,27]%1. The
a(n), ¢(n) and a(n) are the same as in Theorem 3.1, except that (& + §) is
replaced by (1 + 8). O

4. Additional applications and summary. This paper is concerned with
establishing a general framework for estimators of parametrizations reflecting
more than second-order structure. Asymptotic normality and probability one
bounds (and, consequently, almost-sure convergence) are established for a broad
class of such estimators.

Hosoya and Taniguchi (1982) consider quasi-maximum likelihood estimation
(i.e., minimization of a specific integral expression). The asymptotic variance of
such estimators contains an integral of a function w.r.t. the fourth-order cumu-
lant spectra of the process. Taniguchi (1982) develops consistent estimators of
such integrals, the integration is over a two-dimensional submanifold of (S')%.
Expression (2.28) defines a modification of Taniguchi’s estimator, obtaining a
simpler form. Taniguchi’s result allows for the construction of confidence inter-
vals in these cases. For linear processes, estimators (of parameters) defined via a
minimization procedure (under regularity conditions) will not contain this in-
tegral term because the fourth-order cumulant spectra factorizes as a product of
second-order spectra; otherwise there will typically be such a term. In Keenan
(1985a) estimators are defined which minimize a general integral expression
(including quasi-maximum likelihood). Taniguchi’s result (1982) and a similar
modification as above produce consistent estimators of their asymptotic vari-
ances and consequently allow for the construction of confidence intervals for the
parameter under consideration. Theorem 3.3 gives a probability one bound on
the convergence of the estimated integrals.

Weiss (1975) and Cox (1981) have proposed diagnostics for time irreversibility
of a strictly stationary process [see (2.8) and (2.9)]. Corollary 2.5 and Theorem
3.3 give the asymptotic normality and probability one bounds for the sample
versions of (2.8) used in testing time reversibility. An alternative to these time
domain diagnostics would be a third-order sample integrated cumulant spectra
diagnostic suggested by Corollary 2.8.

Corollary 2.7 is a first step toward a Kolmogorov—Smirnov type test for
Gaussianity of a strictly stationary process. The asymptotic distribution of the
supnorm for (2.29) is (typically) not known. In the analogous situation,
ii.d. observations with a two-dimensional marginal distribution, Kiefer and
Wolfowitz (1958) have obtained bounds on the tail probabilities. A similar
approach may be possible here.

Lastly, Keenan (1985b) has proposed a test of time series nonlinearity whose
statistics (under the alternative hypotheses) fit the framework of this paper.
Because Volterra expansions are to linear processes what higher-order polynomi-
als are to linear functions, a diagnostic similar to Tukey’s one degree of freedom
for nonadditivity test is developed.



HIGHER-ORDER SAMPLE CUMULANT SPECTRA 151

REFERENCES

BARTLETT, M. S. (1954). Problemes de ’analyse spectrale des series temporelles stationaires. Publ.
Inst. Statist. Univ. Paris II1-3 119-134.

BICKEL, P. J. and WICHURA, M. J. (1971). Convergence criteria for multi-parameter stochastic
processes and some applications. Ann. Math. Statist. 42 1656—1670.

BRILLINGER, D. R. (1969). Asymptotic properties of spectral estimates of second-order. Biometrika
56 375-390.

BRILLINGER, D. R. (1975). Time Series: Data Analysis and Theory. Holt, Rinehart and Winston,
New York.

BRILLINGER, D. R. and ROSENBLATT, M. (1967a). Asymptotic theory of k-th order spectra. In
Spectral Analysis of Time Series (B. Harris, ed.) 153-188. Wiley, New York.
BRILLINGER, D. R. and ROSENBLATT, M. (1967b). Computation and interpretation of k-th order

spectra. In Spectral Analysis of Time Series (B. Harris, ed.) 189-232. Wiley, New York.

Cox, D. R. (1981). Statistical analysis of time series: some recent develépments. Scand. J. Statist. 8
93-115.

GRENANDER, U. and ROSENBLATT, M. (1957). Statistical Analysis of Stationary Time Series. Wiley,
New York.

Hosson, E. W. (1927). The Theory of Functions of a Real Variable and the Theory of Fourier’s
Series 1, 3rd ed. Cambridge Univ. Press.

Hosova, Y. and TANIGUCHI, M. (1982). A central limit theorem for stationary processes and the
parameter estimation of linear processes. Anr. Statist. 10 132—-153.

KEENAN, D. M. (1983). Limiting behavior of functionals of the sample spectral distribution. Ann.
Statist. 11 1206-1217.

KEENAN, D. M. (1985a). Asymptotic properties of minimization estimators of time series parameters.
Ann. Statist. 13 369-382.

KEENAN, D. M. (1985b). A Tukey nonadditivity-type test for time series nonlinearity. Biometrika
72 39-44.

KIEFER, J. and WOLFowITZ, J. (1958). On the deviations of the empiric distribution function of
vector chance variables. Trans. Amer. Math. Soc. 87 173-186.

LeonNov, V. P. and SHIRYAEV, A. N. (1959). On a method of calculation of semi-invariants. Theory
Probab. Appl. 4 319-329.

TANIGUCHI, M. (1982). On estimation of the integrals of the fourth order cumulant spectral density.
Biometrika 69 117-122.

TukEY, J. W. (1953). The spectral representation and transformation properties of the higher
moments of stationary time series. Paper 4 in The Collected Works of John W. Tukey 1.
Wadsworth, Belmont, Calif. (1984).

WEIss, G. H. (1975). Time-reversibility of linear stochastic processes. J. Appl. Probab. 12 831-836.

D1visioN OF APPLIED MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND 02912



