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ASYMPTOTIC OPTIMALITY OF C;, AND GENERALIZED
CROSS-VALIDATION IN RIDGE REGRESSION WITH
APPLICATION TO SPLINE SMOOTHING'

By KER-CHAU LI

University of California, Los Angeles

The asymptotic optimality of Mallows’ C; and generalized cross-valida-
tion is demonstrated in the setting of ridge regression. An application is made
to spline smoothing in nonparametric regression. A counterexample is given to
help understand why sometimes GCV may not be asymptotically optimal.
The coefficient of variation for the eigenvalues of the information matrix
must be large in order to guarantee the optimality of GCV. The proof is based
on the connection between GCV and Stein’s unbiased risk estimate.

1. Introduction. Suppose that we observe n independent normal random
variables y, i=1,2,...,n, each associated with p, explanatory variables,
X5 X,95- 5 X,,, . In ridge regression, we may estimate the mean p, = (g, ..., p,)’
of y, = (Y1,--+s ¥) by i (h) = X (XX, + hI)"'X,y, where X, is the n X p,
design matrix (x,;). The choice of ridge parameter A is crucial and many
procedures have been proposed. Two of them, namely C, (Mallows, 1973) and
GCV (Craven and Wahba, 1979), will be studied here.

Let o2 be the common variance of y, and put M, (h) = X(X.X, + hl)"'X,.
C,, selects A by minimizing

(1.1) n7 Yy, = faR)|” + 20%n7 1t M (h).

Subtracting o2, (1.1) gives an unbiased estimate of the risk R,(h) =
En~'u, — (k)% If 02 is unknown, then it has to be replaced by an estimate
62%. Thus the stability of 2 may influence the performance of C,. Generalized
cross-validation (GCV) does not need o2. It selects A by minimizing

nly, — ()]
(1- n_ltrMn(h))Z
Let h u and 720 denote the A selected by C; and GCV, respectively. Put

L,(h) = n"Yp, — fi,(h)||%. We shall show that they are asymptotically optimal
(a.0.) in the sense that as n — oo,

L,(h)
—_—_—
inf,,, oL,(h)

(1.2)

(1.3) 1, in probability,

a

Where 71 = 72M’ hG'
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The following is the only condition needed for C; to be a.o:

(A1) ,tr;fOan(h) — 00.

There are no explicit restrictions on the sequence of design matrices X,. But an
implicit one more or less implied by (A.1) is that p, tends to oo as n — co.
Without (A.1), it seems that no selection procedure can be a.o.; otherwise the
resulting estimates may possess unattainably small risk.

The result for GCV requires, in addition to (A.1), a certain condition on the
eigenvalues A, > A, > --- = A, = 0 of the information matrix X, X,,. Roughly
speaking, the coefﬁment of varlatlon for the A,’s should tend to 1nﬁn1ty as
n — oo (see (A.2) of Section 3) and hence make the problem ill-posed. We also
provide an example to show that if the spread of these eigenvalues does not tend
to infinity, then GCV may not be a.o.

As an application, we consider the spline smoothing problem. Suppose u, =
f(x,), with the unknown function f € Wi[0,1] = {f: f has absolutely continu-
ous derivatives, f’,..., f* 1 and [}f*Y(x)?dx < w0} and x; €[0,1]. The
smoothing spline estlmate f; » of f is the solution of

min 1Y (- f(x))’ +R[fO() dr.

fe Wz"[0,1] i=1

It is well known that [i,(A) = ( fAh(xl), ..., [x(x,)) takes the form of ridge
regression with the first k& eigenvalues being + oo (see, e.g., Li (1985)). We shall
show that C, and GCV are both a.o. if f is not a polynomial of degree £ — 1 or
less.

For spline smoothing, there have been some results in the literature that are
related to the a.o. property of GCV, mostly due to Wahba and her collaborators.
Let A be the minimizer of the expectation of (1.2) over 4 > 0. It was shown in
Craven and Wahba (1979) that

(1.4) R (hg)/infR,(h) > 1.

See Wahba (1985) for more information. However, it is clear that the results of
this type do not necessarily lead to the a.o. of (1.3). For example, if f is a
polynomial of degree £ — 1, then (1.3) cannot hold for any selection procedure;
but it is easy to see that (1.4) holds. The big gap between (1.3) and (1.4) was
closed significantly by Speckman (1982) who established (1.3) under the assump-
tion that ila is selected by minimizing (1.2) over A in some closed interval that
converges to 0 in some fashion as n tends to infinity. Speckman’s result was
derived (by Cox (1983)) without the normality assumption. Erdal (1983) and
Golub, Heath, and Wahba (1979) discussed the properties of GCV for general
ridge regression.

Our method in proving (1.3) for GCV is based on the connection between
Stein’s unbiased risk estimate (Stein, 1981) and GCV. This connection has been
used to demonstrate the consistency of GCV in many settings (Li, 1985). The a.o.
of C;, and GCV in the discrete index set case, such as model-selection or nearest
neighbor nonparametric regression, was established in Li (1984).
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2. Mallows’ C;. In this section we shall prove the following theorem.
THEOREM 1. Under (A.1), (1.3) holds for h = h,,.

We shall assume that X, is diagonal, i.e., x,; = 0 for i # j and x,, = N/*. This
is without loss of generality because after a suitable orthogonal transformation
we can reduce any X, to a diagonal form without changing the error distribution
(due to normality). Now M,(h) is simply an n X n diagonal matrix with
A, (A + X))~ ! as the ith diagonal element. Here we put A, = 0 for i > p,. Note
that A, may depend on n.

Let e, = (e, e5,...,€,) =y, — b, and A, (h) = I — M,(h). Clearly,

n Yy, = (1) + 2070t M, (B)
= n7lelI* + Ly(h) + 207 (e,, A,(R)w,)
+2n Y o2tr M (k) — (e,, M,(h)e,)).
Therefore, it is enough to show that in probability,

(2.1) supln_1<e,,, A, (h)p,) I/Rn(h) -0,
h>0
(22)  supn|o®tr M,(h) - (e, M,(R)e,)|/R, (k) ~ 0,
h>0
and
(2.3) sup |L,(h)/R,(h) — 1| 0.
h>=0

The following useful lemma is recalled from Li (1985). It first appeared in
Speckman (1982, 1985).

LEMMA 2.1. Assume that W, i = 1,2,..., n, are independent random vari-
ables with means 0 and finite second moments. Then for any 8§ > 0, we have

n

n 2
P{ sup Y Wi > 8} < 6“2a2E( Y W,) .
O<¢ < <q

<c,<al|i=1 i=1

If the W.’s have finite fourth moments, then

1=1

n n 4
P{ sup Y e W= 8} < 8“4a4E( Y W{) .
0<c¢ <+ <cp<ali=1

We begin to prove (2.1). Put B,(h) = " u*(A, + h)~". Since nR (h) >
h%B,(h), it is enough to show that
Tew (A, +h) / B,(h)"/%(nR,(h))"*~ 0.
1=1
For each n, let I\(j) = {1,2,..., j} and I(j) = {j + 1,..., n}. Define 7 to be

the largest i such that A; # 0. Put @, = inf, _ \nR (k) and V(h) = X7 N%(A, +
h)~2. Clearly (2.1’) will hold if we can show that for any natural number %4 and

(2.1) sup
h>0




1104 K.-C. LI
forl=1,2,

Z elp’i(xl + h)—l
teli(k)

(2.4) sup
h>A,

/ B,(h)"’QY?~ 0,

and that for any ¢ > 0, there exist constants c,(¢), cy(¢) such that

P{ sup  sup | X ep(A,+h)7 /Bn(h)‘/“‘v,,(h)”% }
(2.5) Jj=k,..., n A a<hsA hiel())
[ee]
= Cl(e) Zj_z’
j=k
for[=1,2.

PROOF OF (2.4). When [ = 1, the left side of (2.4) does not exceed
k
Q,'/* max le| X sup [f(A, + k)" /B(k)"" < @;"/* max |e |k,
1<i<k i=1 A=A, I<i<k

which tends to 0 because of (A.1), as desired.
When [ = 2, it suffices to show that for any £ > 0,

/ hB,(h)'QY*> e} - 0.
Since h2B,(h) is nondecreasing in A, the left side of (2.6) does not exceed
Z ei""th(xt + h)_l

P{ sup A.B,(A\,)?QY2> e}
A=A, l1=k+1

< |

+ P{ sup
h>=X,

n

Y emh(A+h)

i=k+1

(2.6) P{ sup

>\,

n

n

Y e (A + >‘/e)_l

1=k+1

> éeAan(xk)”Q:/?}

n

Y oewi(RA+R) T =AM 2,7

i=k+1

> %SMBn(M)‘”Ql/Z}-

By Chebyshev’s inequality, the first term of the last expression does not exceed

n

2

(%EB;/{‘)(}‘k)QL/Z)—zE( 2 em(A, + Ak)_l) <4e7%Q,'s* - 0,
i=k+1

because of (A.1). The second term is also no greater than 4¢7%Q, 6% due to

Lemma 2.1. To see this, observe that

RO+ 1) =N+ 0) T = (L +A) T (= AN+ R) T
and that for i > k+ 1 and A > XA, (h — A,)A (A, + h)"! is nonincreasing in i
and is no greater than A,. Now set W, =e,u (A;+A,)"}, a=A,, and § =
(e/2)A,B,(A,)/2Q"/? in Lemma 2.1 to yield the desired bound. Therefore (2.4) is
proved. O
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PRrOOF OF (2.5). For ! =1, since B,(h) and V, (&) are both nonincreasing in
h, the left side of (2.5) does not exceed
12y, vz
(8.0 w0) "

n J
> P Zei#i()\i“’h)_l
- 1B,(N,) 7 w}

i=1

sup
A i<hsA,

Jj=k

n J
s P{ 5 em(h+r)"
i=1

Jj=k

7 J
+ EP{ sup | e +h) = (A +1))7)
J=Fk Aash<sA =1

> 1eB,(A, )‘/Zvn(xj)‘/z}.
By Chebyshev’s inequality, the first term of the last expression does not exceed

(2.7)

(éeBn(kj)l/an(%j)‘/z)_4E( 5 ean(h+ »)“)4.

i=1

~.
s

The second term is also no greater than (2.7). To see this, observe that
A, +R)" = A +A)"" =N+ X)TMA; = h)YA; + B)"' and that for
Aii<h<); and i<j, (A\;— h)A;+ h)"" is nondecreasing in i and is
no greater than 1. Now in Lemma 2.1 set W,=en,(X;+A,)"!, a=1, and
8 = 3eB,(X,)'?V(A))'/? to yield the desired bound. Now since

4 2
E( Y eni(A; + Aj)_l) = C( PITHONE }‘j)_2)
i=1 i=1
for some constant C, (2.7) does not exceed 1608“‘2" AZPN 2, Finally, it is
clear that for A; # 0, V,(A;) > TN+ A Dl 2> 1j. Thus (2 5) is established
for I =1.

Turning to the case / = 2, since h”B,(h) is nondecreasing in A, the left side of
(2.5) does not exceed
n
Y P{ sup

J=k A i<hs<A,

n

Y emh(N, +h)

1=j+1

)‘,+1B (>‘j+1)1/2Vn(Aj)l/2 2 8}

n

> ez“'i}\j+l(>‘i + >‘j+l)_

i=j+1

< X P{ ' /)\j+1B( /+1)1/2V(A )1/2 ;’3}
=k

n

Y ew, (h()\ +h)"" J+1(Ai+}‘j+l)_l)

i=j+1

7
+ ) P{ sup
j=k AishsA,

. aex,.ﬂBn(x,+,)‘”v,,<x,>‘/2}.
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As Dbefore, using Chebyshev’s inequality for the first term and Lemma 2.1
for the second term, we may obtain the desired bound. Note that when using
Lemma 2.1, we observe that A(A, + A)™' — A, (A, + A, )7 = (A; +
Aj+1)—1>\t(h - >‘_j—i»l)(>‘z + h)_l and set VVL = eiﬂ‘t(xi + }\j+l)_1’ a= }\j+1 and
8 = LeX,, 1B, (X;,1)"?V(X))/%. The details are omitted. This completes the
proof of (2.5). Hence (2.1) is established. O

To prove (2.2), it suffices to show that

n

Y (02— e2)A (X, + h) " | / V,(h)*(nR,(h))"* - 0.

1=1

(2.2")  sup
h20

Now compare (2.2’) with (2.1’). By the correspondence of o2 — e? to e,, A, to
., and V, (k)2 to B,(h)"?, it is clear that (2.2") holds by similar arguments.
It remains to establish (2.3). Clearly we need only to prove that

(2.8) sup [ X e A (A, + ) /Bn(h)l/z(an(h))l/Z -0
h>0|:=1
and that
(29)  sup| ¥ (o = )N, +h) / V(1) *(nR,(h))"* ~ 0.
h>0|:=1

The proof of (2.8) will be similar to that of (2.1). First it is enough to show
that for any fixed natural number %, and for / = 1,2,

Z el”lxt(xl + h)_2
el (k)

(2.10) sup
h>)\,

/ B,(h)'*Qy* -0,
and that for any ¢ > 0, there exist constants ¢,(¢) and c,(¢) such that for [ = 1,2,

Y enM (A +h) /B,,(h)l/an(h)l/2 > 8}

eI ()

P sup sup
J=k,..., TzA,+lshsAI

o0
<cfle) X j 2
j=k

PrOOF OF (2.10). For [/ =1, siuce A,/(A, + h) < 1, the proof is exactly the
same as in (2.4). For [ = 2, the analogue of (2.6) is

Y ephr (A, +h)

i=k+1

(2.12) P{ sup
h>X,

/ hB,(h)?QY? > e} - 0.
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Now the left side of (2.12) does not exceed

/)\an(M)l/ZQiz/2 = 8}

Y ephA (A +h)

1=k+1

< rf

+P{ sup
Ap<h

P{ sup

h=A,

n

Z elMlAkAL(Al + }\k)_2

t=k+1

/ ArBa(A ) 7QY2 > }

Y e (RO +R) P = AN+ A7)

i=k+1

> %EAan(Ak)l/zQ}z/z} .

Now by Chebyshev’s inequality and noting that A,/(A, + A,) < 1, the first term
does not exceed 4¢ %@, '0% —> 0. The second term can also be shown to be no
greater than 4¢2Q;, o2 due to Lemma 2.1. Here we observe that A(\, + &) ™% —
AN, + A7 2= (A, + A %A = A)NE — AAL)A, + h)™% and that for
i>k+1and A=A, (h— A, (AN, — A2)(A, + )2 is nondecreasing in i and
is no greater than A,. Thus setting W, = —e;u, A (A, +A,) 2 and a =X, in
Lemma 2.1 we obtain the upper bound 4A%0%L7 ., p2N%(X, +

A.)"*/e?2A%, B (A,)Q,, which is no greater than 402 2Q,' as desired. This
completes the proof of (2.10). O

PROOF OF (2.11). For I = 1, the left side of (2.11) does not exceed

/ B,(\))*V,(A,)" = lff}
\

B,(A,)*V,(A,)"* > %sf.

nN

J
21 el"’l}\i(xi + )\1)_2

|

é et“zxt((}\z + h)_z - (>\z + A/)_z)

=1

™=

+

P sup
k A<k

J

By Chebyshev’s inequality and Lemma 2.1 again, both terms in the above
expression are bounded by some constant times (2.7). Here we observe that

A+ R) 7= (A +A) T = (A + 7)) (A, = h)@A + A+ R)(A, + B)°

and that for i <j and A <A, (A, — A)2A, + A, + A)(A, + k)2 is nonincreas-
ing in i and is not greater than 3. Put W, = e;u, A (A, + A,) "% and a = 3 to yield
the desired bound.
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Turning to the case I = 2, the left side of (2.11) does not exceed

£ ol

+ ) P{ sup
J A,

=k <h<A,

n

Z lA_]-FlA (Az-i->\.1'+1)_2

i=j+1

1/2‘/'2(A -)1/2 >

J

Aj+an(Aj+l)

D =

n j

Y emd (RO +B) = AN+ A ) )

1=j+1

/

)1/2 >

o=

Aj+an()\j+l)1/2Vn(A j

yei)

These two terms are both no greater than (2.7). Here note that W, =
e Ni(A, +A;,)"? and a = \,,, when using Lemma 2.1. This completes the
proof of (2.11). (2.8) is now established. O

Finally, comparing (2.9) with (2.8), we see that the former can be proved in a
similar way. Hence (2.3) is established. The proof of Theorem 1 is now complete.

3. Stein estimates and GCV. Consider the following simplified version of
Stein estimates and the associated unbiased risk estimate,

fin(h) =y, — *tr A,(R)| A (R)y, | *A(R)y,
and
SURE,(h) = 6% — o*(tr A,(h))*/n||A,(%)y,|

where A, (h) =1- M, (h). Clearly ﬁ minimizes SURE (&) over A > 0. Li
(1985) has shown that SURE (%) is a consistent estimate of the true loss

(ha) =n"Yp, = b ﬁG)H essentially without any assumptions on the ma-
trix M,(h) and p,. With (A.1) and other conditions to be given, we may
strengthen this result.

PROPOSITION 3.1. Under (A.1), for any h, random or not, such that

(3.1) (n~Yr M, (h))’/n ‘tr M2(h) - 0

and

(32) n ARy - o,

we have

(3.3) [SURE,(h) — L,(h) = n7 Ve, |I? + a2|/L,(h) - 0
and

(3.4) 5 (B) = (W) [F[L(R) — 0.



ProoOF. Rewrite the left side of (3.3) as

RIDGE REGRESSION 1109
o%trA,(h) . o(tr A, (R))°

———(e,, A(h)y,) - ————5

nl|A,(2)y, | n||4,(R)y,|

/ L,(h)
NN ARAS

n| A (R)y, "L (R)

— n”'je,||” + o?

< 20

+202trAn(7z)|<e,,, M, (h)e,) — o

2trA (h
———ﬁ - 1)(02 — n"Ye,l1?)
| A,(R)y,]

Now by (2.1)-(2.3) and (3.2), the first two terms of the last expression tend to 0.
To show that the third also converges to 0, it is enough to prove

|o2n_1trA,,(7z) -nl 4, (iz)y,,||2||02 - n_‘||en||2|/Ln(iz) - 0.

Since ||A(h)y,||? = lle.ll” + 2(e,, A (h)p.n> — %«e,, M (h)e,) + L,(h), the first
absolute value factor in the last expression does not exceed

0% = n7Mle,l1?| + L, (k) + 2n7"((e,, A (R)p,)]
+2n_1|<e,,, M,(h)e,) — oztrMn(iz)' +n o%tr M, (h).
Thus by (2.1) and (2.2) again, it remains to show that

L,(h).

(3.5) (0%~ n Ve, l1%)*/L,(h) —> 0
and
(3.6) (n~YrM,(h))|o® = n~Ye,lI?|/L(h) - o.

By the central limit theorem, (A.1), and (2.3), we get (3.5). Finally by (3.5) and
(2.3), (3.6) holds because (n~'tr M, (h))2 < R,(h). Hence we have proved (3.3).
The proof of (3.4) is omitted since it is similar to the proof of (6.7) of Li (1984)
(see also Li and Hwang (1984) for the case where h is nonrandom). O

(3.2) is equivalent to the consistency of ﬁ.n(il), ie.,
(3.7) L,(h) - o.

This condition may imply (3.1) if we assume the following condition on the
asymptotic distribution of the eigenvalues A :

For any m such that m/n — 0, we have

(42 (i 5 Al)z 1y e

i=m+1 i=m+1

LEMMA 3.1. Under (A1) and (A.2), (3.7) implies (3.1).
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PROOF. Define /v = i if A,,, < & < A,. Clearly we have

2_1n‘1[ﬁt + Y }\l,/)\l,;,] <n 'Y AN+ R)])!

(38) t=m+1 1=1 i

Sn‘l[ﬁz+ > A’,/)\’m]
1=m+1

for [ = 1,2. From this it follows that (3.1) is equivalent to

(3.9) {n_l(ﬁﬁ\ﬁ,+ Zn: }\i)r/ ‘1(‘>\2 + Z }\2)—>0

On the other hand due to (2.3), (3.7) implies that R (h) — 0, which in turn
implies n~'tr M, 2(h) — 0. Hence by (3.8), m/n — 0. Now it can be seen that
(3.9) follows from (A.2). This completes the proof of Lemma 3.1. O

We are ready to prove the following main result of this section.

THEOREM 2. Assume that (A.1), (A.2), and the following condition hold:
A3 inf L (h 0.
(A3) infL,(h) >
Then hg is a.o. Moreover L,(hg)/L,(hg) — 1.

Proor. Let A* be the minimizer of the left side of (A.3). Then by Lemma 3.1
and Proposition 3.1, we have
(3.10) SURE,(h*) — n"Ye,l|2 + 62 = L,(2*)(1 + 0,(1)).
On the other hand, by Theorem 5.4 of Li (1985), (3.7) holds for % = iLG.
Therefore, we also have
(3.11) SURE,(hg) — n7Yle,lI? + 62 = L,(hg)(1 + 0,(1)).

Since SURE,,(izG) < SURE, (£*), Theorem 2 is now proved by comparing (3.10)
with (3.11). O

We may apply Theorem 2 to the problem of spline smoothing. For instance, if
x,’s are equispaced, then Craven and Wahba (1979) showed that A; = ci~2*, for
some constant c. Now

1~ n—m
_ Z}\izc n—2kf —2kdx~c(2k_1) L~y —2k+1

nz=m n m/n
and
1 2 n—m
— Y AM=c¢c n““‘f “thdy = c(4k — 1) 'nTim 4L
noim n 0

Hence (A.2) holds. (A.3) is guaranteed by the existence of a consistent estimate of
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f. (A.1) will be satisfied unless f is a polynomial of degree 2 — 1 or less. Thus we
have

COROLLARY. For the problem of spline smoothing, if f is not a polynomial of
degree k — 1 or less, and x;’s are equispaced, then h is a.o.

Finally we give an example to show that violating (A.2) may incur the
inefficiency of A.

ExAMPLE. Let

A =Ap= o =Xy = n'/?,
Aarey = =Anp =2
An/2+1= =A,=1,
Py = 0 = ppgey=nt/d
and
Binrye = 00 = p,=0.

For any h such that h > « and h < n!'/?, we have nR,(h) = ¢’ (n'/? +
2.5nh~2) + h% Thus (A.1) and (A.3) hold. In fact, [inf, (nR, (h)]/n'/*(¢% +
10/%26) - 1, as n —> oo and the minimizer A* = (2.5n62)!/%. On the other hand,
(1.2) can be written as

[n'/%] n/2 n
(3.12) C,D Y y>+CD Y eX+C,D Y e2
=1 [nY2]+1 n/2+1

where
C,=n(h+n2)7% C=nh+2)77% C=nh+1)7%
and
D= (n"2(h+n?) 7"+ (3n—n"2)(h+2)"" + in(h + 1)‘1)_2.
Now using Taylor’s expansion, for & such that A > c and h < n!/2, we have
C,D = n"%h% + o(n"%h?),
C,D = n_l(l —h '+ IR+ 2072+ o(n7 2 4 h‘z)),

and
CD=n"'(1+h'-3r 24202+ 0(h" 2+ n"1/2)).
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Substituting into (3.12), we obtain the leading terms

n\/2 n/2 n n n/2
YRR £ SRS ] B D op
=1 nl/? n/2 n/2 nt/2
12 1 1z
+l=Ye2|Q1+2n" V) =n" A2+ —h %2+ | — ) e2|(1 +2n"1/2).
n /2 4 nis2

Thus %, = (4~ 'ne?)'/%. Compared with h*, we see that h¢ is not a.o. Note that
the condition (5.6) of Li (1985) is satisfied and hence 4 is consistent.
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