The Annals of Statistics
1987, Vol. 15, No. 1, 59-78

A SIEVE ESTIMATOR FOR THE MEAN OF A GAUSSIAN
PROCESS!

By JAY H. BEDER

University of Wisconsin-Milwaukee

A new sieve estimator for the mean function m(t) of a general Gaussian
process of known covariance is presented. The estimator rm(t) is given
explicitly from the data and has a simple distribution. It is shown that m(¢)
is asymptotically unbiased and consistent (weakly and in mean square) at
each ¢, and that 7 is strongly consistent for m in an appropriate norm. No
assumptions are made about the “time” parameter or the covariance.

1. Introduction. It was observed at least as early as 1968 that the method
of maximum likelihood fails in general to give an estimate of the mean of a
Gaussian process “in an infinite-dimensional case” [Rozanov (1971), page 128;
special instances were known earlier]. Roughly speaking, the parameter space is
“too large” and consequently the likelihood function is unbounded.

Grenander (1981) introduced the method of sieves as a means of rescuing
maximum likelihood in just such cases. In fact, he provided an example of sieve
estimation of the mean of a Wiener process of known covariance [(1981), pages
422-424; see the example below], which Geman and Hwang [(1982), pages
409-411] used to illustrate a general consistency theorem: the sieve estimator
converges (in a certain norm) almost surely to the true mean. The construction of
this estimator does not depend on the particular covariance used, and will be
generalized to arbitrary covariances in the following. Due to the nature of the
sieve, however, their estimator depends on a random variable A which is defined
only implicitly from the data. Aside from the computational problem this
creates, it also means that small-sample properties of the estimator will be
difficult to discover.

The sieve estimator that we will consider is given explicitly in terms of
independent normal random variables, and so its distribution can be written
down precisely. Its strong-consistency proof involves elementary Chebyshev
bounds and a straightforward application of the Borel-Cantelli lemma.

An example. To illustrate our results, we will frequently turn to the example
of a standard Wiener process, which is essentially that used by Grenander and
by Geman and Hwang.
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The standard Wiener process on T = [0, b] is a Gaussian process {X,, ¢t € T}
with covariance R(s, t) = min(s, t). We will assume that the mean function m is
unknown and must be estimated based on n realizations of the process (as we
shall say, a sample of size n). Thus we consider the set # of probability
measures under which the process is Gaussian with covariance R and with some
mean function m(t). £ is of course indexed, or parametrized, by the set of mean
functions, among which we admit the function m(¢) = 0. As we will note in the
next section, each mean function may be written in the form

m(¢) = /0 Y(u) du,

for a unique y € L*T'), and each vy gives rise to a mean function m. Thus L%(T')
is a parameter space for the model, and is the one used by Grenander.

Estimating m is equivalent to estimating y. But y in turn may be written in
an orthogonal expansion

(1.1) y(t) = Xam(t),

where {y,) is a complete orthonormal (CON) basis of L%T'). For a fixed CON
basis, the Fourier coefficients a, in (1.1) are unique to y and the sequence

= {a,)} is square summable, so that we in fact reparametrize our model, this
time by the set 2. Now we must estimate a. But the likelihood L(a) is seen to
be almost surely unbounded over £2 (see Section 3 below).

Grenander’s sieve estimator in /2 is the restricted maximum likelihood
estimator (MLE) & which, for a sample of size n, maximizes L over the
“ellipsoid”

(1.2) &= {aE/“’: Ek"’a,%sd},

where d is a positive real. Note that & depends on both d and n. (The sieve is
the collection of these sets #,.) The corresponding estimator 9 in L? is then
given by

9(2) = Lapra(2).

Geman and Hwang showed how to choose d as a function of n so that
|a — a|| > 0 (¢/%norm) with P,-probability 1 as n — oo, and thus so that
¥ — vl = O [L%T)-norm] almost surely as well. The difficulty, as already
mentioned, is that & cannot b2 gotten in explicit form.

We will replace Grenander’s ellipsoids by the sets

(1.3) Sy ={ae€t?a,=0fork>d},

where d is now a positive integer. These sets are of course subspaces of ¢2 of
dimension d. The resulting estimator & is far more tractable than the previous
one, and our consistency proof will be less delicate than that used by Geman and
Hwang.

It turns out that Grenander [(1981), page 424] also proposed the sieve given
by (1.3), but did not develop it. For purposes of distinction, we will refer to the
sieve defined by (1.2) as the GGH (Grenander-Geman-Hwang) sieve.
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Nguyen and Pham (1982) use a sieve similar to that in (1.3) to estimate the
parameter (%) in the diffusion model

(1.4) dX(t) = 0(¢)X(t)dt + dW(t), t>0,

where W(t) is a zero-mean Wiener process, getting strong consistency in #%norm
when d = o(n'/?). They point out that their methods can be adapted to
estimating 6 in the model

dX(t) = 0(t)dt + dW(t),

which, when written
(1.5) X(t) = m(t) + W(¢t), m(t)= /O‘a(u)du,

is precisely our example with mean function m. Carrying out their construction
for (1.5) leads to the new sieve (1.3).

McKeague (1986) has used the method of sieves for more general models than
(1.4), getting the improved (relaxed) growth rate d = o(n) for strong consistency.
We will generalize in a different direction, replacing W(¢) in (1.5) by a zero-mean
Gaussian process on an arbitrary “time” set T, with arbitrary fixed covariance
function R. To do this we will bypass the L?(T) parametrization, which can no
longer be assumed to exist, and recognize that the set of candidate mean
functions is always itself a Hilbert space s#= 5#(R, T'), the reproducing kernel
Hilbert space (RKHS) with kernel R. We will see that the condition d = o(n) is
best possible in this case.

With our RKHS formulation, we will also have shown that the consistency
result of Geman and Hwang for the GGH sieve applies to an arbitrary Gaussian
process of known covariance, with convergence equivalently in s or in /2.
Antoniadis (1985) has generalized their work in another direction. A recent
survey of these and other results is given by McKeague (1985). Finally, it may be
noted that a sieve similar to (1.3) has been applied to estimating the covariance
of a Gaussian process of known mean, in which the condition d = o(n) again
emerges as best possible [Beder (1986)].

Notation and definitions. We will view a stochastic process as a family
{X,, t € T} of (real-valued) random variables defined on a measure space ({2, «).
We will assume nothing about the set T.

Let V be the vector space of all finite linear combinations of the { X,}. Under
the probability measure @ on ({2, %) this becomes a vector space V,, of @-equiv-
alence classes of elements of V. We say that the process is Gaussian under @ if
Vg consists entirely of normal random variables. In this case, V,, C LYQ, #,Q),
and the completion H also consists of (possibly degenerate) normal random
variables.

We denote the norm and inner product in Hy by || |lo and ( , )q, respec-
tively. Expectation and covariance under @ are similarly denoted E, and Cov,,
and the mean function of the process under @ is given by

me(t) = Eo(X,).
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We denote by o(Hy) the o-algebra generated by the process and the sets of
Q-measure zero.
The real numbers are denoted by R, and the positive integers by Z ™.

2. The Gaussian dichotomy theorem and its consequences. Our goals in
this section are to describe the model # which we will be assuming, to specify its
parametrizations, to write down its likelihood function and to derive some
elementary distribution theory. Underlying all of this is the Gaussian dichotomy
theorem, which we will now state.

The dichotomy of this theorem is the assertion that, under certain conditions,
two measures P and @ must be singular (= orthogonal; denoted P L @) or
equivalent (= mutually absolutely continuous; denoted P ~ @). A proof of the
theorem, with no conditions on the index set T, is given by Neveu [(1968), pages
171-174]. We may restate the theorem in the following convenient form.

THEOREM 2.1. Let (X,, t € T) be a real-valued Gaussian process on (£, <)
with covariance R under both P and @, but with zero mean under P. Let
H = Hp, and assume &/ = o(H). Then the following are equivalent:

ey DPLE |
(ii) Eg(-) = (-,Y) forauniqueY € H.

) (iii) dQ/dP = eY/E(e") for a unique Y € H.

(2.2
(iv) P~ Q.
If these conditions hold, then the random variable Y in (iii) is the same as that
in (ii).[(,)=(,)pand E = Ep.]
Conversely, every Y € H gives rise via (ii) or (iii) to a probability measure @
on (R, &) which makes the process Gaussian with covariance R (and which is
equivalent to P).

CONSEQUENCE 1: THE MODEL. Let us consider the collection of all probabil-
ity measures on (L, &/) with respect to which the process is Gaussian with a
fixed covariance R. These measures are distinguished by the mean functions with
which they endow the process. Theorem 2.1 expresses the idea that this collec-
tion is a disjoint union of subfamilies, such that each subfamily & consists of
equivalent measures and such that the measures in & are orthogonal to those
outside of 2. [A family of equivalent measures is said to be homogeneous, a term,
due to Halmos and Savage (1949).] In principle, a single observation will enable
us to decide precisely which subfamily contains the true probability measure
which is generating the data.

Now the set of all candidate mean functions is similarly partitioned into
subfamilies, and so in principle a single observation of the process will tell us
which subfamily contains the true mean function. It has become a standard
assumption that this subfamily has already been identified and so is known to
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us. The remaining problem is to infer which mean function in this family is the
true one. A further reduction in the problem is to select a mean function from
the given family and to subtract it from the process (this does not alter %), so
that the set of mean functions may be assumed to include the zero function. We
will reserve the notation P for the corresponding measure. Theorem 2.1 thus
leads us to consider the model given by the largest set & of probability measures
on (£, &) such that

(A,) the process is Gaussian under every Q € Z;

(A,) the covariance of the process is the same, say R, under every @ € Z;
(A;) # is homogeneous and &/ = o(Hy) for any @ € #; and

(A,) there is a measure P € # under which the process has mean zero.

Assumption A, says that for all s and ¢t € T we have
(2.3) Covy(X,, X,) = R(s,t), forall @ € 2.

For convenience, the subscript P will often be suppressed: E, = E, Hp, = H,
etc. Distribution theory under P may be summarized rather conveniently:

LEMMA 2.1. Let X and Y be elements of H. Then (under P) their distribu-
tion is normal with mean zero. We have

Cov(X,Y) = (X,Y),
and, in particular,
Var(X) = || X||*.

CONSEQUENCE 2: THE PARAMETRIZATIONS. Let
H={my,, Q € P}
be the set of mean functions defined by the model. From (2.1) we see that every
mean function is of the form
(2.4) m(t) =(X,Y),

for a unique Y € H, and that every Y € H gives rise to a mean function in this
way. From this it follows that J# is a vector space under pointwise addition. The
correspondence A given by

(2.5) AMY)=m
is the Loéve map [Loéve (1948)].
COROLLARY 2.1. A maps H onto 5, and is a vector space isomorphism.
Moreover, if # inherits an inner product { , ) from H via A, viz.,
(2.6) (g, h)=(Y,Z), whereg=A(Y)andh=A(Z),

then ¢ becomes the reproducing kernel Hilbert space s (R, T) with kernel R,
and A is an isometry.
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This result is well known; our formulation follows Neveu [(1968), pages
34-36]. For us the important points are:

(1) the set of mean functions is a Hilbert space; and
(2) the Loéve map gives a direct way to compute a mean function from a density
and vice-versa. More precisely, if a density is of form

dQ/dP = eY/E(eY)

as in (2.2), then the function m = A(Y) is the mean of the process under the
measure @; conversely, if a mean function m is given corresponding to a
measure @, then the density d@/dP is of the above form with Y = A~Y(m).

REMARK 2.1. Corollary 2.1 also provides a criterion for the equivalence of
the measures P and @; namely, P ~ Q iff m, € 5#. This was first recognized by
Parzen [(1959), Theorem 9A] and by Kallianpur and Oodaira (1963), although
under some restrictions.

REMARK 2.2. We are assuming some familiarity with the idea of a reproduc-
ing kernel Hilbert space (RKHS). The basic paper in this area is Aronszajn
(1950). Sources dealing with the role of RKHS’s in the study of second-order
processes include Parzen (1959), Neveu (1968) and Kallianpur (1970). The most
important facts are these. First, 5= 5 (R, T') satisfies two properties:

(a) for each t € T the function R, defined by R,(s) = R(s, t) belongs to J;
(b) (reproducing property) if 2 € 5# and t € T, then (A, R,) = h(?).
We see immediately that the functions R, span 5 in the sense that if 2 L R,
for all £ € T, then k = 0. Second, from (2.4) we see that A(X,) = R,. Evaluating
the Loéve map or its inverse is crucial, since as we noted above it connects mean
functions with their corresponding densities. Third, s#(R,T) always exist and
enjoys these basic properties, independent of the nature of T or the form of R.

ExampLE. For the standard Wiener process on T = [0, b], with covariance
R(s, t) = min(s, t), the RKHS 5#= 5#(R, T) has a very concrete form [Neveu
(1968), pages 69-70 or Jarsboe (1968), pages 42—43]:

H= {m: m(t) = j:y(u) du,y € LZ(T)}.

To see this, let 1; be the indicator function of the set E. Then we have the
representation

b
R(s,t) = fo 1[0,3]('-‘)1[0,:](“) du.

It can be shown that the set {1y ,, ¢t € T} spans L*(T'), and that the map y:
R, = 1j ;; can be extended to an isomorphism y: #— L?(T) which is in fact an
isometry by virtue of the fact that

(R, R,) = R(s,t) = (1[0,3]’1[0,t])'
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In particular, if m € »# and y = ¢(m) € L*(T), then
t
m(t) = (m, R}y = (v, 10,0) = [¥(w) du,

as claimed. Thus J# consists precisely of the primitives of the functions in L*(T)
such that m(0) = 0, and v is seen to be differentiation.
As an illustration, fix ¢ € T and consider R .. Since y(R,) = 1j, .;, we have

Rc(s)=fosl[0’c](u) du=s, ifs<c

=¢, ifs>c¢

this can also be seen directly from the fact that R (s) = min(s, ¢). Thus our
model includes mean functions of the form

m(t)=t¢t, ift<c

=¢c, ift>ec,
for any constant ¢ € [0, b], since m = R_. But A" (m) = A"Y(R,.) = X, and so
the corresponding measure @ has density
dQ/dP = e*:/E(e*-).

[It is a simple (but worthwhile) exercise to verify that this formula indeed gives
dP/dP = 1.]

Returning to the general case, we now see that both H and > parametrize &
in one-to-one fashion. The map # — H is given by (2.1) or (2.2), while the
correspondence # — S is given directly by

(2.7) Q - my(-) = Eo( X).

Let {U,, a € A} be a complete orthonormal (CON) basis (possibly uncount-
able) of H, and let g, = A(U,), so that {g,, « € A} is a CON basis of 5. Then
every Y € H has a Fourier expansion

(2.8a) Y=Yal,
and if m = A(Y), then
(2’8b) m= Eaaga

in 5. From elementary Hilbert space theory we know that there are at most
countably many nonzero coefficients a, in (2.8), that the sequence {a,} is unique
to Y (and to m), and that Ya2 < co. Moreover, the correspondence,

(2.9) Y- {a,}, a,=(U,Y),
is an isometric isomorphism between H and /2 = ¢2( A); similarly,
(2.10) m - {a,}

defines an isometric isomorphism between 5 and ¢2.
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We may summarize these correspondences in this diagram:

(2.1) or (2. 2V \(2 7)
(2.11)

(2.9) \/2 / (2.10)

We will refer to 5# as the original parameter space of the model. Roughly
speaking, densities live in H, mean functions live in 5#, and we will do our
estimation in /2. In fact, we will estimate the mean function m by estimating
a € ¢/? and writing

’h‘ = Edaga’
using (2.8).
EXAMPLE (continued). There are many ways to construct a CON basis of
. Perhaps the most useful is the following. Let T be any compact interval and

R any continuous covariance function on T X T, and define the integral operator
with kernel R in the usual way:

Rf(s) = ]TR(S, t)f(t) dt

(we use R for the operator as well as the kernel). Then R is an operator on L?
with a countable system of eigenfunctions ¢, and eigenvalues A,, A, > 0. By
Proposition 3.11 of Neveu (1968), a CON basis of J#(R,T) is given by the
functions g, = A, ¢, A, > 0.

To construct this system when R(s, t) = min(s, ¢) and T = [0, b], we note
that if Rp = A¢ for some A (necessarily positive), then ¢ satisfies the differential
equation

9"+ A =0,

with boundary conditions

¢(0) = ¢'(5) = 0.
Writing 82 = A ™!, we find that the normalized solutions are given by

oi(t) = (2/b)%in B,t, ke I*

with eigenvalues A, = B %, where

Bi=(k— })n/b.
Thus the functions

gu(t) = Nyou(t) = B (2/0)sin Byt, ke Z¥,

are a CON basis for 5#.
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This basis has the very useful property that U, = A, '(g,) can be found
explicitly (see Remark 2.2). In fact, using Proposition 3.9 of Neveu we see that in
general

_ b
U, = A; 1/2f0 X,0,(t) dt,

a version of which is gotten by integrating X,(w)@,(t) at each w € Q [see Beder
(1981), pages 31-33]. These random variables are automatically a CON basis for
H since they correspond to the set {g,} under the Loéve map. In our case they
are given by

U, = Bi(2/0)" [ °X sin B, ¢ dt.
0

Since g, = AU,, we can now use (2.8) to evaluate A or A~' explicitly, as
desired. As a special application, consider the function R, € 5#. Its expansion is

R, = .0,
where the Fourier coefficients can be gotten from the reproducing property:
a, = (R, g,) = &(t).
But A"}(R,) = X,, so that we have

X, = Y &x(t)U,.

This is the well-known Karhunen—Loéve expansion of X,. Grenander (1950)
refers to the variables U, as the observable coordinates of the process.

As noted above, there are many ways to construct a CON basis of 5# and
corresponding bases of H. For instance, any CON basis of L%T) will give rise
(via ¢~ !) to a CON basis of 5# and hence (via A~!') to a CON basis of H. In
defining both Grenander’s sieve and our new one for an arbitrary covariance, we
will allow the CON bases of H and 5# to be arbitrary but fixed as long as they
correspond to each other via A.

CONSEQUENCE 3: THE LIKELTHOOD FUNCTION AND RANDOM SAMPLES. From
Lemma 2.1, it is easy to see that E(eY) = exp(2~!||Y||?). Thus the density (2.2) is
d

Q 1
(2.12) i exp(Y— §||Y||2).

EXAMPLE (continued). Let m = R_ for some c € [0, b]; then m = A(X),
and so m is the mean function corresponding to a measure § whose density is

dQ/dP = e*:/E(e*-)
= exp( X, — §IX.I%)
= exp( X, — $R(c, ¢)),
since || X |2 = Varp(X,).
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In general, we will want to form the likelihood based on a sample of n
complete observations of the process, say

(X(w), tE€T},...,{X[w,), t€ T}

This gives us n independent observations Y(w,),..., Y(w,) on any Y € H. We
may define these on a common sample space (2", & "®) in the usual way, letting
® = (..., w,) € Q" and defining Y},..., Y, by

(2.13) Y.(0) = Y(w;), i=1,...,n
LEMMA 2.2. For each Q € 2, let Q™® denote the corresponding product
measure on (2", #"®), and let 2™ = {Q"°, Q € #}.

(@) If Yy,...,Y, are defined from Y € H by (2.13),"then under Q"® the Y; are
i.i.d. random variables, each with the same distribution as Y has under Q.
(i) #™ satisfies assumptions A,~A, with respect to {X,, t€ T, i=

R 38
(iii) If @ © Y via (2.2), then the density w.r.t. P"® is
aQ"® n||Y||2
(2.14) e = [Z Y, —

Our interest is in maximizing the likelihood, that is, in maximizing (2.14) over
Y € H for each w € Q". It is more convenient to re-express (2.14) first in terms of
an ¢2-parametrization. Thus, let {U,, « € A} be a CON basis of H, and let
Qe P, Ye H and a € ¢% correspond via (2.11). For each a € A, we define
U,...,U, by (2.13), and their sample mean by

— 1
(2.15) U,=-2LU,
n
EXAMPLE (continued). For a sample of size n, let the ith observation on X,
be X,;, i =1,..., n. Then for the standard Wiener process we have
— 1/2\/2 LY .
U,= ;(Z) ,Bkiglj(; X,;sin B, tdt.

REMARK 2.3. U, should also be indexed by n, but we will suppress the n to
avoid complicating the notation. However, the dependence of U, on n should be
kept in mind (see Remark 5.1).

LeEMMA 2.3. With Q, Y, a and {U,, « € A} as above, we have

n® _ 1
(2.16) -pe = exp(n(za:aaUa - §||a||2)).

ProoF. For each i, Y, = T al,;, so L;Y; = nZ . aU,. Since (2.9) is an isome-
try, we also have ||Y|| = ||a||. The lemma now follows from (2.14). O
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REMARK 2.4. A measure p is said to dominate 2 if every @ € # is ab-
solutely continuous with respect to p [Halmos and Savage (1949)]. In the present
case there is no “natural” dominating measure, such as Lebesgue measure, either
on ({2, &7) or on the space of sample paths. On the other hand, every measure P’
in # dominates £, so that one can form densities dQ/dP’; we have chosen P as
the dominating measure only for convenience. While it is therefore incorrect to
speak of “the” likelihood function, the equation

dQ  d@ dP’

dP ~ dP’ dP’
shows that the method of maximum likelihood is not affected by the choice of
dominating measure.

CONSEQUENCE 4: OBSERVABLES AND THEIR DISTRIBUTION. What is observ-
able under @ € £ is not a random variable but merely the class of random
variables which differ from it on a set of @-measure zero. Since £ is homoge-
neous, these classes are the same for all € #. In fact, the following is true.
Recall that two norms are equivalent if convergence in one implies convergence
in the other. '

LemMA 24.  For Q € 2, Hy = H as sets, and the norms defined by || || and
|| || are equivalent.

Proor. To show the norms are equivalent, let ||X,, — X|| — 0. Then X, —
X — 0in P-probability:

Ve > 0, limP(|X, — X|>¢) =0.
n

But then
Ve >0, limQ(|X, — X|>¢) =0,
n

as @ ~ P. Since X and X, are normal under @, this implies || X, — X|lo — 0
[Neveu (1968), Lemma 1.5]. O

From this it is not hard to extend (2.3) as follows:
COROLLARY 2.2. If Q € 2, then Covy(X,Y) = Cov(X,Y) forall X,Y € H.

We will be particularly interested in the following question. Let {U,, a« € A}
be a CON basis of H. If we consider the U, as random variables, what is their
distribution under each measure in #? We see from Lemma 2.1 that under P
they are i.i.d. N(0,1). In general we have the following:

CoROLLARY 2.3. Let {U,, « € A} be a CON setin H. Let Q € P correspond
to a = {a,} € ¢? via (2.11). Then under Q the U, are independent, and U, has
the N(a 1) distribution. If we define U, by (2.15) for a sample of size n, then
under Q"® the U, are independent, and U, has the N(a,,1/n) distribution.
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PrROOF. We need only note that if Y corresponds to @ and a via (2.11), then
EyU,) =(U,,Y)=aqa,0

ExXAMPLE (continued). Consider the probability @ corresponding to the
mean function m = R for some c € [0, b]. Let {U,} be the orthonormal basis
constructed earlier. Now X, = A “!(m) has the Karhunen-Loéve expansion

Xc = Egk(c)Uk,

and so we immediately “read off” the distribution of U, under @ as being
N(g,(c),1); for a sample of size n, U, has the N(g,(c),1/n) distribution under

Qnre.

REMARK 2.5. It may be worth pausing at this point to relate the results of
this section to the familiar case T'= {1,..., p} of multivariate analysis. Now the
quantity R(s, t) is the (s, ¢)th entry of the covariance matrix X of the vector
X =(X,,..., X,)’; we will assume 2 is invertible for simplicity.

Let @ be the measure which gives X the N(p, 2) distribution, and P, the
N(0, =) distribution. Then the induced measures ¢ and P on R” have likelihood
ratio

(2.17)  dQ/dP = f(x|p, 2)/f(x/0, 2) = exp(W'Z~'x — (1/2)w'Z ),

as is easily seen. It follows that on (Q, &) we have

(2.18) dQ/dP = exp(p'=7'X — (1/2)p'=7p),
which is precisely of form (2.12) with
Y=w31X.
H is now simply the vector space of linear combinations of X,,..., X,, while 5
ii( l1;};e=s;t R™ equipped with inner product (a,b) = a’S 'b, and we have

As we remarked earlier, it is not necessary in this case to form the likelihood
d@/dP, since we can work with the induced density f(x|p, 2) = dQ/d (Lebesgue
measure). Using (2.17) or just f(x|p, X), the MLE i is the observed value x,
which is X(w) for some w € . Thus to use (2.18) as a likelihood, we fix w € Q
and so fix X(w); for each w, then, (2.18) becomes a function of p, which we can
maximize.

If we write (2.18) in the form (2.12), then for each w € © we would like to fix
Y(w) and maximize over p, but Y(w) = p’S " 'X(w) itself depends on p as well.
In the case that T is an interval or some other set, the dependence of Y on (X,,
t € T') is much less evident, and so the maximization problem is, on the face of
it, much more difficult. By fixing a CON basis (U,) of H we reestablish a
coordinate system in which to represent Y and therefore the density d@/dP.
While the variables X, no longer appear directly in the density, they still
determine it through the variables U,. To form the likelihood we still fix w € Q,
thereby fixing {X,(w), t € T'} and so fixing {U(w), a« € A} as well. The density
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is now a function solely of the parameter. The same applies to a sample of size n,
and maximizing this density is the problem we consider next.

We must exercise some caution in taking this maximum. Each density is
defined only up to sets of measure zero, while the likelihood function, which
evaluates each density at a point w, requires us to choose a version of each
density first. Let us agree to say that the likelihood L is almost surely
unbounded if for every version L of L there is an event E of probability 1 such
that I is unbounded for every w € E. Except in certain cases (such as when
dim H < o), it will not be possible to choose a single event E which works for
all versions of L.

3. MLE’s and a 0-or-1 property. Give a sample of n_complete observations
of the process, we wish to maximize (2.16) by fixing w € 2" and allowing a to
vary over the parameter space £2. It will be useful to solve a slightly more
general problem of maximizing over (closed) subspaces of the parameter space.

Thus let B C A, and consider the subspace H, C H spanned by {U,, « € B},
corresponding directly to a subspace £%(B) of £%(A). The following proof is
essentially due to Rozanov [(1971), page 128].

THEOREM 3.1. Let ¢*(B) be defined as above. If B is finite, then the
likelihood (2.16) is maximized over ¢*(B) at & = {4,) given by

3.1) a,=U, ifa€eB,
=0, otherwise.
If B is infinite, then the likelihood is unbounded a.s. P,

PROOF. If a € /%(B), then a, = 0 for a ¢ B, so the sum in (2.16) is over
a € B.
If B is finite, then we write (2.16) as

2 dQ"® —
;lnw = a§3(2aaUa - aﬁ).

For each fixed value U = U(w), this is maximized when each term is maximized,

namely at 4, = U,.

If B is infinite, then by considering the subspace ¢%(B,) C ¢%(B) for a
countable set B, C B we see that we may assume that B itself is countable. In
this case, by considering (2.16) with the “basis” elements a = (0 --- 010 - - - ) of
¢*(B) and the corresponding measures @ = P, € 2, we have

dQn®
dPn®

but by Corollary 2.3 the latter is infinite a.s. (P"®), and thus a.s. (#™). Thus,
for a fixed version of the likelihood there is an event E € o#™® of probability 1
such that the likelihood is unbounded on a countable subset of #%(B), and so
a fortiori on all of £%(B), for every w € E. O

n~lsupl = {l_j €B —i'
pln sup {U,, a € B} 5
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In terms of the original parameter space J#, we can give the following
“coordinate-free” version of the theorem:

COROLLARY 3.1. Let #, be a closed subspace of . If dim 5, < oo, then
the likelihood function L can always be maximized over 5,. If dim 5, = oo, L
is almost surely unbounded over #,. In particular, if dim J#= co, then the MLE
of the mean almost surely fails to exist.

Moreover, when dim 5, = d < oo, let {g,,..., 8,} be an orthonormal basis
of #,, and let U, = A~'g, € H. Then the likelihood is maximized over #, at

(3.2) m= Zﬁkgk,

where U, is defined by (2.15).

This result was given by Parzen [(1961a), page 979 and (1961b), page 482]
under some assumptions about the index set 7. In the latter paper he showed
that the “formal” solution given by (3.1) in the infinite-dimensional case yields a
sequence & which is almost surely not in #2. This is not quite a complete proof of
the failure of maximum likelihood, but one can use it to get an alternate proof of
Theorem 3.1; see Beder (1982).

EXAMPLE (continued). For the Wiener process, »# has countably infinite
dimension, so that the likelihood function for the mean is unbounded almost
surely.

REMARK 3.1. The existence of the MLE for the mean is an event of
probability 0 or 1, depending only on whether dim(»#) is infinite or finite. It is
natural to call this dimension the dimension of the process (with respect to the
model £). Note that it equals dim(H ), and so by Corollary 2.2 it is the “degrees
of freedom” of the process (w.r.t. #), i.e., the number of uncorrelated random
variables which may be formed from the set {X,, t € T} by taking linear
combinations and mean-square limits.

REMARK 3.2. If the functions g, in (3.2) are chosen merely to be linearly
independent, it is still possible to give a simple description of the MLE. For this
and a discussion of some likelihood ratio tests, see Beder [(1982), pages 11-12].

Theorem 3.1 and the corollary deal only with maximizing the likelihood over
subspaces. One can seek the maximum over other sets in the parameter space,
and that is in fact how we will generalize the GGH sieve estimator.

4. The sieve estimator. The unboundedness of the likelihood function for
any sample size n leads us to consider sieve estimation [Grenander (1981), page
357). Let = (P,, 0§ € ©} be a dominated family of probability measures (so
that densities exist).
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DEFINITION 4.1. A sieve in © is a collection {#,} of subsets of ©® indexed by
a parameter d such that

(@d>d=%,.20%,

(b) UY, is densein ©, and

(¢) the likelihood can be maximized over each %, (for all sample sizes n, or at
least for n sufficiently large).

The restricted MLE @ = §,, over each %, for a sample of size 7 is called a sieve
estimator of 6.

Grenander originally parametrized the sieve by the index p = 1/d, called the
“mesh size;” in this case one must alter (a) accordingly. In either case the sieve
index is usually taken to be real, although one could certainly index a sieve by an
element of a directed set, for example.

The denseness of U, in © presumes a topology, which is natural as one is
ultimately interested in some sort of consistency result § — 6 as d and n — co.

The GGH sieve is defined as follows. Assume that J# is separable and
infinite-dimensional (see Remark 4.1 below), and fix a CON basis {g,, k € Z*}
corresponding to a basis {U,, k € Z*} of H. Reparametrize by ¢%(Z*) in the
usual way [see (2.11)]. Then the sets

(4.1) ¥ ={aet® Lh%i<d}, d>0,

form a sieve in £2, where convergence in #? is defined by the norm as usual. For
a sample of size n, the resulting sieve estimator & ,, is given by

: z,
Gank = T AR?"

where A = A, satisfies

kU2
_k__2_ =d
(1 + AR?%)

and U, is defined by (2.15). Geman and Hwang (1982) show that if d = d,, is
chosen to depend on the sample size in such a way that d, » c and d, =
O(n'/37*) for some ¢ > 0, then |ja,, — a|| = 0 as. P, (P, = the measure in 2
corresponding to a).

The difficulty in using this estimator is that it depends on the quantity A, a
random variable defined implicitly from the data by (4.2). This not only makes
its value difficult to compute, but also probably precludes the possibility of
making small sample statements about the behavior of a.

Let us instead define

(4.3) S ={aet?a,=0fork>d}, d=1,2,3,....

(4.2) Yy

It follows from Theorem 3.1 that {¥,, d € Z"} is a sieve, where the resulting
sieve estimator & ,, is given by

(4.4) a, =(0,...,U0,0,...)
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based on a sample of size n. This corresponds to the sieve {5, m € Z*} in 2,
where 5, is the span of {g,,..., g4}. The sieve estimator of the mean function
is thus given exactly by

d
(45) A(t) = L Tusule).

If we consider {mi(t), t € T} as a stochastic process, then Corollary 2.3 easily
gives its distribution:

THEOREM 4.1. Under P, the sieve estimator m(t) defined by (4.5) is a
Gaussian process with mean

d
(4.6) Y a,8,(t)
’ k=1
and covariance

d
(4.7) n~! kzglgk(s)gk(t)-

From Theorem 4.1 we can quickly derive several “local” results:

COROLLARY 4.1. Suppose that dim ¥ is countably infinite. If d — o, then
ateacht€ T

(1) M(¢) is asymptotically unbiased for m(t), and
(ii) M(t) converges in probability and in mean square to m(t) if in addition
d=0(n) asn — oo.

ProOOF. Asymptotic unbiasedness is obvious from (4.6). Since mean-square
error = variance + (bias)?, we need to show that Var(#(t)) - 0 if d = O(n).
Now the variance under P, is given by (4.7), with s = ¢. But in any reproducing
kernel Hilbert space (R, T') with any CON basis {g,, a € A}, the expansion,

R(s,t) = Y.g.(5)8,(t),

holds for all s, t € T [see, e.g., Halmos (1967), Problem 30]. Thus in particular
the infinite sum £(g,(¢))? converges at each ¢ € T, and so an application of the
Toeplitz lemma [Loéve (1977)] shows that Var(/#(t)) - 0 as d — o and n — oo
as long as d = O(n).

Finally, mean-square convergence and an application of Chebyshev’s in-
equality show that M(¢) —» m(¢) in probability. O

REMARK 4.1. Both the GGH sieve and the new one satisfy property (b) of
Definition 4.1 as long as J# is separable (in which case, in fact, U, is not just
dense but actually equals £2). Corollary 4.1 also depends upon this assumption.
We may broaden the applicability of both sieves by making a slightly more
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general assumption, namely:
(S) The true mean is an element of a known separable subspace 5%, of .

In this case we take {g,, k € Z*} to be a CON basis of /#, corresponding to a
CON basis {U,, k€ Z"} of a separable subspace H, of H. We will discuss
assumption (S) in Section 6.

5. Consistency. Our goal is to show that the new sieve estimator (4.4) is
“globally” strongly consistent for the true parameter a if d = d,, is chosen to go
to infinity at an appropriate rate. Convergence of & to a is in /2. we want to
show that the square error ||a — a||> goes to 0 a.s. (P,). As we noted in the
introduction, if m © a and < & via (2.8), then || — m|| = ||a — a|| (the first
norm in 5#), so that we will have consistency in the original parameter space as
well.

Fix a € 2%, and let the corresponding measure in & be P,. For the sieve
estimator & = &, given by (4.4), we have

la-a2=Y (0,-a)'+ ¥ a}
k<d k>d

— 2
- Zdn + Z ay,
k>d

(5.1)

say. Now the second term, which is nonstochastic, goes to zero as long as d — oo.
We thus need to choose d = d,, so that Z,, — 0 a.s. (P,). At this point we can
get weak convergence fairly simply.

LEMMA 5.1. Under P,, nZ,, has the x*(d) distribution. If d/n — B < oo,
then Z 4, — B in P,-probability.

PrOOF." From Corollary 2.3 we see that under P, (i.e., under P]'®) the
variables Vn (U, — a,) are i.i.d. N(0,1), so that nZ,, is x*(d). It is easy to show
then that the mgf (moment generating function) of Z,, converges to exp(ft),
which is the mgf of the degenerate distribution at 8. O

REMARK 5.1.  As we noted earlier (Remark 2.3), U, depends on both % and =,
so that Z,, is the sum of a row in a triangular array. Therefore, we cannot infer
the strong convergence of Z,, from the law of large numbers in the usual way.

Lemma 5.1 tells us what we can expect at most from strong consistency. We
must have d = o(n), and if d/n — B > 0, then & will not even be weakly
consistent.

Since Z,, > 0 for all d and n, Z,;, —» 0 as n and d — o iff for every ¢ > 0,

(5.2) P(Z,,> ei.0.) =0.
The Borel-Cantelli lemma gives a sufficient condition for (5.2): for every & > 0,

(5.3) Y P(Z,, > ¢) < co.
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Thus we must choose d = d,, so that (5.3) holds for every ¢ > 0. Let us start by
getting a convenient upper bound for each term in the sum.

LEMMA 5.2. Py(Z,,>¢) <[(d+ 2(k — 1))/nel* foranyk € Z™.

Proor. Since Z,, > 0, Chebyshev’s inequality gives

E((nZ,,)")
(ne)*

I

P(Z,, > ¢) = P,[(nZ,,)" > (ne)*] <

for all £ € Z*. But nZ,, has the x%(d) distribution, so
E((nZ,q)*) =d(d+2) - (d+2(k—1)) < (d+2(k - 1))". O
The bound

54 d+2(k—1)]%

(54) ne

in Lemma 5.2 introduces a new ‘““ parameter” &, which we will allow to depend on
n. Thus we have two sequences to pick, {d,} and {%&,}, in order to make (5.4) a
summable sequence. This extra latitude is just what we need.

Our main aim is to pick {k,} so that (5.4) is summable when d — oo
and d/n — 0, if possible, but by solving this problem more generally when
d/n — B > 0 we can get a bit more insight into the behavior of Z,, when it fails
to converge to zero. The following is an easy application of the Cauchy root test.

LEmMMA 53. Let d/n—> >0, and let k/n >y >0 as n - oo. If
B + 2y < ¢, then (5.4) is summable.

THEOREM 5.1. If d=d, is such that d - o and d/n —> B >0 as n - oo,
then P(Z,, > ¢i.0.) = 0 for every ¢ > B.
Proor. Fix ¢ > B, and choose {k&,} such that
e—B
.

k
— Y€ (0’
n

Then (5.4) is summable by Lemma 5.3, and so the conclusion follows. O

When B = 0 we get P(Z,, > ¢ i.0.) for every ¢ > 0, which implies our main
result:

COROLLARY 5.1. Ifd = o0 and d/n — 0, then |a,, — a|| — 0 a.s. P,.

We have noted that this is in some sense best possible, as we fail to get even
weak consistency when d/n — B > 0. Interestingly, Theorem 5.1 tells us what
does happen in this case, too.
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COROLLARY 5.2. Ifd/n — B >0, then Z,, < ¢ a.s. P, for every ¢ > B8, and
l|a,, — all is bounded a.s. P, (uniformly in n).

REMARK 5.2. When d/n — B > 0 we have d = O(n), so that the results of
Corollary 4.1 hold automatically.

6. Conclusion. We have used sieve estimation to construct a point estima-
tor of the mean of a Gaussian process of arbitrary known covariance. The
estimator is given explicitly in terms of the data, has a simple distribution and is
strongly consistent. Our construction applies to discrete- and continuous-time
processes, to nonstationary processes, to random fields and to more general
Gaussian processes. For all of these, the norm of the reproducing kernel Hilbert
space (R, T') provides the natural metric for convergence.

Assumption (S) (Section 4) is the only restriction we have imposed. It is
needed both for the new sieve and for the one given by Grenander, and appears
to be a natural limitation on the method of sieves. Clearly, without (S) both
sieve estimators are strongly inconsistent when dim(Js#) is uncountable. To
eliminate the assumption, we need some way of “pretesting” all separable
subspaces %, of S to find one which contains the true mean. It is not clear how
to go about this.

We would also like to be able to construct confidence sets for the true mean
function. What stands in the way at present is the bias of our estimator. In
general, the method of sieves has been used to construct consistent point
estimators; distribution theory and “rate of convergence” questions have re-
ceived little attention. It may be hoped that Theorem 4.1 will give us a handle on
this problem in the present case.
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