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VERY WEAK EXPANSIONS FOR SEQUENTIAL
CONFIDENCE LEVELS!

BY MicHAEL WOODROOFE
University of Michigan

Asymptotic expansions are derived for a class of averages of the coverage
probabilities for some sequential confidence bounds, when the data consist of
i.i.d. observations from a one-parameter exponential family. These expansions
show the effect of the optional stopping on the coverage probabilities quite
clearly and provide a method for changing the confidence limits to reduce this
effect.

1. Introduction. Let X, X,,... denote i.i.d. random variables whose com-
mon distribution function F, depends on an unknown parameter w € 2. Suppose
that each F, has a finite mean § = 6(w) and a finite positive variance 62 = ¢%(w),
and consider the problem of setting confidence bounds for §. For each integer
n>1let =X, =(X,+---+X,)/n; and let 62 =6%X,,...,X,), n>1,
denote a consistent sequence of positive estimators of o2 If n is a large,
nonrandom sample size and if X,,..., X, are observed, then approximate con-
fidence bounds may be determined from the approximate normality of the
pivotal quantity vVn (9,, — 8)/4, in a well-known manner; and the approximations
may be refined in some cases by using Edgeworth expansions for the distribution
of yn (8, — 6)/8,, as in Bhattacharya and Ghosh (1978) and Hall (1983).

Now suppose that a sequential sample is taken; that is, suppose that the fixed
sample size n is replaced by a stopping time ¢ = #( X, X,,...); and consider the
problem of setting approximate confidence bounds for § when X,,..., X, are
observed. This problem arises, in particular, when estimates are required follow-
ing a sequential test, as in Siegmund (1978,1980). Under modest conditions,
developed by Anscombe (1952), Vt (6, — 8)/6, may still be approximately normal,
so that the (first-order) approximation to its distribution is unaffected by the
optional stopping. Of course, the exact distribution of V¢ (Q — 8)/6, is affected by
the optional stopping, but the effect disappears in the approximation. Siegmund
(1978) expressed dissatisfaction with such approximations in a special case and
proposed a (fairly complicated) alternative.

Here some very weak asymptotic expansions are determined for the distribu-
tion of V£ (8, — 8)/8, and the coverage probabilities of some associated confidence
bounds, in the case that F,, « € Q, is a one-parameter exponential family. When
compared to the asymptotic expansions for fixed sample sizes, these expansions
allow one to determine the primary effect of the optional stopping on the

Received October 1984; revised November 1985.

'Research supported by the National Science Foundation under Grant No. DMS-8413452,

AMS 1980 subject classification. 62L12.

Key words and phrases. Sequential confidence bounds, average coverage probabilities, posterior
distributions, asymptotic expansions, estimation following sequential testing.

1049

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |24

The Annals of Statistics. MIKOIS ®
Www.jstor.org



1050 M. WOODROOFE

distribution of V¢ (9, — 8)/6, in large samples. They also provide a method for
correcting confidence bounds for the effect of optional stopping and other effects,
such as skewness.

The expansions derived here are very weak in the following sense: instead of
the coverage probability at a fixed but arbitrary w, a collection of average
coverage probabilities over w in a neighborhood of a fixed but arbitrary w, are
considered.

The rationale for considering such averages is briefly as follows: average
coverage probabilities are much simpler and give a better picture of the con-
fidence level near a given w, than does the value at w,; and, in repeated
applications of any statistical procedure, the frequentist scenario, parameters
may vary too. These points are developed in Section 5.

After some preliminaries in Section 2, the main result is presented in Section 3
and illustrated by examples in Section 4. Asymptotic expansions for posterior
distributions are reviewed in Section 6 and used to prove the main result in
Section 7. A refinement is developed in Sections 8 and 9.

There does not appear to be a great deal known about asymptotic expansions
for coverage probabilities in the sequential case. Anscombe (1953) and Woodroofe
(1977) treat a special case. There is current work by Keener (1984), Takahashi
(1985), and Woodroofe and Keener (1985). Landers and Rogge (1976) develop
bounds on the error of normal approximation for randomly stopped sums. None
of these authors considers average coverage probabilities, however.

Average coverage probabilities have been considered by Stein (1981), who
outlined a program for comparing the unconditional coverage probabilities which
result from the use of different prior distributions. Many of the results presented
here are in formal agreement with those in Section 2 of Stein’s paper. Stein’s
approach is heuristic, and the application to sequential analysis is not considered.

Woodroofe (1985) computes average risks for sequential point estimation,
using different methods.

2. Preliminaries. Let  dencte a nondegenerate subinterval of (— 0, o0)
and let F,, w € {, denote a nondegenerate, one-parameter exponential family
with natural parameter space Q; that is, suppose
(1) F,(dx) = exp[wx — ¢(w)] A(dx)
for —o0 < x < o0 and w € Q for some nondegenerate, sigma-finite measure A on
the Borel sets of (— 00, 00) and that @ consists of all w € (— o0, 00) for which
[®.e“*A(dx) < co. Then the function ¢ is strictly convex and real analytic on
the interior Q° = int(Q); and the mean and variance of F, are
(2) 6=v() and o =y/(w)
for w € Q°, where ’ denotes differentiation. See, for example, Lehmann (1959,
Section 2.7).

Next, let X, X,,... be ii.d. random variables with common distribution F,
under of probability measure P, for some unknown w € ©°. It is assumed that
P, w e Q°, are defined on a common probability space (%, #) and that the
mapping from w into P (B) is Borel measurable (in ) for all B € 4.
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Write Q° = (w, @), where —o0 < w < @ < c0; let @ = [w, ®] denote the
closure of ©2° in[— o0, 00]; and let ® = ¢/(2°) = (4, 0), where —o0 < 0 < 0 < o0.
Observe that ¢’ is strictly i mcreasmg on °, since 02 > 0 there. Let 0 = X, for
n > 1, as_above, and define &,, n > 1, as follows: if 0 < 6, then &, = w; if
0<0 < @, then Y/(&,) =6, and1f0 >0, thenw—w Thus, &, maybean
extended valued random varlable for each n > 1. When 0 € 0, however, &, is
the M.L.E. of w. Next, let £,, n> 1, be an increasing sequence of compact
subintervals of ° for wh1ch U £, = Q ; let 0,, n > 1, be positive continuous
functions on Q for which o? = 1[/" on &, for each n > 1; and let 6, = 0,(&,) for
n > 1.Thus, 6, n > 1,is an asymptotically efficient sequence of positive estima-
tors of o.

Let 2, denote the sigma-algebra generated by X, ..., X, for each n > 1; and
let t,, @ > 1, denote a family of stopping times w.r.t. 9,, n > 1, which are
almost surely finite w.r.t. P, for all w € Q°. It is assumed throughout that ¢,
a > 1, satisfy the following two conditions: there is a continuous function k on
Q° for which

(3) lim E,

a— oo

t__ K(w) =

a

for a.e. w € 2°; and for every compact £, C 2°, there is an n = n({,) > 0 for
which

(4) lim a”f Plt,<an}dw=0
a— oo Q
for p = § in Theorem 1 and p =1 in Theorem 2. An additional condition is

imposed in Theorem 2.

Now consider the problem of setting approximate confidence bounds for @
when X,,..., X, are observed. (Here and below ¢ is written for ¢, to avoid
second-order subscripts.) Let y denote the desired confidence coefficient, and let ¢
denote the yth quantile of the standard normal distribution ®; thatis, 0 <y <1
and ®(c) =y. Let b,, n>1, denote a sequence of continuous (real valued)
functions on @ and define ¢, and £, by

1
(5) cn=c+ﬁbn(&)n)
and
. 1
g, = [0n - —‘/;—cnon, 0| N6

for n = 1. The confidence intervals considered are of the form £, for appropriate
sequences b,, n > 1. The confidence curves of such intervals are defined by

Yo(w) = P{0 €5} = P{Vt(8,- 6)/8,< c,)

for w € Q° and a = 1. As noted in Section 5, the behavior of y,(w), @ > 1, may
be erratic, even in simple cases; but their averages are much better behaved. If ¢
is a density on Q°, then the average coverage probability under ¢ is defined for
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a>1by
(6) 7a(8) = fg Yo(@)E(w) do.

Then

7«:(&) = Pﬁ{‘/Z(ot - 0)/6t < ct}’
where P*¢ denotes probability in the Bayesian model in which « has prior density
¢ and X, X,,... are conditionally i.i.d. with common distribution F,, given w.
Here P* is defined on the space £ X &, and the random variables X,, X,,..., t,,
a > 1, etc., are injected into the larger space.

The focus here is on confidence bounds, as opposed to intervals, because
expansions for intervals may be easily derived from those for bounds. In fact,
expansions for intervals may be substantially simpler, since some of the bias
terms may cancel.

3. Second-order expansions. It is assumed throughout the paper that the
prior density £ is of the following form: for some interger ¢ > 2 and w, < w; in
Qe,

(7) £(w) = (0 = w)i (0, — )i £o(w) forw e,

where £, is positive and ¢ times continuously differentiable on £° and (x), =
max(x,0) for —oo0 < x < o0.

THEOREM 1. Suppose that t,, a > 1, satisfy (3) and (4) and that b, = b for
all n > 1, where b is piecewise continuous on Q°. Then

1 _ 1

(8) Ya(£) =Y+ﬁ¢(0)r1(‘f) +0(ﬁ) asa — oo,
where

Ti(e) = [ [VibE + o™it + 4(c* = DVigat] do,

vy =14¢" /03 and vy = ®(c), for all ¢ of the form (7).
Moreover, (8) is valid, if b,, n > 1, satisfy (20), (21), and (22) below.

It is easy to describe the proof of Theorem 1. Let 2, denote the sigma-algebra
generated by X,,..., X,. Then
‘7a($) = Pg{ﬁ(ﬂ - 9t)/6t = _ct}

- / P{Vt(6 - 8,)/6,> —c|D,} dPt

for all @ > 1. Since posterior distributions are unaffected by optional stopping,
the posterior probability may be expanded about a normal limit, using the (fixed
sample size) results of Johnson (1967, 1970); and the expansion may be integrated
term by term, as in Ghosh, Sinha, and Joshi (1982). The expansion (8) results
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after some algebra and simple analysis. The details are presented in Sections 6
and 7.

Under additional modest conditions, the coefficient of 1/ Va simplifies, and it
is possible to make it vanish for all £ by a proper choice of b.

COROLLARY 1. If Vk is absolutely continuous on (all compact subsets of ) 2°,
then (8) holds with

(9) T(é) = [Tu(e)é(w) do,
where
T,=Vkb—o"'(Vk) + L1+ 2¢2)Vi y,.
PrROOF. If Yk is absolutely continuous, then
[o Wt do= = [(o7Ni)Edo = [ [1kp; — o7 (Vx)]§ de
Q Q Q
for ¢ of the form (7). The corollary now follows from simple algebra. O

COROLLARY 2. If Vk is absolutely continuous and if Vb= o0"'(/k) —
s+ 2¢%)Wk Yy a.e., then (§) =y + o(1/ Va) as a = oo for & of the form (7).

Corollary 2 is obvious.

Corollary 1 may be paraphrased by asserting that vy, =7y + ¢(c)I',/ Va +
o(1/Va) as a — o, very weakly (after integration w.r.t. a large class of densi-
ties). In particular, when b, = 0 for all n > 1, Corollary 1 gives a very weak
expansion for the distribution function of vz (8, — 6)/4,,

P{M < } = 0(e) = ()0 () = 41+ 26w
(10) ‘

+o0

1
a3
as a — oo, very weakly. Relation (10) need not hold for any fixed w € Q°,
however; see Section 5.

Relation (10) allows a simple determination of the primary effect of optional
stopping on the distribution of V¢ (9, — 0)/6, for large a. Indeed, if ¢,, a > 1, are
nonrandom sample sizes, say ¢, = a for a > 1, then (10) holds with x = 1 and
(Vx ) = 0. The difference between (10) with  and (10) with k = 1 arises from the
optional stopping.

When ¢, = a, a > 1, and the distributions F,, v € Q, are sufficiently smooth,
(10) holds for all w € °, with k = 1; and letting b= (1 + 2¢%)y; yields
Y (w) =y + o1/ Va) as a = o for all w € Q°. See Hall (1983). Discrete cases,
such as the binomial, Poisson, and negative binomial distributions, are not
considered in Hall (1983), but are covered by Theorem 1.
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4. Examples. In this section, Theorem 1 is applied to set confidence bounds
following truncated sequential probability ratio tests (S.P.R.T.) and repeated
significance tests (R.S.T.). To simplify the notation it is assumed throughout that
0 € ° and that ¢ has been so normalized that ¥/(0) = 0 = {/(0).

ExampLE 1 (SP.R.T). Let 8 <0 <é&™" denote a conjugate pair—that is,
Y(87) = ¢(8"); and consider the problem of testing w < 8~ vs. w > §". Then the
sequence of likelihood ratios of 8* to 6~ is L, = exp(8S,), n > 1, where 8 =
8*—8 and S, =X, + -+ +X,, n > 1. If ¢ > 0, then

(11) t,=inf{n >1:|S,| > aorn > a/e}

is the stopping time of a truncated S.P.R.T. of w = 8§~ vs. w = 8* foreach a > 1.
It is clear that (3) holds with k(w) = max{e, |0|}; and it is easily verified that (4)
holds with p = 1. Thus, Theorem 1 is applicable.

There is natural interest in the (limiting) function b which makes the coeffi-
cient of 1/Va vanish in (9)—namely, b, = (k) /oVx — +(1 + 2c?)y,. This
function is undefined and discontinuous where 8 = +¢; and it may be desirable
to smooth this discontinuity with an appropriate sequence b,, n > 1.

ExaMpPLE 2 (R.S.T). Now consider the problem of testing w = 0. Let A, =
supg[wS, — nY(w)], n > 1, denote the log likelihood ratio statistics; and let
0 <8, <8, < oo.Then

t,=inf{n >a/8;: A,>aorn>a/d}

defines the stopping time of an R.S.T. for each a > 1. It is easily seen that (3)
holds with k(w) = min{§,,max[d,, wd — Y(w)]} for w € 2°; and (4) holds for
any p > 0, since t, > a/8, for a > 1. Thus, Theorem 1 is again applicable.

As above, there is interest in the function b, = (Vk)'/ovk — 1(1 + 2c%)y¢,
of Corollary 2. This function is undefined and possibly discontinuous where
w8 — Y(w) = §, or §,, but is bounded on compact @, C £2°. It may be smoothed
by an appropriate sequence b,, n > 1.

Similarly, Theorem 1 may be applied to set confidence bounds following tests
which use Anderson’s (1960) triangular region or Schwarz’s (1962) asymptotic
shapes.

In order to apply Theorem 1 and its corollaries to the untruncated S.P.R.T.,
the more general conditions (20), (21), and (22) (below) must be used. See
Example 3, below.

5. Average vs. real confidence. Asymptotic expansions for the confidence
curves y,, a > 1, appear to be more elusive than the simple expansions of
Theorems 1 and 2 (below). Woodroofe and Keener (1985) give some; but these
exploit the form of the stopping times involved. The difficulty in obtaining
expansions for the distributions of randomly stopped sums is noted by Siegmund
(1985, Section 1.6), in particular.

Even where obtainable, asymptotic expansions for y, may be more com-
plicated and less usable than those for ¥,. For simplicity, this comparison is



SEQUENTIAL CONFIDENCE LEVELS 1055

developed in the context of a symmetric S.P.R.T. about a normal mean. The
qualitative points made apply more generally, however.

Suppose that X, X,,... are ii.d. normally distributed random variables with
unknown mean 6, — o < 6 < co, and unit variance, in which case w = 4 in (1)
and (2). Then, for the untruncated S.P.R.T. [(11) with & = 0], it is possible to
derive an asymptotic expansion for y, as a — . Let

u(,r) = P{S, > r,forall k > 1}

for — o0 < r < o0 and 6 > 0. Further, let —c0 < ¢ < o0, and let N = N(6, a, ¢)
and f = f(6, a,c) denote the integral and fractional parts of the quantity
a/0 + c?/20% — (c/20%)/(4af + c*) for a > 1 and 6 > 0. Then by Theorem 2
of Woodroofe and Keener (1985)

B{VE(D, ) s ¢) = 0(e) = () [*_[1 = u(6,r)] dr
(12)

. o = % (7 w@ r)dr|+of =
+ ‘qu(c)[ f k=1f(k_“€u( ,7) r] o\ 7§ )
as a — oo for —o00 < ¢ < o0 and 4 > 0.

Observe that the fractional part in (12) oscillates wildly as @ — 0. In view of
this, changing ¢ slightly in order to make the coefficient of 1/ VN disappear in
(12) appears to be a delicate question with a possibly oscillatory answer. By
contrast, the simple approximation (10) holds for all § > 0, with «(w) = |8|; and
Corollary 2 provides a method to change c¢ slightly in order to make the
coefficient of 1/ Va vanish. Thus, the average confidence levels Yoo @ =1, are
much simpler than the confidence curves y,, a > 1.

The oscillatory behavior of the fractional part f is lost when v, is replaced by
¥.- This may be an advantage in some cases. For example, if a list of values of
coverage probabilities on a grid of f-values is desired, then the average coverage
probability near points on the grid may give a better picture of overall behavior
than the value at points on the grid, precisely because the oscillations have been
smoothed.

In addition to simplicity, average confidence levels may provide a better
measure of frequentist properties than do confidence curves. To see how, suppose
that an experiment produces an outcome Y, possibly a vector, from which a
confidence set C(Y) for an unknown parameter o is to be constructed; and let
Y(w) = P{w € C(Y)} denote the coverage probability when w is the state of
nature. Suppose now that the experiment is repeated N times with parameters w,
and outcomes Y,, i = 1,..., N. If it is assumed that the parameters are drawn
independently from an unknown distribution G, then the expected relative
frequency of coverage is

¥(G) = fﬂv(w)G(dw);

and this is also a first approximation to the actual frequency of coverage by the
law of large numbers. Thus having good frequentist properties requires ¥(G) to
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be large for all G of interest. Requiring ¥(G) > y for all G is equivalent to
requiring y(w) > vy for all w, the conventional formulation. However, if the G’s
of interest are all smooth, and if an approximation is allowed to replace the
inequality, then the two conditions may be quite different, as illustrated above.
In such cases, the average confidence levels ¥(G) seem more directly related to
relative frequencies than do the confidence curves.

6. Expansions for posterior distributions. Recall that §{ denotes a den-
sity of the form (7), and 2, = [w,, w,].

Let w* = Vné (w — &,) for n > 1. If g is a bounded measurable function on
(—o0,00), say |g| < 1, and if &, € Q°, then

Efa(w})2,] = €.(8)/%,(1),

where

e LSS R
¢.(8) = fg(z)exp -n{y| &, + Tne - (&,) - s, £l &, + Tne |
for bounded measurable g and 1 denotes the constant function. If &, € Q§, then
it is straightforward to expand ¢ and ¢ in Taylor series about &, and perform
the formal division. To state the result, let ;= ¢V/6% and ¢; =y /¢’ for
J=12,..., where (/) denotes the jth derivative; also, let m; = [®_ z/d®(z)
denote the jth moment of the standard normal distribution and let @ (g) =
[Z.(27 — m;)g(z) d®(z) for bounded measurable g and j > 1. If w, < &, < w,,
then

Bele(anlz,] - [ gdv+ (@60, - 1Qu)¥(a,)]
(13) o

1
+ ;R (r)z’
where R? is a remainder term; and, if ¢ > 3, in (7), then

R) = 1Q5(8)¢:(8,) — §Q.(8)¥s(2,)4(d,) - 21Q4(8)¥4(8,)

(14) A \2 1 1
+ 7]2_Q6(g)¢3( wn) + _‘/TRn’

where R! is another remainder term. See Johnson (1967, 1970).

There is special interest here in the case that g is the indicator of an interval
[—¢, o), where —c0 < ¢ < co. In this case @,(c) is written for @ (g). Letting
¢ = ®’ denote the standard normal density, it is easily verified that @,(c¢) = ¢(¢),
Qx(c) = —cd(c), @x(c) =2+ c*)¢(c), Qu(c) = —(Bc + c*)¢(c), and Qg(c) =
—(15¢ + 5¢® + ¢®)¢(c) for —o0 < ¢ < c0.

The following bounds for R? and R!, n > 1, are adapted from Ghosh, Sinha,
and Joshi (1982). Let A, denote the event

log n logn }

(15) An={w0+7’7—g&>n_ 1__\/7
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for n > 1. Then a careful examination of the Taylor series expansions and formal
division show the existence of constants K, = K,(§¢), depending on £ but not on
n, g, or 9, (if |g| < 1), for which

(16) |RLI, | < K, [(8, = w0) "7+ (0, — 8,) 7]

for n > 2 and i = 0, 1, where I, denotes the indicator of an event A.

LEMMA 1. Let ¢ and A,, n > 1, be as in (7) and (15) with q > 2. Then: (i)

o logn\9*!
p#¢ Ayl < K| —
(kL=Jn k) ( ‘/'7 )

for all n > 2 for some constant K, which is independent of n; and (ii)

Ef{ sup [(&n — wo) T+ (w; — ‘:’n):q]IA,,} < .

n>2

Proor. Let Q,=[w,, w,] denote the support of £ Then an easy exercise
using Bernstein’s inequality and simple properties of {’ show the existence of
g0 = £0(2g) > 0, 8§, = 8,(Ry) > 0,and 0 < K, = K () < oo for which

(17) P{|&, — @] = &} < Kgexp[—nde?]

forall0 < e <e, € Qy,and n > 1. Let &, = logn/ Vn for n > 1; and observe
that ¢, is decreasingin n > 9. Let m > 9 be so large that ¢, < ¢, for all n > m.
If n>m and if &, < w, + ¢, for some % > n, then either w < w, + 2¢, or
|&), — w| = ¢, for some & = n. So, for n > m,

Pld, <w,+¢e,3k=>n) < w0+28"£w dw
k ot &

(18) ’
+ [ P16y - 0l = &, 3k = n)é(e) do,
90

which is the order (logn/ Vn)?*' as n - o, by (7) and (17). Inequality (18) and
its dual (at w;) combine to prove (i).

The proof of (ii) is similar. Let m be as above; let x > 1/¢,; and let
I =[(x) be the largest integer n > m for which ¢,>1/x. If n>m, A,
occurs, and (&, — wy);'> x, then ¢, <1/x and, therefore n > I. Thus, if
SUp, . (&, — w)3'I, > x, then either w < w, + 2¢, or |&, — «| > ¢, for some
n > [. The probability of the latter event may be estimated as in (18) and is
easily seen to be of order 1/x9*! as x — o0. Assertion (ii) then follows from this
result and its dual (at w,), since (&, — w,);'and (v, — &,)7 'are bounded on A,
for each fixed n > 2. O

7. Proof of Theorem 1. The conditions on b,, n > 1, in Theorem 1 are
described next. Let ¢,, @ > 1, denote stopping times which satisfy (3) and (4)
with p = §; let @, = [wy, w;] C 2° be compact; and define B, = B,(Q,) by

logt log ¢
(19) Ba={ta2na,w0+—‘/_75wt5wl——‘/—T}
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for a > 1, where 1 = 7(2,) is as in (4). Let P% denote P* when ¢ is the uniform
density on Q,, and observe that P¢ < KP% for some K = K(¢) for all ¢ of the
form (7) with support £,. In Theorem 1, it is assumed that

a\p
(20) (7) |b,(&,)] - I, a > 1, are unif. int. w.r.t. P%
and
(21) esssup|b,(&,)/t| - Iy = 0 (mod P%)

as a — oo for all compact Q, C 2° and p = ;. In addition, it is assumed that
there is a measurable function b on 2° for which

(22) b,(&,) » b(w) in P -probability

as a — oo for a.e. w € Q2°. These conditions have been formulated to obtain
reasonable generality and to simplify the proofs of Theorems 1 and 2. They are
not especially elegant. The conditions are satisfied if b,, n > 1, converge to a
continuous limit uniformly on compact subintervals of £°; but they are substan-
tially more general. Example 3 illustrates the interplay between ¢,, @ > 1, and
b,, n > 1, in (19) and (20).

The proof of Theorem 1 is given next. The reader may wish to review its
statement in Section 3.

Proor oF THEOREM 1. Fix a density ¢ of the form (7); let Q= [w,, w,]
denote its support; and define B,, a > 1, by (19). Then P¥B.) = o(1/ya) as
a — oo by (4) and Lemma 1. So, 7,(¢) = PVt (6, — 0)/6, < c,, B,} + o1/ Va)
as @ - oo.

It is convenient to first consider w, where y/(w) = . Recall that w} = yné,
(w — &,) for n > 1, and define A, by
(23) A, = PHof = —c, B}

for a > 1. Let 9, denote the sigma-algebra of events which are determined prior
to time ¢. Then, since posterior distributions are unaffected by optional stopping,

A, = fB Pi{wF > —c|9,) dP*
(24) = &Q(ct) dP* + ‘/_](-;'—fB V (%) [Ql(ct)‘fl(‘:’t) - %Q:}(Ct)\l’?,(‘:’t)] dP*

1 a
+—| (= |RYaPt
afa,(t)R‘d

for a > 1. See (13). The latter three terms are considered separately.
By (16) and Lemma 1, the last integral in (24) remains bounded as a — o0; so,
the final term is of order 1/a as a —» o0. Next, ¢, = ¢ and

W(a/t) Qu(c))4(&,) > Vi (@)@i(c)é,(w) = d(e)Vk (0)§(w)/0(w)é(w)



SEQUENTTAL CONFIDENCE LEVELS 1059

in P¢-probability as @ — o0; and

(a/)1Q( el 163 < K [(&, = wo) 1 + (w0, = &) "]

on B, for all @ > 1 for some constant K. So,

Lﬂ\/@Ql(ct)él(at) dPt - ¢(C)]9¢;0_15,dw

as a — o by the Dominated Convergence Theorem and Lemma 1. Similarly,

fzga\/@%(ct)%(@’:) dPt = (2 + ¢)9(c) [ Vit do

as a — co. To estimate the first term of the right side of (24), expand ®(c,) in a
Taylor series about ¢ as ®(c,) = ®(c) + ¢(cf)c, — ¢) =y + ¢(cF)b(&,)/ Ve,
where |¢f — ¢| < |¢, — c|. Thus,

./;}‘ZCI)(ct) dPt =y + %La\/@qs(c‘#)b‘(&‘) dPt + o

=y+ %(ﬁ(C)L\/Eb&d(O + o(%)

as a — oo, since P¥B.) = o(1/Va) and since (20) and (22) imply the conver-
gence of the integrals. Substituting these three limits into (24) yields the
following asymptotic expansion for A ,

(25) A, =v+ %qb(c)fﬂ[\/t?b% +o Wikt — 12 + )i yyt] do + o(-‘/%)

as a - o0.

It remains to relate A, to ya(£ ). Let v denote the inverse function to ¢/, so
that w = v(0). If &, € Q, and n is sufficiently large, then \/_(0 0)/6, < c, iff
0>0 —cnn/ﬁlffw>v(0 —co,,/\/_),and

%)

o0, = Z2) = o(d) - (8) 22 - Sor(07)

1 1
=& — c. — v 0# 0263
n ‘/; 6 [ n 2 ﬁ ( n ) n’n
for some intermediate point 67 between 0 and 0 - ¢,6,/Vn. So, if B, occurs

and a is sufficiently large, then vVt (0 - 0)/0, c, iff wf> —cp, where cS
n > 1, are defined by (5) with b,, n > 1, replaced by b2, n > 1, where

b:(&n) = b,.(«b,,) — 30"(67)cl8}

for &, € €, and n > 1. The functions b2, n > 1, may be extended to @ in a
piecewise constant fashion. It follows that y,(£) = A% + o(1/Va) as a - oo,
where A°, is defined by (23) with b,, n > 1, replaced by b2, n > 1. If b,, n > 1,
satisfy conditions (20)-(22) with limit b, then it is easily verified that b2, n > 1,
satisfy (20)—(22) with limit 5° = b + 1c?),;. Relation (8) now follows from
replacing b,, n > 1, by b2, n > 1,1in (25). O
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The need for the more general conditions on b,, n > 1, is illustrated by the
following example.

ExaMPLE 3 (S.P.R.T). The stopping time of an untruncated S.P.R.T. is of
the form (11) with ¢ = 0. Then « = || and the function b, which makes the
coefficient of 1/ a disappear has a nonintegrable discontinuity at « = 0. It is
possible to construct an increasing sequence {,, n > 1, of compact subsets of 2°
for which U?_,Q, = @° and continuous function b,, n > 1, for which |b,| <
min{V7, |b|} on € and b, = b, on £, for all n > 1. Any such sequence satisfies
(20)—(22). To see this let £, denote any compact subinterval of Q2° and observe
that |b,(w)| < K,/|8] for all w € Q, and n > 1 for some constant K, = K,(£,).
Thus, |b(&,)| < K,/10)] < K,t,/a and, therefore, |(a/t) |b(&,)| < K,/(t/a)
on B, for all a > 1. Next, using Wald’s Lemma and the fact that
E_[sup,.,X?/n] is bounded w.rt. w € Q, it is easily seen that there is a
constant K, for which E [t,/a] < K,/|0| for all w € £,. Thus,

2 3/2 £\3/4
J [ o] " ape < iemel (C]|<  fpo-onae < o
la t a 90

for all @ > 1 for some constant K ,. Conditions (20)-(22) follow.

8. A lemma. This section contains a technical lemma which is needed to
obtain higher order expansions. As above, elegance has been sacrificed for
generality in the statement of some conditions. Let

(26) AR(8,60) = sup{|h(s) — h(B)|:|s— 8] < |6 — 4]}
for functions A defined on 0.

LEMMA 2. Lett,, a > 1, denote stopping times which satisfy (3) and (4) with
p=1 Let Q)= [wy, w,;] be a compact subinterval of Q2°; let B, = ¢ (Q,); and
let g be a continuously differentiable function on O for which

27) g(8)] < K [(& — wp) 7+ (@) — @) 7]

for all 8 = Y'(w) € BF for some constant K. Define B,, a > 1, by (19) and let
U,, n = 1, be uniformly bounded and 2,, n > 1, measurable. Then

e8) /(7 [e0) - e8] apt = o(1/va)

as a — oo for all £ of the form (7) with support Q, and q = 3.
Moreover, (28) continues to hold if g is replaced by a sequence g,, n > 1, of
continuously differentiable functions for which

(29) { /,

a

2/3

[\/@;g;(,;,) ']3/2 * } - o(/a)
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and

(30) fg[\/@ Agi(b,, (:v)]adpQo = o(1)

as a — oo for some a > 1, where P is as in (21).

Proor. If g is continuously differentiable on Og, then the integrand
in (28) may be written Uy/(a/t)[g(0) — g(8,)] = I, + II,, where I, =
Uy(a/t) g(8,)0—40,) and II, = UtV(a/t) [g'(67) — g'(8))0 — 6,) for some
intermediate point 6 on B, for all a > 1. A simple integration by parts shows
that E4(6 — 6,92,) = (1/t)E%(0£,|9,) on B, for a > 1. So,

fB,,U‘\/@g ’(’i)(%)Eg( 04,19,) dP*
: Ka{/a[\/(—gt‘) (8, |]3/2 dP‘}m{ fies dw}1/3

for all a > 1 for some constant K ; and this is of smaller order of magnitude than
1/ Va under both sets of assumptions on g, by Lemma 1 under the first set. Let
a>1and B > 1satisfy 1/a + 1/8 = 1. Then

f fmaart< k][5 o) -t | ar

1/B
X {/ sup [\/5]9,, - 0|]BdP$}

nz=na

<

I,dP¢
B,

for all @ > 1 for some constant K,. The second factor remains bounded as
a — oo for any B8 > 1. If (27) holds, then the first factor approaches zero as
a — oo for any a < 3 by Lemma 1 and the Dominated Convergence Theorem;
and if (30) holds, then the first factor approaches zero for some a > 1. O

9. Higher-order expansions. There are three important differences be-
tween Theorem 2, which computes ¥,(£) up to o(1/a), and Theorem 1: the
algebra is substantially more cumbersome; the analysis is slightly more com-
plicated, since the coefficients of 1 and 1/ Va must be computed more accurately;
and some additional conditions are needed to justify the more delicate calcula-
tions.

In Theorem 2 it is assumed that the stopping times ¢,, a > 1, satisfy (3) and
(4) with p = 1. In addition, it is assumed that

[ Ew{[\/@ _\/;(w):ll[tzna]}

(31) /

as a — oo with n =1n(&;) as in (4) for all compact 2, c Q°. Further, it is

e
K(w) _0( /a)
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assumed that the functions b,, n > 1, of (5) are of the form

1
‘/; b2n’
where b,,, n > 1, and b,,, n > 1, both satisfy conditions (21) and (22), with
limits denoted by b, and b,, and 4%, n>1, and b,,, n > 1, both satisfy
condition (20) with p = 1. Finally, letting g,(0) = b,,(w) for § = Y (w) € 0, it is
assumed that g,, n > 1, satisfy (29) and (30).

(32) b,=b,,+

THEOREM 2. Suppose that t,, a > 1, and b,, n > 1, satisfy the conditions
imposed in the previous paragraph. Then

1 - 1 — 1
) = 7+ T8O (O + 26T + o[ ¢
as a - oo for all ¢ of the form (7) with ¢ > 3. Here T'(£) is as in (8) and

L(¢) = L[;‘;(c — )Y, — (4c® - 312 + 150)¢§]x£dw
(33) +f[%(3c —2¢3) o N8 — LeoT2 — co‘lblé’]xdw
Q
+ fﬂ[%(Sc — )b,y + b, — Lcb?]kt do.

Proor. Fix a density £ of the form (7) with ¢ > 3 and support @, =
[wy, w,] € Q°; and define B,, a > 1, by (19). Then P B,) = o(1/a) as a = oo
by (4) and Lemma 1. So, ¥,(¢) = P{(Vt(§, — 8)/6, < c,, B,} + o(1/a)as a — o,
as in the proof of Theorem 1. Define A ,, a > 1, by (23). Then, also as in the proof
of Theorem 1,

A - 1 1 1\3
(34) o= Bla) + (@) + S Ba) + 7 B(a),
where

Bula) = [ @(e) P,

Bi(a) = [ /(5] 1@e)e(@) - 1@ue)vs(a)] ap,

Bala) = [ (3] [E@uc)a(@) — 1Qu(c)vs(3)8()

3 Qulc)¥a(@) + %Qs(c)¥a(2,)] dP¥,

and

Bs(a) = fBa(%)le, dP¢

for a > 1. See (13), (14), and (16).
By (16) and Lemma 1, B4(a) = O(1) as a — oo. So, the final term in (34) is
o(1/a)as a - . Next, the Law of Large Numbers, the Dominated Convergence
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Theorem, and Lemma 1 combine to show that

Bala) =B = 1Qu(c) [ kst de = 3@u(c) [ xdst i do

24Q4(C)f"¢4€ do + 72Qs(c)f'€¢ §dw

as a — 0o, as in the proof of Theorem 1. For B,, expand @,(c,) and Q4(c,) in
Taylor series about ¢ to find that

Bi(a) = Qi(c) / \/_%—) £,(&,) dP* — §Qy(c) [B \/(_5;-') V3(d,) dP*

‘/—f ( )b(wt)[Q (C,)§ (w,) eQé(CZ')\I/3(&t)] dP¢

= Bu(a) — Biy(a) + ‘/—32(‘1) say,
where ¢, and ¢}’ are intermediate points. As above, it is easily seen that
3(a) > By = Qi(c) [kbit,¢ do — §@4(c) [ kb do.
Q Q
Let
B = Qu(e) [Vrtibde and B = §Qy(c) [ Vit do.
Then

Bula) - 81 = @) [, (5] 1660 - &) ap
(35)
+Q(c)f [\/U \/_(w)]£(w)dP5 Ql(c)f Vi, dP*

for all @ > 1. Here the first term on the right is o(1/ Va) as @ — oo, by Lemma
2; the second is o(1/ Va) as @ — oo by (31); and the third is o(1/ Va) as a - oo
by Schwarz’s Inequality, since P4(B.) = o(1/a) as a — oo and Vk §, is square
integrable w.r.t. P%. This shows that |8,,(a) — 8% = o(1/Va) as a - o0; and a
similar argument shows that |8,,(a) — B = o(1/ Va), as a = o too. Finally,
consider By(a), a = 1. Expanding ®(c,) in a Taylor series about ¢ and using
P(B.) = o(1/a) yields

Bo(a) = @(c) + %Mc)j;a\/@bu(a,) dp*
e [ (o0 5 putan - sere(er)(§ srcao] ap+ o 3

— 1 1 1 2 1
— v+ 2Ba) + @)+ o[ <) sy,
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as a — oo for some intermediate point ¢ between ¢, and c. As in the proof of
Theorem 1, conditions (20)—(22) yield

2(a) = B = o(c) [ k[ b = jebi]¢ do

as a — oo0. Let B! = ¢(c)/oVk b,¢ dw. Then |B¥a) — B! = o(1/Va) as @ > o
by an argument similar to that of (35), using the second set of conditions in
Lemma 2 and the integrability of kb3¢.

Let B, = B + B! and B, = B + B} + B2, where B = B, — BY%. Then

1 1 1
(36) D= 0() + =B+ iyt 0(5)

as a — oo. To complete the proof, let v denote the inverse function to y’. If a is
sufficiently large and if B, occurs, then it is easily seen that Vt(b,— 0)/6, < c, iff
wF = Vté(w — &,) = —cg, where c2, n > 1, are defined by (5) and (32), but with
b,,, n>1,and b,,, n > 1, replaced by bg,, n > 1, and b3,, n > 1, where

b?n(an) = bln(&n) + éc2¢3(&n)

and

1
B3,(80) = bon(04) + 4(8,)| cby(By) + Zr=b2(8,)| + o (8l

for some intermediate point 6 between 8, and b,— c,8,/Vn for &, € Q, and
sufficiently large n. If b,,, n > 1, and b,,, n > 1, satisfy the conditions of the
theorem with limits b, and b,, then it is easily seen that b¢,, n > 1, and b3,
n > 1, satisfy these conditions too, but with limits b9 = b, + c*}3/2 and b5 =
by + cYsb, — ¢, /6 + c*i/2. Let A%, @ > 1,denote A,, @ > 1, whenc,, n > 1,
are replaced by c2, n > 1. Then ¥,(¢) = A% + 0o(1/a) as a > . The theorem
now follows from (36) and simple (if tedious) algebra.

Recall that I',(¢£) may be written in the form (9), if Vk is absolutely continu-
ous, and that T(¢) = 0 for all ¢ of the form (7), if Vk is absolutely continuous
and Yk b = o (k) — (1 + 2¢*Wk ¢, a.e. Analogous results hold for L, O

COROLLARY 3. Suppose that V is absolutely continuous on Q°, that (kY is
locally square integrable, and that Vie b=0" Wk ) + Vk g, where g is absolutely
continuous. Then there is a function T, on Q° for which

(37) Ty(§) = [To(@)é(w) de
for all densities £ of the form (7).

PRrOOF. If Vk is absolutely continuous on ©°, then so is k and k' = 2Vk (Vk );
and, if Vkb, = 0 '(Vk) + Vkg, where g is absolutely continuous, then the
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middle line in (33) may be written

[ [5(8c — 26"k’ — feo~2(xt’) ~ co~ kgt do
Q
(38)
= — /Q{é(3c - 2c3)(o‘1¢3x)' + %c[x(o_z)']' - c(o‘lxg)'}édw.

The corollary follows directly. O

The expression for T, is complicated and not especially enlightening. However,
the following two special cases are of interest.

COROLLARY 4. Suppose that Vx is absolutely continuous and that (k) is
locally square integrable. If Vkb, = o~ '\(Vx) — s+ 2¢2 Wiy and_«b, =
(e + 3eM)wy, + F(de — Te)kyy — freo  kyy + leo 2(Vk)?, then T(¢) =
[y(€) = 0 for all & of the form (7).

COROLLARY 5. Suppose that k is continuously differentiable and that «’ is
absolutely continuous. If b, = b, = 0, then

T, = %(3c + 5c%)ky, — %5(15¢ + 17¢® + 4¢°)ky}

+1(8c+ 2¢%)o Yy — Jo k.

ProoFs. Corollary 3 follows by setting g = — (1 + 2¢?)y, in Corollary 2.
Corollary 4 follows from an integration by parts which is similar to that
described in (38).

Of course, Corollary 5 gives a very weak asymptotic expansion for the distribu-
tion function of V¢ (9, — 80)/6, as a = oo. Unfortunately, the condition that «’ be
absolutely continuous is violated in many examples, including Examples 1 and 2.

The corrections described in Corollary 4 are applicable in Examples 1 and 2,
after some smoothing. They are not applicable in Example 3, since (Vk )’ is not
square integrable near zero in the example. O

10. Concluding remarks. The condition that £, be stopping times w.r.t.
2,, n > 1, may be relaxed. It is only necessary that P {t, > n} be independent of
w for all n and a.

Ghosh et al. (1982) consider asymptotic expansions for posterior distributions
when the prior density ¢ decays exponentially at the endpoints of its support, as
well as ¢ of the form (7). It seems likely that Theorems 1 and 2 hold for such §
too.

There is no statement of uniformity w.r.t. £ in Theorems 1 and 2; but it would
be desirable to have one. In particular, when y,(£) is thought of as an average of
Y, hear a given point w, it would be desirable to allow the support of ¢ to shrink
to w as a — oo.

If F, is the normal distribution with mean 6 = w and unit variance for
— 00 < w < o0, then y” =1 and y; =0 for all j > 3. So, the function b of
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Corollary 2 is simply b = k’/2x and the confidence interval described there may
be written ., = [0, — ¢/ Vt, ), where §,= 8, — b(0,)/t, in this case. Since b
does not depend on c, the sequence b,, n > 1, may be chosen independently of ¢
(if at all), and the term bt(ét) /t may be regarded as a correction for bias. In the
context of Example 2, it agrees with the bias correction suggested by Siegmund
(1978).

In the normal case with § = w > 0 and ¢, = inf{n > 1: S, > a} for a > 1, the
very weak expansions of Theorem 1 agree with stronger (fixed 6) expansions for
an analogous problem with Brownian motion. To see how, let B(s), 0 < s < oo,
denote Brownian motion with drift § > 0 and unit variance, both per unit time;
let 7=, =inf{s > 0: B(s)> a} for a > 1; and let B¥ = [B(7,) - p'ra]/\/a
for a > 1. If —c0 <z < o0 and a is sufficiently large, then it is easily seen that
B¥ <z iff 7,> m, where m solves the equation a — pm = zym. Using a
well-known formula for the distribution function of =, [for example, Siegmund
(1984), Equation (3.15)] and some simple analysis,

a+mu)

Py{Bf <z}=Pfr,2m} = Q(%) —e?(1 - @)(T

1 1
- 0(z) - Jr(z) + (7)

where o(1/ Va) is uniform on compacts in — oo < z < 0. The same relation was
obtained very weakly for the discrete problem in Theorem 1.
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