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ESTIMATION OF A UNIMODAL DISTRIBUTION FUNCTION

By SHAw-Hwa Lo
Rutgers University

This paper deals with the problem of efficiently estimating (asymptoti-
cally minimax) a distribution function when essentially nothing is known
about it except that it is unimodal.

The sample distribution function F, is shown to be asymptotically mini-
max among the family & of all unimodal distribution functions. Since F, does
not belong to this family, estimators belonging to this family are constructed
and are shown to be asymptotically minimax relative to the collection of
subfamilies of &.

1. Introduction. In their pioneering paper, Dvoretzky, Kiefer, and Wolfo-
witz (1956) proved that the sample distribution function F, is asymptotically
minimax (a.m.) in the collection of all continuous distribution functions (d.f.’s).
After 20 years, Kiefer and Wolfowitz (1976), motivated by reliability theory (see
Barlow et al. (1972)), reopened the problem and proved that the sample d.f. is
still a.m. either in the class of all concave d.f.’s or in the class of all convex d.f.’s.
Furthermore, in the same paper, by using Marshall’s lemma (1970) they im-
mediately got that C, (the least concave majorant or the greatest convex
minorant of F,), which is concave (convex) and hence suitable to be used as an
estimator, is also a.m. for estimating F. In the same paper, Kiefer and Wolfowitz
noted some interesting open problems which are related to reliability theory.
Two of them are estimating increasing (decreasing) failure rate distributions and
estimating unimodal distributions. The first problem was later considered by
Millar (1979); he showed that the sample d.f. is still a.m. among the class of all
increasing (decreasing) failure rate distribution functions. Wang (1982) showed
that under some additional assumptions it is possible to find an estimator C,
which is am. such that C, itself is in the class of increasing failure rate
distributions. The present paper considers the second problem; i.e., estimating a
unimodal distribution function. In the next section, the author gives the defini-
tion of a unimodal distribution function and proves that the sample d.f. F, is
still am. among the family & of all unimodal distribution functions (Theorem
2.1). Since F,, does not belong to this family &, estimators (¥,) belonging to this
family are constructed and are shown to be Vn -close (in supremum norm) to the
sample d.f. uniformly among the subfamily &*(8,, M, k) of & (see (2.4)). A
slightly weaker concept “a.m. relative to a family” is defined (see (2.5)), and the
estimator ﬁn (as well as F)) is proved to be am. relative to the family
{&*(8y, M, k)} (Theorem 2.2). Section 2 contains our main results. All the proofs
are given in Section 3.
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2. Main results. A function f is unimodal at # if and only if f is nonde-
creasing at x for x < 0 and f is nonincreasing at x for x > §. We consider the
collection & as follows:

&= {F(x); F(x) is an absolutely continuous d.f.
with a unimodal density function f(x)}.

Let B denote the collection of all cumulative distribution functions on the real
line. In this paper, we consider the loss function for a sample size n as L,:
B X B— R*=[0,00) with L (F,G)=1n'""%(F - G)), where [ is subconvex
with the properties that El(n'/?(F, — F')) converges to EI(W°(F)), and W(F)
is the Brownian bridge process composed with F. These assumptions are essen-
tially the same as the ones used by Millar (1979), and also cover the classical loss
functions such as Kolmogorov distance and von Mises distance used by Kiefer
and Wolfowitz (1956, 1976).

An estimator ¢, of F'is am. in & if

SupFeé’EFl(nl/2(¢n - F))

(2.1) lim - =1,
n- o0 1nfbsupFe&EF{fl(n1/2(y - F))b(x,, dy)}
where x,,, denotes (x,, x,,..., x,) and b runs over all randomized procedures.

One can use Millar’s (1979) sufficient conditions to prove the following theo-
rem.

THEOREM 2.1. Let L, be described as above. Then the sample d.f. F, is
a.m. (in the sense of (2.1)) among the collection &.

The proof of this theorem is deferred and will be given in the next section.
Since the sample d.f. may not belong to &, it is not a proper estimator to use in
some situations. Therefore, we are going to construct some estimators ﬁ'n (mod-
ified by F,) which belong to & and are close to F,. The constructions involve the
estimation of the mode. The problems of estimating a mode have been studied by
Chernoff (1964), Grenander (1965), and Venter (1967). The following proposition
is proved in Venter (1967). The rates of convergence have been shown to be the
best possible (see Hasminskii (1974)).

ProPoOSITION 1 (Venter, 1967). Suppose f(x) has a unique mode at 0. Let
8 > 0 and write

a,(8) =min{f(x); 0 — § <x < 0 + 5},
ay(8) = max{f(x);x <0 — 28,0 + 26 <x},
a(8) = a,(8)/ay(8).
Suppose the following condition holds:
For all & small enough «(8) > 1 + p&*,

(2:2)
where p and k are positive constants.
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Then one can find proper estimators 0,, such that 6, = 6 + o(8,) w.p. 1,
where

8, =n Y02 (logn)* ifk>1
(2.3) ?

=n"2(logn)"* ifk <1

Note that the speed of convergence of 9n to 6 depends on the knowledge of
smoothness of f near 6. Consider the following subcollections of &
Let 8, be a small positive number, and let K, M be two positive constants.
Define
(2.4) &*(8,, M,K) = {F; F € & and there exists a p* < M such that
1+ p*8*% > a(8) =1 + pd* forall § < §, }

It follows from the results in Venter (1967) that among the subcollection
(5’*(80, M, K), 0 has the property that the speed of convergence of 0 to 0 is
given by (2.3) umformly in &*(8y, M, K).

Consider the estimator F(x) of F(x) as follows:

Let F be constructed as the least concave majorant (LCM) of E(x)on x = 0
and the greatest convex minorant (GCM) on x < 0 It is easy to construct a
modified version, say F, of F, such that ||F 2 < 1/n w.p. 1, and F isin ¢
and has 0 as its unique mode

The followmg theorem tells us that the difference n'/2||F — F||,, is essentially
no bigger than n'/?||F, — F||,, in each subcollection &*(8,, M, K), and hence
yields a slightly weaker a.m. result as follows:

An estimator ¢, is a.m. relative to the family {&*(8,, M, K); §,, M, K > 0} if

(25) sup i SUPy e gx sy, m, ) Bl (n'/2(8, — F))
. m

=1.
(8, M, K) N> lnfbsupFeé”‘(so M, K)EF{fl[nl/2(y - F)]b(x(n): dy)}

THEOREM 2.2. For every £*(8,, M, K) described as above,
(26) Vn|F, ~ F|,, < Vn|F, = Fli, + 0,(1)
uniformly in F € £*(8,, M, K). Furthermore, ﬁ’n is a.m. relative to the family
{&*(8y, M, K)}.

REMARK 1. The first part of Theorem 2.2 does not imply that ﬁn is am.
among &*(§,, M, K) since the sample d.f. F, may not be a.m. among
E*(6y, M, K).

REMARK 2. From the proof (given the the next section) of the second part of
Theorein 2.2, one can show that (2.5) holds with fixed K = 2.

REMARK 3. Note that £*(8,, M, K) C £*(8,, M, K) for 8, < §,, and for
every fixed M and K. Let &*(M, K) = U, . (6*(8), M, K). It can be shown
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(see the proof of Theorem 2.2) that F,, is a.m. among &*(M, 2), for some M > 0,
but it is not clear at this moment whether F, is a.m. among §*(M, K ) for K # 2.

Before closing this section, we give an example.
Suppose f satisfies
2.7)  f(x) =v,—v(x—60)°+o(jx — 8]?) asx - 8 for y,,y > 0.
There exists a §, < v2/2/10y'/? such that the term
lo(Jx — 6]%)] < (X — 6)min(y,/10, v,/10) if |x — 8] < &,.
Therefore, if |A| < §,, one can write
[(0+4)  yo— (y—o(&)/N)N 3(y — o(A2)/A%)A?

F(0+28)  7p— 41— o(@)/B)8 3= 4y o(8}) /)N

3(y — o(A?)/A%)A? 3(2v)A? 27
L S o)A () (_)_Y_Az_
Yo Yo Yo

10
On the other hand,

6+ A 33.A2 3300
—i——)—s +%=1+—1A2.
f(6 +24) Yo ~ 1000 Y0 964 v,

Therefore, the corresponding d.f. F(x) € £*(vy/%2/10y/2, M,2) for any M >
3300,/964 (v/vo)-

3. Proofs.

Proor oF THEOREM 2.1. Take Fy(x) = ®(x) to be the standard normal d.f.
with density ¢(x) = (1/ V27 )e **/2. It is clear that ® € &. It suffices to show
that & is radially dense at ® as Millar (1979) pointed out.

Consider the densities of the form

o(x; n72h(x)) = ¢(x)(1 + n~2h(x)).
o(x; n~/2h(x)) is a density if [©, ¢(x)h(x)dx = 0 and sup,|n~'"?h(x)| < 1. To
assure ¢(x; n~/2h) in &, consider

H, = {h; /oo h(x)¢(x)dx =0, /_oo h%(x)¢(x) dx < o0, sup|n~?h(x)|< 1,

h(x) =0ifx € [—¢,,¢,],and |/ (x)|< in' %, if x & [ —¢,, sn]},

where {e,} is a positive sequence tending to zero with n'/2%¢, > 0 as n - co.
Clearly, U?_, H, is dense in H(®) where H(®) is defined in Millar (1979) as

n=1

H(®) = {h[

[=9]

" h(x)é(x) dx = 0 and /_”whz(m(x) dx < oo}.

Direct calculation of ¢'(x; n~'/2h) shows that ¢(x; n~'/2h) is unimodal, and
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hence in & when & € H,. This shows that ® is a radial cluster point, and the
theorem thus follows. O

We need some lemmas to prove Theorem 2.2. For any F € £*(8,, M, K ), let f
denote the density of F. Let f(6 + §,) = inf{f(8 + x); |x| < é,} for §, < §,.

LEMMA 1. Assume F € £*(8,, M, K ). Then
(3.1) Bp= ["f(x) dx - 28,80 £ 8,) = o(n %)
08,
uniformly in £*(8,, M, K), where 8, is defined as in (2.3).

Proor. First note that 25,£(6 + §,) < 1; therefore, £(8 + §,) < 1/28,. (This
is true for all F in £*(8,, M, K).) By the definition of £*(8,, M, K ), one can
write

p
(3.2) 10 £ 8,/27) < (6 +8,) [T [1 + M(5,/2)"].
J=1
Taking the log, we obtain

2

d . P o(1\/k M2k P 1)\2k
logl_[[1+M(8,,/2’)k] sMS,’fZ( ) + =y (—)
Jj=1 J=1 2 j5\2
=&p (Say)7
since log(1 + x) < x + x2/2 if x > 0. Therefore,

(3.3)

p <
jI;Il[l + M(8,/27) ] <e"r<l+e,,

(e,,» < 1if §, is small enough). We obtain

(3.4) £(0 + 8,/27) <#(8 + 8,)(1 + L, ,8}),
where
Po(1\/k M2k P [1)\2/k
L, =MZ(—) + nZ(—) - L,<o00 asp — 0.
AT 2 Z\2

This together with the fact that (8 + 8,) < 1/26, implies () < L, /24, for
8, < 8,. This shows that the densities of &*(§,, M, K ) are uniformly bounded.
From (3.4), we have

(3.5) £(6 +6,/27) — (0 + 8,) <#(6 +5,)L, 5F
< f(8)L,8; = O(1)8;
uniformly in £*(8,, M, K).
From Proposition 1 and (3.5),

A, < 0(1)8}o(8,) < o(84*1)
n—(k+1)/(1+2k)(10g n)l/k if & >
n=E+0/2(log n) ¥R if p <

=o(n"12). O

O~ o=
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LEMMA 2. Under the assumptions of Lemma 1, let f, be any unimodal
density function which is identical with f(x) outside I, = (6 — 8,,0 + 8,), and
let F.* denote the distribution function of f,. Then

(36) sup | F#(x) — F(x)| = o(n~1/2)
uniformly in £*(8,, M, K ).

Proor. It suffices to show that
sup | F,¥(x) — F(x)| = o(n™1/?)

xe€l,
uniformly in &*(8,, M, K). F,* unimodal implies that f(x)> f(6 +4,) if
x € I,. Since F¥ is a d.f,,

[ p ey de = 10 £ 8,)28, = [*7f(2) dt — 28,86 £ 8,) < A,;
93, 05,

A, is defined as in (3.1). Therefore, for x € I,,

fox_sfn(t) dt - f:_sf(t) dt’

IFn*(x) - F(x)l =

s’j;x_sfn(t) dt— (x— 6 +8)6 +8,)

+|f" F(£) — (x — 6+ 8,)K0 +8,)
95,

<2A,.
The lemma thus follows from Lemma 1. O
LeMMA 3. Suppose 6,€1I,. Letf, F* beas in Lemma 2 with the mode of f,
at 0,. Then
(3.7) sup|E,(x) — F¥(x)| < sup|F(x) — FX(x)|.
x x

PrROOF. Recall that E, is constructed in Section 2. Since F,, F* are both
convex if x < 6, and both concave if x > 6,, the lemma follows directly from

Marshall’s lemma (1970). O

PrOOF OF THEOREM 2.2. From (3.6) and (3.7),
sup | F,(x) — F(x)| < sup|F,(x) = FX(x)| + sup| F¥(x) — F(x)]

IA

sup|F,(x) — F¥(x)| + 0,(n"'/?)

IA

sup |F,(x) — F(x)| + 0,(n™"?)

uniformly in £*(8,, M, K).
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The first part of the theorem follows immediately from the above fact.

To show F, is a.m. relative to the family {&*(8,, M, K )}, it suffices to show
that F), is a.m. relative to the family {&*(d,, M, K)}. If we can show that F, is
a.m. (in the sense of (2.1)) among the collection &*(M,2) =U; . (6 *(8y, M,2)
for some M > 0, then this, together with the fact that lim; . (&*(8,, M,2) =
&*(M, 2), will imply

. SupFe&*(BO,M,2)EFl(n1/2(¢ - F))
(3.8) sup lim - 2
8 no® lnfbsupFE$*(80,M,2)EF{fl[n (y - F)] b(x(n)’ dy)}

So, it suffices to show F,, is a.m. among the collection &*(M,2).

To see this, we claim that @, the standard normal d.f. is again a radial cluster
point in the family &*(M,2). Since ¢(x) = (1/ V27 Ye /2 satisfies (2.7) with
Yo=Y=1/ V27, we have ® € E*(8y, M,2) C £*(M,2) for some proper §, and
M. For any h € H, (defined in the beginning of this section), it is easy to check
that ¢(x; n”2h) € £*(8*, M,2) for some §* > 0. Since U®_,H, is dense in
H(®), this shows that ® is a radial cluster point in &*(M,2), and the theorem
thus follows. O
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