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Although our results are based on a limited number of data sets, we conclude
that the Welsh trimmed mean should be used with caution in practice.
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1. Introduction. Alan Welsh has resolved an intriguing puzzle posed by
Ruppert and Carroll (1980) in their influential study of analogues of the trimmed
mean for the linear regression model. They showed that an estimator with
“appropriate” asymptotic behavior could be constructed based on “regression
quantiles,” and they also showed that naive trimming based on residuals from a
preliminary fit of the model had a considerably different, and far less satisfac-
tory, asymptotic theory. Welsh has now shown that a less naive, but still
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40 DISCUSSION

remarkably simple, form of “ Winsorizing” preliminary residuals can succeed in
achieving the desired asymptotic performance.

In these brief remarks I would like to offer an elementary interpretation of
why Welsh’s method works, mention some circumstances in which it doesn’t
perform quite so well, and finally, to sketch an idea for a more general theory of
L estimators for the linear model.

2. Interpretation. Why does Welsh’s method, which involves a “Winsoriz-
ing” transformation of the response vector, succeed while naive trimming fails?
Ultimately, an answer lies in the intimate connection between the trimmed mean
and the Huber M estimator and between Welsh’s one-step and Bickel’s (1975)
Huber one-steps. .

To emphasize these connections, we may write Welsh’s estimator, 7, as

with é; denoting the “Winsorized” preliminary residuals,
(2) éj=£nﬂ(J]—a)+e_]K_]+£nﬁ(Lj_(1_B))1

and the other notation as in Welsh, Section 1. By contrast, a (type-1)
Bickel-Huber one-step is

(3) p,=0,+ (ijxj’Kj*) Yxér,

where +Ms,(6,) replaces £, and £,, in (2) and in the definitions of the revised
indicators J*, K*, and L}. If we adopt symmetric trimming and choose a
symmetric (nominal) model for F, then Huber’s constant (M in the present
notation) can always be chosen to make these alternative quantile estimates
asymptotically equivalent, reducing the difference between 7, and p, to the
quantity

A= (TxaiK;) " Ta[£nan + £a5(1 = B)],

which can be seen to be, asymptotically, an adjustment solely to the intercept of
the model, i.e., since (1,...,1)’ is in the column space of X,

A, =(B—a) [£pa + £,5(1 — B)] €1 + 0,(1),

where e, = (1,0,...,0). Of course, EA, = 0 when F is symmetric and trimming
is symmetric, so A, serves the role of restoring the asymptotic variance of the
intercept component of 7, to its proper form. One may recall that in Ruppert
and Carroll’s theory of the naively trimmed preliminary residuals estimator,
different asymptotic behavior was exhibited by the intercept and slope parame-
ters. Welsh’s results clarify this and show that, while trimming is appropriate for
the intercept parameter, “ Winsorization” is required for the slope parameters.
This is consistent with the results of Ruppert and Carroll (1980), who find that
the intercept parameter after naive trimming has the desired asymptotic behav-
ior, but the slope parameters do not. Jureckova and Sen (1984) study a similar
scale-equivariant Huber M estimator that employs the inner-ath quantile range
based on Ruppert and Carroll’s TLS residuals to compute Huber’s constant;



TRIMMED MEAN IN THE LINEAR MODEL 41

they show that the resulting M estimator is asymptotically equivalent to the
TLS estimator to order O,(n~3/*) employing Bahadur representations of the
regression quantile statistics.

3. Some experimental evidence. One theme, among many, of the Prince-
ton robustness study (Andrews et al. (1972)) was that one-steps, and iterative
estimators generally, inherited the virtues and defects of their initial estimates.
This is especially true in regression, and becomes, of course, glaringly obvious
when the start fails to satisfy the fundamental asymptotic requirement of Vn
consistency. In Table 1, we report some Monte Carlo experience with two
variants of Welsh’s estimators, one starting from ordinary least squares (1SWL2)
and the other starting from the I, estimate (1SWL1). We include, for reference,
performance of the ordinary least-squares estimator (OLS) as well as the
trimmed least-squares estimator (TLS) proposed by Koenker and Bassett (1978)
and studied intensively by Ruppert and Carroll (1980). We have also included
the performance of a fifth analogue of the trimmed mean (TRQ), which we will
describe in detail shortly.

The entries in Table 1 are based on 1000 Monte Carlo replications. Each
configuration had 50 observations, with' p = 3,5,10 parameters as indicated by
the column of the table. The design matrices, X, were generated as a column of
ones with remaining entries drawn as iid realizations from the distribution
specified in column one. The design matrix is fixed for each configuration. The
estimators investigated are the ordinary least-squares estimator (OLS) and four
analogues of the trimmed mean: the trimmed regression quantile estimator
(TRQ), the trimmed least-squares estimator (TLS), the one-step Welsh estimator
starting from the least absolute error estimate (1SWL1), and the one-step Welsh
estimator starting from the least-squares estimate (1ISWL2). All four of the latter
had trimming proportion 0.1 and have the same asymptotic behavior to order
1/ Vn . The entries are sample averages of the Monte Carlo efficiencies over the p
coefficients of the model. All efficiencies were computed relative to the optimal
weighted least-squares estimator using the discrepancy between each estimator
and the optimal estimator as a variance reduction technique. A portable imple-
mentation (Fox (1976)) of the well-known Marsaglia random number generator
was used to generate random uniform numbers, and the algorithms for normal
and “student” variates were taken from the Princeton robustness study (Andrews
et al. (1972)).

We conclude from the table that the other estimators are clearly superior to
TLS, especially in strictly Gaussian cases. Although the 1SWL2 does quite well
in cases of mild kurtosis, it has unacceptable performance in long-tailed situa-
tions like the Cauchy where the start is poor. TLS performance deteriorates
rapidly as p becomes large relative to n. It is interesting to note that this
tendency is accentuated by a high degree of kurtosis in the design. The Welsh
estimators starting from I, perform extremely well; like TRQ they show very
little tendency to break down when p is moderately large. Further work on the
theory of these estimators when p is large relative to n would be highly
desirable. '
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TABLE 1
Monte Carlo efficiencies of least squares and four analogues of the trimmed mean.
The double dagger indicates an entry greater than 10°.

Relative Efficiencies

Sample
Configuration Estimator p=3 p=5 p=10
Y~N OLS 1.000 1.000 1.000
X~N TRQ 1.071 1.097 1.128
TLS 1.166 1.250 1.604
1SWL1 1.065 1.070 1.090
1SWL2 1.058 1.065 1.074
Y~N OLS 1.000 1.000 1.000
X ~ t(3) TRQ 1.083 1,113 1.134
TLS 1.205 1.379 1.757
1SWL1 1.066 1.079 1.100
1SWIL2 1.062 1.063 1.071
Y~N OLS 1.000 1.000 1.000
X ~ (1) TRQ 1115 1.134 1135
TLS 1.620 3.173 7.364
1SWL1 1.039 1.083 1.159
1SWL2 1.074 1.1156 2.839
Y ~ t(5) OLS 1.521 1.587 1.594
X~N TRQ 1.368 1.397 1.415
TLS 1.450 1.552 1.916
1SWL1 1.354 1.351 1.386
1SWL2 1.336 1.336 1.3556
Y ~ ¢3) OLS 2.532 2.613 2.758
X~N TRQ 1.675 1.677 1.698
TLS 1.728 1.813 2.308
1SWL1 : 1.675 1.654 1.690
1SLW2 1.619 1.654 1.741
Y~ 1) OLS t i t
X~N TRQ 5.5631 5.956 6.093
TLS 5.226 5.329 8.958
1SWL1 5.774 6.155 6.384
1SWL2 b4 i i

4. Yet another analogue of the trimmed mean for the linear model. To
conclude, I would like to briefly describe a general approach to L estimators for
the linear model based on regression quantiles. This approach may be viewed as
an alternative to the general theory of Bickel (1973) based on preliminary
estimation. It yields as a leading example the mysterious TRQ estimator of
Table 1. Koenker and Bassett (1978) suggested that p-dimensional analogues of
the order statistics could be constructed for the linear model by solving

n
P i Y, — x,b),
®) min, 3 0% = x)
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where py( ) denotes, for 8 € [0,1], the “check” function,

() = [0 if u>0,
PAY) =\ (0 -1)u, ifu<o.

An asymptotic theory of finite linear combinations of such “regression quantiles”
was developed, and led to “simple” analogues of the “quick-and-dirty (ineffi-
cient) statistics” of Mosteller (1946) and others. Ruppert and Carroll (1980)
subsequently showed that certain ad hoc methods based on regression quantiles,
notably the trimmed least-squares estimators, could achieve asymptotic perfor-
mance like that of the trimmed mean.

Recently, several developments have coalesced to produce a rudimentary
general theory of L estimators for the linear model. The essential element of this
theory is the extension of the theory for finite linear combinations to a theory for
smooth weight functions. Let f: [0,1] — R? denote the random function that
solves problem P. Under mild conditions on F, ﬁ(ﬂ) takes a unique value, except
at a finite number of points in [0, 1]. This exceptional set may be ignored since
we are interested in estimators of the form

ALa1= 'J(0)B.(60)d8, i=1,...,p,

for smooth choices of the weight function J.

An algorithm for efficiently computing § is described in Koenker and D’Orey
(1985); it is an application of standard methods of parametric linear program-
ming. As 0 traverses [0,1], S(8) takes order n distinct values, each correspond-
ing to (in linear programming parlance) a basic solution; here, a parameter
estimate based on an exact fit to p distinct sample observations. Thus problem P
serves to identify a small number of “interesting” basic solutions, roughly O(n)
in our empirical experience, out of the large Z number of possible basic
solutions. Recent work by Wu (1986) and others has emphasized the fundamen-
tal role that these basic solutions play in the theory of least-squares estimation
and diagnostics.

The asymptotic theory of B[] requires an invariance principle for the
p-dimensional quantile process A(8). The finite-dimensional asymptotic distribu-
tions of this process are established in Koenker and Bassett (1978) and by rather
different, simpler methods in Ruppert and Carroll (1980). Portnoy (1986) has
recently established the tightness of the process on an interval [e,1 — €] for
0 < & < 3, extending some of the results of Jure¢kova and Sen (1985). Thus, a
reasonably broad theory of L estimators of the form B[ J] can be addressed by
requiring J(8) to be smooth on [¢,1 — €] and vanish outside of it. The simplest
interesting case is that of the trimmed mean of the regression quantile process,

~ 1 fl-a .
ACAEE —2af¢, £.(6)ds, i=1,...,p.

This is the mystery estimator TRQ of Table 1 and one can see from the table
that it performs quite well over the limited design-noise configurations treated
by the experiment. In particular, it is much less sensitive to influential design
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points than is the trimmed least-squares estimator and it is inherently insensi-
tive to a preliminary estimator, which is a potentially serious problem with
Welsh’s estimator. Even when p, the number of parameters being estimated, is
large relative to n, TRQ adheres fairly closely to the behavior predicted by its
asymptotic theory. Like Welsh’s estimator and trimmed least squares, it is scale-
and reparameterization-of-design equivariant and therefore offers most of the
attractions of the Huber M estimator without the difficulties created by the
necessity of joint estimation of a scale parameter. This is also an advantage with
respect to the estimators proposed by Bickel (1973).

As Welsh notes, L estimation plays an extremely useful role in the analysis of
the one-sample problem; I believe that it could play a similarly constructive role
in analyzing linear models. I hope others, like Welsh, will help to build a theory
that would justify this belief.
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The discussants have provided valuable insights into the nature of the
one-step trimmed mean in the regression problem and made original proposals of
their own. Their empirical results are both helpful and encouraging.

The choice of initial estimator for one-step estimators is important as both
discussants note. In addition to the technical requirement that the initial



