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SECOND-ORDER RISK STRUCTURE OF GLSE AND MLE
IN A REGRESSION WITH A LINEAR PROCESS!

By Yasuvuki ToYookA

Osaka University

In a regression model with an error that is a general linear process, the
second-order expansion of the risk matrix of GLSE or MLE is obtained. A set
of sufficient conditions for the effect of estimating the structural parameter of
the linear process to vanish in the above expansion is obtained. The relation
of the covariance matrix of SLSE with those of GLSE and MLE up to
O(T~2) is elucidated.

1. Introduction. In this paper we consider the estimation of 8 when 6 is
unknown in the regression model

(1’1) yt = x;B + ut7

where {x,} is a sequence of p-dimensional fixed designed vectors, 8 € R?, and u,
is a general linear process,

(12) w= L 80,

with g4(8) = 1, £7.,8,(0)* < o, and {¢,} is a sequence of i.i.d. N(0, %) random
variables, where

1 =
2 _ _
o 2ﬂexp< > f_ﬂlog fo(A)dA}

with
2 2

= 5-8(0,0) (say).

2

(13) J(A) = 5=

[>2]

Y g(0)e™

Jj=0

The parameter space of 8 is an open subset 8 of R!. As is well known, the finite
parameter stationary models, such as the autoregressive model, moving average
model, and autoregressive-moving average model, can be expressed as the general
linear process {u,} in (1.2).

When {y,: t=1,...,T} and {x,: t=1,...,T} are observed, the statistical
linear model is

(1.4) y=XB+u, E(u)=0 and Cov(u)= V(6),
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where y = [yy,..., yr), X =[xy,...,x7), and u = [u,,..., ur]’. Assume that
rank(X) = p if T > p for simplicity of discussion. The covariance structure V(4)
does not generally satisfy the condition (Mitra and Rao (1969)) for which the
simple least squares estimator (SLSE) 8 = (X’X)~ X"y is equivalent to the best
linear unbiased estimator (BLUE)

(1.5) Bw={X'VY(0)X} X'V (8)y.

Since @ is unknown, alternative estimators other than SLSE are the generalized
least squares estimator (GLSE) and the maximum likelihood estimator (MLE).
When {u,} is a statlonary autoregressive process with parameter 6, Toyooka

(1985) proved that the maximum likelihood estimator (MLE) BMLE is a GLSE of
the form

= {(XVY(8(2)X) X'V Y(B(2))¥(= Brars)»

where 91(i2) is some function of & = [I — X(X’X) 'X’]u. The risk matrix of a
usual GLSE

Bu, = (XV(0(5)X) X'V (6(1))y,

where
T T
_ ~ ~ ~9
= Z by Z Uy
t=2 t=2

is equivalent to that of BMLE up to O(T~2) in the previous paper. Moreover,
Toyooka gave sufficient conditions for the estimation effect of § to vanish from
the expansion of the risk matrix of sz up to O(T~2).

In the present paper we examine the above sufficient condition under the more
general error process (1.2). In Section 2, we formulate the problem. We give the
second-order expansion of the risk matrix of GLSE or MLE and the sufficient
condition for the estimation effect of § contained in this expansion to vanish in
Section 3. In Section 4 we give the statistical implication of the sufficient
condition. An extension to the case where § is multidimensional is straightfor-
ward, and therefore is omitted.

2. The estimator of the structural parameter 0. Let the estimated resid-

ual be
(2.1) =y X
' = {I-x(xX)"'X"}u.

We use the Whittle functional for I (see Walker (1964)), that is,
2

T
Y ie™| (g(X,0)} " dA

t=1

Up(@,0) = on )

(2.2)

=T Y «a(0)C,
s=—(T-1)
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where
1
- 1As -1
a,(0) = o f_ﬂe (g(7,8)) " ax
and
T-|s|
(2'3) Cs = Z ﬁtat+|s[/T’
t=1
As the estimator § of 0, we use the value of 6 that minimizes Up(i&, §) with
respect to 6.
For the linear process {u,} defined in (1.2), the covariance matrix of u is
(2.4) V(8) = [f” M= (N) dA
- t,s=1,...,

So our GLSE is
(2.5) By = (X V(0)X} T XV(D)y.
First we get

LEMMA 2.1. The estimator 0 for the structural parameter is an even function
of i.

Proor. From (2.2), the normal equation is

P . T-1 F] R
— Up(, B) = — - 0.
aoUT(u? ) Ts=__z(:T._1) aeas(o)cs 0

Then from the implicit function theorem, 6 is a function of C, (s=
—(T - 1),...,(T — 1)), which implies that § is an even function of &. O

Moreover,
LEMmMA 2.2. The GLSE ﬁW is an unbiased estimator for B.

PRrOOF. Since V(0) is a continuous function of § and 6 is an even function of
u, By is an odd function of u. Therefore, E(By) = 8. O

An interesting lemma by Kariya and Toyooka (1985) is

LeEmMa 2.3. For the GLSE By,
E[(Bw - Bw)(Bw—B)] =0,
where By, = {X'V-Y0)X}"'X'V~%8)y is BLUE.
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From Lemmas 2.2 and 2.3,
E[(Bw — B)(Bw — B)'] = Cov(Bw)
= Cov(Bw) + E[(Bw — Bw)(Bw - Bw)'].

The first term is the covariance matrix of the BLUE and the second term is the
estimation effect of 6.

(2.6)

3. Asymptotic evaluation of E[(QW - éw)(éw - ﬁw)']. One main object
is to evaluate the leading term of the second term of (2.6). We consider the
situation in which {x,} is a sequence of bounded designed functions of ¢.

Let, for ¢, j=1,..., p,

T—h
aﬁ(h) = E xttxjt+h, h= 0,1,...

t=1

T

= Y XyXjn h=0,-1,....
t=1-h

We impose the following regularity conditions on the regression functions {x,}
(see Grenander (1954)):

R.1 a’(0) = ||xL||T — o0 as T' = oo, where ||x,||T L x)V2 fori=1,...,p.
R2 lim,_, x2%.,/af(0)=0fori=1,..., p.
R.3 The limit of

ali(h)/T=+yI(h) asT— o0
exists forevery i, j=1,...,pand h=0,+1,.... Let
11m Yu(h) pij(h)
fori,j=1,...,pand h=0,+1,... and let R(h) = [p,;(h)].
R.4 R(0) is nonsingular.

Then under these conditions, there exists a matrix-valued regression spectral
measure M(A) such that

(3.1) R(h) = f e dM(N).

-7

From Walker’s result (1964), we have the following:

LemMa 3.1 If £I7L_1(3/36)a,(8) = o(TVT), thenas T — w, VT (6 - 6)
- » N (0, w™ 1), where D denotes convergence in distribution and

W= " {aaologg()\ 0)}
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PrRoOOF. Let

Z utet}\t

t=1

www=—f

-7

{g(>\ 6)} " dA

T-1
=T 2 as(ﬂ)CS,

s=—(T-1)

where

T-1s|

C = Z Uy s /T
t=1

and let

2

{&(X,0)} "dA

1 T
Up(2,0) =5 [ X e

T-1 .
=T Y «a(8)C,

s=—(T-1)

where

T-|s|
C = i1 [T
t=1

Let 6 be the minimizing value of Ur(u,8) and 6 be the minimizing value of
U, (@i, ). Then

T-1
T Y a(8)C, =0
s=—(T-1) 26
and
T-1
T Y (0)C =
s=—(T-1) 80
Therefore

T-1

1 92 1 -1 9
_s_z(;T 1)?W%((ﬂ)\/—((ﬂ—(;v)—T ZT 250G,

where §* = X\,0 + (1 — A,)f, and

T-1 1

a -1
- _% 1)7355&8(0**)\/_(0—0) \/T _E T 3(0)

(T-
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where 6** = X\,8 + (1 — \,)6,. From Walker’s result,

1 Tz—:l 92 1 T-1 92
plim — a(6*) =plim —~ ) a,(0)
T s=—(T-1) 802 T s=—(T-1) 302
1 T-1 32
=plim— Y a(6**)
Ts=(T—1) 802
=202w.

Remark that
C, - C,=0,(1/T)

and
7L a0 IT (Z) Sal0)(C, - ¢,
\ﬁ ) aa"‘s(a)c
From this, if ng_(T (9/38)a(0) = o(TYT), then
%%) 2 a(0)C, - &}(:) a0,

Therefore, from Walker’s result for the asymptotic normality of the right-hand
side,

VT (8 - 6) ~ N(0,1/w). 0

From the fact that the parameters 8 and 6 are orthogonal in the Fisher

information matrix sense, we can get, by using a discussion similar to Hildreth
(1969),

LEMMA 3.2. As T — oo,

TV2(6 - 9)
T-'2X'V-Y(0)u

3
TOV2X LV (B)u

w 0 0

a
0 1i T—lx;v—l ] lys___y-1
Y fim 9)X hmTXaV(O)X

T— o

a a
0 lim T7'X’—V ()X lim T7'X'—V~(0 0)—v-1!
m GV OX lm TOX VOV 25V O)X

T— o0

By using these results and applying an argument similar to that of Toyooka
(1985), we obtain
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LeEMMA 3.3. The second term of (2.6) is

E[(Bw = Bw)(Bw = Bw)] =T *w™! lim T{X'V-(0)Xx) "

P 3
x| lim T-IX'a—V*(a)V(H)%V’I(ﬂ)X

T—- oo [/}
. d .
(3.2) = lim TOX'—SVI(0)X lim T(X'V'(0)X)
— o0 T—- oo

F)

s —ly/___y-1

x lim TX'— VN(0)X

x lim T{X'V(0)X} '+ o(T2).
T-

We remark that

) F
25V (6) = =V 8) - V(O)V(9)

a0
and
’ —1 -1 J -1 J -1
WV (0) =2v (0)%V(0)V (B)%V(O)V (6)
82
—V ()55 VOV (6).
Then
d a
X’V’l(ﬂ)EV(B)V_I(H)%V(O)V_‘(B)X
= E[X’WV_1(0)X+ X’V‘1(0)WV(0)V_ (6)X .

The limiting behaviour of the first term of (3.3) is evaluated as
2

ad
lim T7'X'— V()X

= [ (2B = £ f(A) ) f(A) 7 dM(N),
where f,/(A) = (3%/30%)f,(\) and f4(A\) = (3/360)fy(N\). This expression can be
simplified when we assume that M(\) has only one jump point at A = 0 for

which the jump is AM(0) = R. Then (34) is
~f5(0)o(0)* AM(0) + 2£7(0)*£,(0) ~*AM(0).
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On the other hand,
d d
lim T~ 1X’a—V‘l(ﬁ)X hm T{X’V'l(O)X} lim T‘IX'%V'I(H)X

T- oo

_ {Eo-f_ﬂfa(x)_ldM(A)}{f_ﬂh(}\)_ldM(A)}_l
(s ) )
= £,(0)" £5(0) > AM(0)

under the condition M(A) has only one jump point at A = 0. Therefore, the term
in square brackets in (3.2) is, from (3.4) and (3.5),

(3.5)

lm TX V—l(o)V(o)—V—l(o)X

T— o0 a0

3
— lim T- lX’a—V‘l(a)X lim T(X'V- (6)x) "

T— o0

x lim T‘IX’EEV‘I(o)X
36) = —1fo"(0)fo(o)‘2AM(0) + £7(0)* £5(0) ~*AM(0)

2

+5 lim T7IXVH(0) S VOV H(0)X

T— o0

~ 14(0)* £5(0)~* AM(0)

82
_ 3 -1yryy—-1
fm TTXVH0) 563

In order to evaluate lim,_, . T'X'V~}(0)(9?/36*)V(0)V~1(0)X, let

T—
biTJ'(h) =X ZitRjt+h> h=0,1,...
t=1

T
= X ZuZjpen h=0,-1,...,
t=1+h
with Z = V(0)X. We assume the following:
S.1 8%(0) = ||2,]|2 > © as T — co.
S2 limg_, , 24, ./b50)=0fori=1,...,p
S.3 The limit of

V(8)V-(8)X — £,(0)f5(0) * AM(0) |.

bii(h)/T =q4;;(h) asT - oo
exists forevery i, j=1,...,pand Ah=0, +1,.... Let
lim QoTij(h) = (Imj(h)
T— o0

fori, j=1,...,pand h=0,+1,... and let Q,(h) = [g,4,;(h)].
S.4 Q4(0) is nonsingular.
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Then there exists another regression spectral measure Ny(A) such that
Qu(h) = [ e dNy(A).
So

(87)  lim TXV" 1(0) V(0)V"(0)X f (A dNy(A).

26
Therefore, we obtain the integral representation such as
THEOREM 3.1. If the conditions R.1-R.4 and S.1-S.4 hold, then as T - o
E [(.éw - .éw)(iéw - iéw)’]
1= { [0 aM(v))

x| [ 1) ) aM() =4 [ £ ()R dM()

(38) 1" a0 = {100 R0)  am(v)

{7 60 a0} [ a0 aml)|

{7 0 M)+ o(1/T?),

If the regression function {x,} satisfies the condition that M(A) jumps at
A = 0 only, we obtain

THEOREM 3.2. As T — oo,
E[(,éw - ﬁw)(ﬁw - .éW)I]
= T 2w 'f,(0) > AM(0) ‘21
x| [0 ) = 1570 10) * AM(©)| AME©) ™ + 0(1/T?)
under the condition that M(\) has only one jump point at A = 0.
On the other hand,

LEMMA 34. If Ny(\) has only ope jump point at X = 0 for which the jump is
fo(0) 2R, then (3.7) is
7'(0)/(0) °R.
Moreover,

Q,(0) = /,(0) *R.
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By using this lemma, we obtain

THEOREM 3.3. Under the conditions R.1-R4 and S.1-Sd4, if M(\) and
Ny(\) each have only one jump point at X = 0, where the jumps are R and
f,(0) 2R, respectively, then the coefficient of T~? in (3.2) vanishes.

COROLLARY 3.1. Under the same conditions as in Theorem 3.2,
E[(ﬁw— B)(Bv‘v— B)] - COV(BW) =0(1/T?) asT - co.

REMARK 1. Since y — XBW =[1-X{X'V" X)) 'X'vV- 1(6?)]u, which de-
pends on y only through &, HMLE is a function of & only. So ,BMLE is a GLSE
even in the present situation and O has the same asymptotic distribution as
8. So (3.2) for B MLE 1S identical to that for ,BW

REMARK 2. From the proof of Theorem 3.1, the leading term of
E[( ﬁw - [?W)( ﬁw - ,@W)’] has the same expansion (3.8) whenever § is an
estimator of a class of best asymptotically normal estimators. This point is also
discussed in the point of the prediction framework (see Toyooka (1982)).

REMARK 3. Under the conditions of Theorem 3.2, there is no difference
between the asymptotic value of the covariance matrix of B and that of BW
which is equivalent to that of BW This fact is a special statement of Grenander’s
(1954) result. Moreover, under the conditions of Theorem 3.2, there is no
difference between the asymptotic value of the covariance matrix of ,BW and that
of ,BW up to O(T~?). Of course both matrices are smaller than that of B up to
O(T~?) (see Toyooka (1985)).

4. Implications of Theorems 3.2 and 3.3. Under the conditions of Theorem
3.3, we can compare the risk matrix of 8 with that of By, or By as stated in
Toyooka (1985).

In the first-order autoregression with the autoregressive parameter 6, after
simple calculation,

Qy(h)=(1—-40 + 6602 —460°+ 6*)R
= [" e dN,(N),

which does not depend on h. Therefore, Ny(A) has only one jump point at A = 0
and the jump is

f,(0)"2R = (1 — 40 + 662 — 46° + 6*)R.

So the structure of the autoregression automatically satisfies the condition for
Ny(A).

The case in which the error {u,} is a second-order autoregression is a special
case of our model (1.2). Pantula and Fuller (1985) compare the empirical risk
matrices of two estimated generalized least squares estimators for a linear trend
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model with second-order autoregressive error in a Monte Carlo experlment The
estimator ,BW is based on autoregresswe parameters estimated by using the
ordinary least squares residuals and ,BW is based on a bias adjusted estimator for
the autoregressive parameters. Their expenmental results agree with our theory
in that there is little difference between the risk matrix of ,BW and that of 8 w, in
the most cases. They find that the bias adjustment procedure for the autoregres-
sive estimator is effective in small samples (n = 25) for processes with a large
positive root. Our theory says that the effect of the bias adjustment procedure in
the autoregressive parameters exists in the o(7T~2) term of expansion (3.8). Their
experiment indicates that the high-order asymptotic expansion provides better
approximation to the small sample behavior of the estimator in the interior of the
parameter space.

From the results of Toyooka (1983), (1985) and the present results, the
following facts were elucidated. In the case where the regression function {x,}
does not satisfy the Grenander condition that M()) increases at not more than
p values of A, 0 < A < 7, and the sum of the ranks of the increases in M(}) is p,

Cov(B) — Cov(Bw) = O(T )
and
Cov(By) — Cov(By) = O(T~?).
On the other hand, under Grenander’s condition,

Cov(B) — Cov(Bw) = O(T2),
and, moreover, if M(A) and N,()) satisfy the condition of Theorem 3.2,
Cov(Byw) — Cov(By) = o(T~2).

It is not obvious whether the last equality is O(T~2) or not. An extension to the
case where # is multidimensional is straightforward and therefore is omitted.
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