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DISCUSSION
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This paper proposes a new way of defining trimmed means in the linear
model, which differs from earlier proposals by Bickel (1973), Koenker and
Bassett (1978) and Ruppert and Carroll (1980). We find the idea of the proposal
very interesting. It has the “right” equivariance and asymptotic properties and
is thus an attractive (large sample) extension of the trimmed mean in the
location case. These properties also hold for the Koenker—Bassett (1978) estima-
tor, but the Welsh estimator has the potential advantage of computational
simplicity (if least squares is used as a preliminary estimator). Our remarks will
concern the small sample behaviour of the proposed estimator. We wish to
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illustrate this with a few simple examples. Rather extreme examples were chosen
for illustrative purposes. For less extreme cases, similar results hold albeit not as
pronounced.

Our first point concerns the role of the initial estimator. Consider the model
Y, =i+ e;, with {e;} iid standard normal. From this model n = 21 points were
generated and point 1 is “moved out” in the y direction to become an outlier.
With this y value equal to 150, the 10% Welsh trimmed mean with least squares
(LS) as initial estimator was calculated and the fitted line is denoted in Figure 1
by W-LS.

In this figure we also indicate the LS line as well as W-L1, the 10% Welsh
estimator with L, as preliminary. Note that the LS line is pulled toward the
outlier, as one would expect, creating large positive as well as negative residuals
on the edges of the design space. Thus, in this case of an outlier on the edge of
the design space, points on the two edges are overadjusted for leading to the
W-LS line overestimating the slope. Clearly this is caused by the fact that LS is
used as the initial estimator. Using, e.g., L, as initial estimator, we do not have
this problem and W-L1 goes through the bulk of the points. Thus, although
W-LS has a computational advantage over W-L1, the latter might still be
preferable from a resistance point of view. Note that the 15% Koenker—Bassett
trimmed mean is of the same order of computational difficulty as W-L1 and is
also not sensitive to this type of outlier. Note also that outliers in the centre of
the design space are handled well by W-LS, e.g., if point 11 is moved out in the y
direction.

Our second point concerns the effect that outliers in the design space have on
the Welsh estimator. Although it was not specifically designed to cater to this
situation, we feel it is worth discussing. Consider again the above model, but now
move point 1 out in the x direction to have an x value of 150.

In Figure 2 we again give W-LS, W-L1 and LS. In this case, both W-LS and
W-L1 do not improve on the disastrous behaviour of LS. This is a typical
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situation where a bounded influence-type estimator is needed (see e.g., Krasker
and Welsch (1982)). The following seems a natural way of achieving this for the
Welsh estimator. Let {w;} be a set of weights, typically dependent on {x;} and in
the definition of 7, replace x; by w;x;. Taking w; = u(x;) for some function u, it
follows, along the lines of Welsh’s proofs, that under appropriate regularity
conditions, the resulting estimator has influence function of the form

Q, xu(x)p(y — x'6,)

for a certain matrix @, (we considered the case of a symmetric F' and symmetric
trimming for simplicity). Choosing an appropriate u function then gives a
bounded influence function. However, in small samples, this estimator is again
adversely affected by the choice of initial estimator if the latter does not have
bounded influence. We thus propose the following. Modify the initial estimator
to have bounded influence and then use this in the above bounded influence
Welsh estimator. Denote by W*-LS and W *-LS*, respectively, the above
bounded influence estimators with LS and weighted LS as preliminary estima-
tors. Similarly we use the notation W*-L1 and W- *L1*. Note that in this case
L1* is a bounded influence L, estimator as defined in de Jongh and de Wet
(1985). For {w;} we use the Mallows weights (see, e.g., Denby and Larsen (1977))
with 15% trimming. The results are also given in Figure 2. We see that in this
case W *-LS* does reasonably well, while W *-L1* does very well. In Figure 3 we
considered the case of a y and x outlier. All the previous estimators are again
shown and clearly only W *-L1* goes through the bulk of the data.

If the above estimators are applied to the salinity data (which has two clear x
outliers, viz. points 5 and 16) it is seen that W *-L1* gives the best fit in terms of
IQR. This makes one fairly confident about the robustness of W *-L1* to x and
y outliers. We also note that the bounded influence Koenker—Bassett trimmed
means defined in de Jongh and de Wet (1985) have similar behaviour to W *-L1*.
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Although our results are based on a limited number of data sets, we conclude
that the Welsh trimmed mean should be used with caution in practice.
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1. Introduction. Alan Welsh has resolved an intriguing puzzle posed by
Ruppert and Carroll (1980) in their influential study of analogues of the trimmed
mean for the linear regression model. They showed that an estimator with
“appropriate” asymptotic behavior could be constructed based on “regression
quantiles,” and they also showed that naive trimming based on residuals from a
preliminary fit of the model had a considerably different, and far less satisfac-
tory, asymptotic theory. Welsh has now shown that a less naive, but still



