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SKEWNESS AND ASYMMETRY: MEASURES AND
ORDERINGS?

By H. L. MACGILLIVRAY
University of Queensland

Recent interest in skewness has tended to separate two aspects of the
concept. Two distributions may be compared with respect to skewness, or a
distribution may be self-compared, that is, the distributions of the random
variables of X and — X may be compared. This paper uses the unification of
these two aspects to attempt to complete a skewness structure of orderings
that identifies the roles of various skewness and scale measures and enables
classification of the skewness properties of any distribution. The structure is
also used to propose measures of asymmetry. Some skewness properties of the
Weibull and Johnson systems are examined.

1. Introduction. Sections 1.1, 1.2, and 1.3 give a brief historical survey of
work on skewness, including measures, partial orderings, and relationships be-
tween location parameters. With reference to this, Section 1.4 outlines the aims
and content of this paper.

1.1. Classical measures. As for location, scale, and kurtosis, the concept of
skewness was introduced with an apparently appropriate measure. Pearson (1895)
proposed (x — M)/o as a measure of skewness for a univariate distribution with
mean u, mode M, and variance 62, Three other measures of skewness appear to
have been introduced soon afterwards [Bowley (1901), pages 116 and 251, and
Yule (1911), page 162]. These are (p — m)/o, where m is the median, p;/03,
where p, is the third central moment, and (g, + ¢, — 2m)/(q, — q,), where
q., q; are the upper and lower quartiles, respectively. All are based on the criteria
that a skewness measure should be scale-free and zero for symmetric distribu-
tions.

The initial roles of (g — m)/o and p;/03 seem to lie in their relationships
[empirical in the case of (p — m)/0] to the Pearson skewness for distributions of
the Pearson family. Gradually p,/03 assumed more prominence as “the skew-
ness,” as is illustrated by the papers of Doodson (1917) and Haldane (1942), who,
in examining Pearson’s empirical relationship between M — m and M — u, used
(0 — M)/o and p,;/03, respectively, to measure skewness. For (u — m)/a,
Hotelling and Solomons (1932) and Garver (1932) showed |(p — m)/o| < 1 with
this result being refined by Majindar (1962).

The quartile measure of skewness was introduced through its sample version
as a descriptive statistic and the bound of 1 on its absolute value was regarded as
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an advantage. It was used to test symmetry by David and Johnson (1954), who
also suggested (1956) its generalisation to a quantile measure which is defined for
a continuous random variable with distribution function F by

(11) Y(F) = [F"(l —u)+ F Yu) - 2m,,-]/[F"1(1 -u) - F (u)],

ue(0,}).

These measures have been used by Hinkley (1975), Hogg (1974) and Hogg et al.
(1975).

Yule (1911, page 162) noted that the measures (¢, + ¢, — 2m)/(q, — q,) and
(b — M)/o “are positive if the longer tail of the distribution lies toward the
higher values of the variate.” Fechner (1897) and Timerding (1915) examined
asymmetric densities for which p, m, and M occur in this or the reverse order,
but their papers seemed to be little known. For different reasons, a number of
authors [Groeneveld and Meeden (1977), Runnenburg (1978), and MacGillivray
(1979)] almost simultaneously considered conditions giving the sign of p — m and
m — M, or p,. van Zwet (1979) showed the link to his partial ordering (see
Section 1.2), and MacGillivray (1981) the link to the properties of the strictly
totally positive kernel x” [Karlin (1968), page 21]. It is curious that although
asymmetric distributions with p, = 0 were familiar [see, for example, Ord (1968)
and Johnson and Kotz (1970), page 253], conditions sufficient to determine the
sign of u, were not previously established.

1.2. Partial orderings of distributions. As noted by van Zwet (1964) and Oja
(1981), the measures of Section 1.1 were equated with a concept without answers
to the questions: when are the measures appropriate representatives of the
concept, and, if not, what can be used? Each measure either assumes or imposes
an ordering between distributions. van Zwet (1964) used convex transformations
to examine and formalise the concepts of skewness and kurtosis, claiming that
such concepts require meaningful orderings of distributions which measures of
skewness or kurtosis must then preserve. For distribution functions F and G
which have densities with an interval support, van Zwet defined G as having
greater skewness to the right than F, if G '(F(x)) is convex on [, =
{x: 0 < F(x) <1}, and showed that the standardised odd central moments
preserve this ordering. That is, if G~ '(F(x)) is convex on I, then

2k +1 2k 41 _
Brors1/OF < WKGors1/9%G > k=1,2,....

This ordering with respect to the exponential distribution gives increasing failure
rate (IFR) and decreasing failure rate (DFR) distributions and van Zwet’s
orderings, plus others based on star-shaped transformations, have been used in
reliability theory [for example, Barlow and Proschan (1966)], power of rank tests
[Doksum (1969)], and inequalities on order statistics [ Lawrence (1975)].

Mann and Whitney (1947) had previously introduced the notion of “stochastic
ordering,” a partial ordering of distributions with respect to location. Bickel and
Lehmann (1975) used this in their work on measures of location for asymmetric
distributions, and also introduced (1976) a partial ordering for distributions,
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symmetric or asymmetric, with respect to spread or dispersion. Oja (1981) unified
the work on partial orderings of distributions according to the different attributes
of location, scale, skewness, showing that the definitions introduced by the
authors above correspond to convexity of increasing order [Karlin (1968), page
23] of the same function, namely

Ap g(x) = G Y (F(x)) —x on I.

Oja introduced some weaker orderings for scale, skewness, and kurtosis, and
discussed how to find measures that preserve the various orderings, concentrating
on measures based on moments.

1.3. Measures based on quantiles. The function A(x) had been previously
considered in the special case of G(x) =1 — F(—x) = F(x) by Doksum (1975)
in considering real-valued functionals satisfying the usual location axioms,
and their values, giving the location set. The symmetry function fgy(x) =
1[x — F~'(F(x))] has the location set as the closure of its range, and is the only
function such that x — 260(x) is nondecreasing a.e. (with respect to F'), and
X — 26,(X) has the distribution of —X. Doksum used the difference between
0,(x) and the median m, as a measure of asymmetry, and defined F as being
strongly skewed to the right if and only if .(x) is nonincreasing for x < my and
nondecreasing for x > my, and skewed to the right if and only if 0,(x) = my,
(0p(mp) = mg). These definitions are weaker than that due to van Zwet (1979)
and used by Oja (1981), that F is skewed to the right if there exists a symmetric
distribution ¥, such that F~!(Fy(x)) is convex on I, r, As stated by van Zwet
(1979), this is equlvalent to F more skewed to the nght than F, the distribution
of —

Doksum’s (1975) weaker definition of skewness to the right is equivalent to van
Zwet’s (1979) condition, F~Y(¢) + F~ (1 — t) > 2my, for the mean, median, and
mode to occur in reverse order, so that (uy — My)/op and (up — my)/op are
nonnegative. Doksum’s symmetry function and index of skewness are
related to the quantile measures of skewness, v,(F') of (1.1). This is discussed in
Section 2.

1.4. Outline of paper. Thus against a background of a variety of motivations
and applications, a variety of skewness measures and/or orderings have been
used. Some links have been given but the structure is not complete. There
appears to be reasonably general agreement on two points. First, comparing the
skewness of two distributions refers, whether implicitly or explicitly, to a partial
ordering of distributions with respect to skewness, and a measure of skewness
should preserve an acceptable ordering. Second, discussions of the skewness of a
distribution to the left or right, refer to skewness comparisons of the distributions
of X and — X, described here as self-comparisons. Therefore, for consistency,
orderings and measures established in one context should apply also to the other.
In particular, meaningful interpretation of a measure’s numerical value and sign
requires knowledge of the orderings it preserves.
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Section 2 therefore aims to identify a skewness structure according to the
following criteria:

(a) The same structure should apply to comparisons of different distributions
and to self-comparisons for a single distribution.

(b) It should identify the roles of skewness measures and partial orderings
previously introduced in either of the contexts in (a), and provide a hierarchy
of such.

(¢) No skewness measure should be used without identification of the ordering it
preserves, and this ordering should aim to cover as large a class of distribu-
tions as possible.

(d) It should be possible to describe the skewness of any asymmetric distribution.

(e) The structure should not be more complicated than is necessary to meet

(a)—(d).

In certain circumstances arbitrary distributions have been considered by some
authors, but there are complications in the general structure, and for simplicity
attention is confined here to the class, %, of distribution functions F(x) which
have probability density functions f(x) with an interval support.

Although not necessarily complete the resultant hierarchy of orderings is
reasonably extensive. Some orderings may be more useful in practice than others,
but the hierarchy is an important background structure underlying any descrip-
tion of skewness properties; like convergence, skewness has a range of “strengths.”

On the basis of the skewness structure, and ideas in Doksum (1975), Section
2.4 discusses measures of asymmetry.

Section 3 examines the skewness properties of some distribution families, not
only to illustrate various aspects of the skewness structure but also to increase
the knowledge of the properties of these distributions. The Weibull family and
Section 2.4 indicate that for a complete understanding of the skewness properties
of some distribution families, it may be necessary to consider both self-compari-
sons and comparisons between the distributions.

2. Orderings and measures. van Zwet’s (1964) partial ordering with re-
spect to skewness on % is the strongest that has been considered and it is
unlikely that anything stronger is useful. Using a slight modification of Oja’s
(1981) notation, F <, G iff G~ (F(x)) is convex on I, and F is said to be not
more strongly skew to the right than G. “Convex” here includes the possibility of
linearity. It may sometimes be convenient to define F <, G iff G~ (F(x)) is
strictly convex, that is convex but not linear, on I, in which case G is more
strongly skew to the right than F. '

An equivalent definition of F <, G is that F(x) and G(ax + b) cross each
other at most twice for any a, b, or, using Karlin’s (1968, pages 20 and 280-282) S
notation, S™(F(x) — G(ax + b)) < 2 for all a, b, with the sequence of signs
being positive to negative to positive when equality holds. Thus van Zwet’s
skewness ordering has no reference to any measures of location and scale, and any
weakening of the ordering in the sense of covering larger classes of distributions,
involves reference to particular location and scale parameters.



998 H. L. MAcGILLIVRAY

2.1. Orderings with respect to the mean. Oja’s (1981) ordering < is a
weakening of <, that is still preserved by the standardized odd moments
Pogs1/02%+ 1. The formal definition is F < ¥ G iff there exists x, < p, < x, such
that

1 _ < 9 ~— O _gc_:
o G (F(x)) —x 5 x+(ua u)

resp.forx; <x <=x,, x<x; or x=ux,.

Equivalently the standardised distributions F(pu + ozx) and G(pg + ozx) cross
each other exactly once on each side of x = 0, with F(uz) < G(p). However,
the restriction on the positions of the crossings, although implied if F <, G, is
not required for an ordering preserved by the standardised odd moments.

From MacGillivray (1985), My ;= F(pp + opx) — G(pg + 05x) is either
identically zero or changes sign at least twice; if exactly twice, say from > 0 to
<0 to >0, then pgy,, /0" < pgopi1/08%, k=1,.... Hence skewness
with respect to the mean may be defined as follows:

DEFINITION 2.1. G is more skew to the right with respect to the mean than
F, F <4Q,iff

(2.2) S~ (Mg ;) =2 from >0to <0to >0.
More generally, F' <4 G iff (2.2) holds or M, ; = 0.

THEOREM 2.1.
2k+1 2k+1 —_
FS%G=>‘U,F,2k+1/UF Sl“’G,2k+l/oG , k—].,...,

and if equality holds for any k, then My ; = 0.
Proor. This result is a special case of Theorem 1 of MacGillivray (1985). O

In the case of self-comparisons, F < F e F<tF e S (1 — Fpp+ x) —
F(pp—x)) <1, from >0 to < 0, which is the established sufficient condition
for ppopsy < 0.

2.2. Orderings and measures with respect to the median. van Zwet (1964,
page 16) gives an example using a discrete distribution that shows that a
nondecreasing convex transformation of a random variable does not necessarily
increase (u — m)/o. An example using continuous distributions is provided by
the transformation Y = exp X of an exponential random variable with mean 1 /A.
As A =2, (py — my)/0oy — 0, and hence there are values of A for which
(by —my)/oy <(px—my)/ox=1—1log2. So (p — m)/o does not preserve
<, (nor therefore <4), but because there exists a condition on a distribution
sufficient for u S m, the scale measure appears to be at fault.
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LEMMA 2.1. If
(2.3) (G M (u) - ma)/ﬂc: = (F_l(u) - mF)/TIF, ue(0,1),
where g, ng > 0, then (g — mg)/Mg = (B — Mp) /M.

Proor. Follows from p, — mp= [H(F u) — mg)du. O

LEMMA 2.2,
F<,G=(23) iff ng/ng=Ffmg)/g(mg),
where f, g are the probability density functions of F, G.

PROOF. G~ !(F(x)) convex on I} is equivalent to

(2.4) [GY(F(x)) — G"Y(F(y))]/(x — y) is nondecreasing for x € I, for any y.
Hence, taking y = mg, F <, G = (2.3) iff
Ne/MF = HEIF/2(G_l(u) ~mg)/(F(u) — my)

= f(mp)/8(mg),

since f, g are nonzero in I, I, for F,G € %. O

The above lemmas provide an ordering that weakens <, and is preserved by
(p — m)/(a measure of scale), which therefore also preserves < ,. The weakening
procedure is different to that of Section 2.1, and starts from a different char-
acterisation of <, , given by (2.4). There are intermediate steps between (2.4)
and (2.3) and each has been used in a skewness context.

Oja’s (1981) star-ordering, <, [which generalises the star-shaped orderings
of, for example, Barlow and Proschan (1966), Doksum (1969), and Lawrence
(1975)] is (2.4) for some value of y. However, the value of y is important, since
(2.4) for a particular y is a weakening of <, to considering skewness with
respect to y. This point then becomes the particular location parameter around
which the skewness is taken. Taking y = m, the following definitions of skew-
ness progressively weaken <, with respect to the median.

DEeFINITION 22. F < T'G iff

star
(2.5) [G~Y(F(x) — mg]/(x — my) is nondecreasing in Iy,
or, equivalently,
(2.6) (G~Yu) = mg)/(FYu) — my) isnondecreasingin (0,1).

DEFINITION 2.3. F<T'G iff
D

nonincreasing < .
} rx{ > }mF in I,

(2.7) G (F(x)) - [f(mF)/g(mG)]x is {nondecreasing
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or, equivalently,

G”W)—H@wwﬂmdUHW)m{

nonincreasing}
(2.8) nondecreasing
for u{ N }% in (0,1).
DEFINITION 24. F <G iff
(2.9) (G (F(x)) — mg|g(mg) > (x — mp)f(my) forx e I,

or, equivalently, for u € (0, 1),

DEFINITION 2.5. F <G iff
Y

(2.11) (G711 = F(x)) = mg][[F7(1 = F(x)) — my]

>[G™\(F(x)) - mG]/[x —mp] forx <mgpin I,

or, equivalently, for u € (0, }),

[G7(1 = u) = mg)[[F(1 - w) — my]

> [GY(u) - mg]/[F(u) — m,].

(2.12)

THEOREM 2.2.
F<,G=F<]G=F<}G=F<}G=F<QG.

star D Y

PRrROOF. (2.5)is (24) for y = my,.
Differentiating (2.5) gives

{f(x)/g[G_l(F(x))] - [G_I(F(x)) - mG]/(x - mF)}/(x —mg) 20 inl,

which gives f(x)/g[G‘l(F(x))]{ % }f(mp)/g(ma) for x{Z ym = (2.7).
Clearly (2.7) = (2.9) < (2.10) = (2.12) & (2.11). O

Definition 2.3 gives the ordering generalised from Doksum’s (1975) definition
of strong skewness to the right, namely,

(213)  F () +u)+ F '({ —u) isnondecreasingfor u € [0, }].
This is equivalent to F < 5 F. The strength of skewness given by (2.13) has also

been mentioned by van Zv(r)et (1979) and used by David and Groeneveld (1982).

Definition 2.4 generalises the two conditions 1 — F(m + x) — F(m — x) > 0
and F '(1 — u) + F u) — 2m; > 0, which were given by van Zwet (1979) as
sufficient for u > m, and which were Doksum’s (1975) definitions of F' skew to
the right. Definition 2.4 plays the role of <4 but with respect to the median
instead of the mean.
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It should be noted again that in self-comparisons, that is, comparing F and F,
the measure of scale is not relevant and only the sign of a skewness measure is
relevant. If a skewness measure is quoted quantitatively it immediately implies
comparisons with other distributions and the measure of scale then plays an
essential role.

Groeneveld and Meeden (1984) show that y,(-) and (0 — m)/E|X — m| pre-
serve <,; Lemmas 2.1 and 2.2 introduce (p — m)f(my). Theorem 2.3 below
identifies the roles of various skewness measures in the heirarchy of skewness
orderings given above. If a measure preserves an ordering it also preserves the
preceding orderings in the hierarchy of Theorem 2.2. Apart from preserving an
acceptable skewness ordering, Oja (1981) also suggested that skewness measures
should change only by multiplication by sign(a) under a linear transformation
ax + b of the random variable; all the skewness measures below satisfy this
requirement. In some of the measures in Theorem 2.3, the mean and the quantile
average F~ (1 — u)+ F Y(u) — 2m; are generalised to the symmetrically
weighted quantile averages defined by

(2.14) p(F) = [F ' (u)dK(z) = [[F(1 = u) + F(u)] dK(u),
0 0
where K(u) is a distribution function on (0, 1) symmetric around 3.

THEOREM 2.3.
(a) F<?G e v, (F)<v,(G) forue(0,});
Y

(0)(Q) F<3G= (pg(F) — mgp)f(mgp) < (px(G) — mg)g(mg),
(i) F<IG=E(X—mp)™" f(mp) < E(Y - mg)™ " g(mg),
k=1,2,...,
(ili) F<3G= (pp—mp)/E|X — mg| < (pg — mg)/E|Y — mg|,
where X, Y ~ F,G.
(¢) F<PG=[F'(1-u)+F'(u)-F'(1-a)-Fa)]

/[F'(1 - o) + F ()]
<[G@a-u)+G(u) -G '(1-a)- G a)]
/16711 - a) - G V()]

forO<u<ac<i.

PRrROOF. (a) [This result is stated in Groeneveld and Meeden (1984)].
Without loss of generality m; and m; may be assumed to be 0. For u € (0, 3),
212) =

(2.15) G WF (1= u) = 61— w)F ()

>G (1 -uw)FYu) - G Yu)F (1 - u).
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Adding G '(1 — u)F '(A — u) — G '(u)F '(u) to each side of (2.15) gives
[G'1-u)+G Y (W)][F'Q-u)—F '(u)]
> [F'1-u)+FYw)][G'Q-u)-G Y(u),

and conversely, as required.
(b)) follows directly from (2.10) and definition of pu x(-).
(ii) follows from (2.9) written as F(m + x/f(my)) = G(mg + x/g(m)).
(iii) follows from Groeneveld and Meeden (1984) since

F<l'Ge [G (1 -y, —mG]/[F"(l—ul)—mF] > f(myg)/g(mg)
> [GY(u,) —mG]/[F"(uQ)—mF] for0 < u, u, < 3.
(c) F<p'G=f(F'(1-0))/g(G'(1~v))

star

> [G (1-a) -~ mp]/[F*1 1—a) —myl
(G (a) = mg]/[F'(a) = m,]
> f(F '(v))/g(G 1(v)) for0<v<acx<).

Y

Hence,

[1/8(G (1 —v)) — 1/g(G '(v))][F 01— a) = F '(a)]
> [1/f(F (1 - v)) — 1/f(F Y(v))][G (1 — ) = G (a)].

Integrating (2.16) with respect to v from u to a gives required result. O

(2.16)

REMARK 2.1. Three different measures of scale are incorporated in the
skewness measures in Theorem 2.3, namely 1/f(m;), F"'(1 — u) — F'(u), and
E|X — m,|. Each of these preserves the spread-ordering due to Bickel and
Lehmann (1976) which is used by Oja (1981) and is defined by

F <, G iff G"Y(F(x)) — x is nondecreasing,
(2.17) 1 (F(x)) g

G Y v) -G Nu)=2F Y (v)-FYu), O<u<v<l.

They also satisfy the other requirement of these authors for a scale measure in
that under a linear transformation ax + b of a random variable, the scale
measure is changed only by multiplication by |a|. Oja (1981) weakens <, with
respect to the mean to give a scale ordering < * which is still preserved by the
variance; this is the scale analogy to Section 2.1 above. Similarly to Definition 2.4
above, <, may be weakened with respect to the median to give scale with
respect to the median, defined by

DEFINITION 2.6. F<7'G iff

(2.18) G '(F(x)) —x{g}mG—mF for x{ S }my in I,
or, equivalently,
(2.19) G Yu) - F‘l(u){g ymg — my for u{g}é

The three scale measures appearing in Theorem 2.3 preserve <™
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REMARK 2.2. Although 1/f(m,.) arises naturally in this context as a scale
measure and has been used as such in central-density scaling [see, for example,
Rogers and Tukey (1972) and Rosenberger and Gasko (1983)], it is perhaps not as
appealing as F '(1 — u) — F Yu) or E|X — m| For example, both
(p — m)/E|X — m|| and |y,(-)| are bounded by 1, with |y(F)| = ,_.,1 at least
for semi-infinite I,. However 1/f(m,) is essentially the scale measure that arises
in the orderings as <, is gradually weakened. This is illustrated by considering
two distribution functions F' and G with medians zero and the same expected
absolute deviation from the median. If F <,G, S (F - G) = 2 so that an
ordering on F and G using this scale measure would give inconsistencies with the
criteria of Section 1.4.

REMARK 2.3. Oja’s (1981) < ¥* ordering is a weakening of <, asin Section
2.1 but G !(F(x)) is compared with some arbitrary line ax + b, thus involving
particular but arbitrary measures of location and scale. Similarly, <, may be
weakened as in this section but with respect to some quantile other than the
median. To date neither of these concepts appear to have been discussed in a
skewness context; however the second concept is of importance in the kurtosis
context [ Balanda and MacGillivray (1986)].

2.3. Central and tail skewness. There is still the problem of what to say
about the skewness of F' when it does not satisfy any of the orderings given so far
with respect to F. One solution is to identify a portion of the distribution centred
on the median, that is, some proportion (1 — 2a) of the central part of the
distribution, where F and F may be compared according to one or more of the
orderings of Theorem 2.2. Doksum (1975) also suggested restricting attention to
such a central portion for some fixed a, from the point of view of parameter
robustness. The structure of Theorem 2.2 and measures such as y,(-) may all be
applied to some central portion only, with notation such as <2»¢, <7~ and

< 50 ¢ and the skewness called central skewness. star D

For many distributions, the central skewness may cover a sufficiently wide
proportion 1 — 2« of the distribution for practical purposes. When this is not the
case, a further description of the skewness properties may be required, in terms of
changes between skewness to the left or right according to some ordering.
Doksum (1975) suggested examining changes between increasing and decreasing
of the symmetry function 8,(x), thus referring to the <' ordering. However in

portions of the distribution that do not include the nll)edian, the orderings of
Theorem 2.2 do not necessarily form a hierarchy. Since a weakening of this
structure is required, it may be more appropriate and easier to consider changes
of sign of g(m;)[G '(F(x)) — mg] — f(mp)x — my,), or, equivalently, and more
conveniently g(m; )G (u) — mg) — f(mp)F (u) — my).

DEFINITION 2.7. G is at least as skew to the right with respect to the median
as F' in the proportion interval (1 — 2a,,1 — 2«,) if (2.10) holds for v and 1 — u
with u € [a,, a,].
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COROLLARY 2.1. If Definition 2.7 holds, then for u € [a,, a,],
(2.20) YF)<v,(G) and v,(F) <v,(G),
where v(F)= (F 1 —u)+ F Yu) — 2m)f(my).

In the special case G = F, (2.20) is necessary and sufficient.

The definition has been given in terms of < 7' rather than < ' to allow for
central-density scaling. Y

Central skewness refers to a proportion interval [0,1 — 2a]; when the propor-
tion interval is [1 — 2q, 1], F and G are being compared with respect to skewness
in the tails. Central and tail skewness tend to be more easily established than
skewness in other proportion intervals. For example, all distributions with I, =
[0, o] are at least tail-skew to the right. The asymmetric Tukey lambda family
[Ramberg et al. (1979)] is defined by

(2.21) Fi(u)=A+ [uh = (1 -uw)™| A, O0<us<i,

and exhibits a variety of skewness behaviour, but all members with A, > (<)A,
are at least tail-skew to the left (right) [MacGillivray (1982)].

DEFINITION 2.8. F <" ¢G if Definition 2.7 holds for the proportion interval
[0,1 — 2a] for some a.

F <'G if Definition 2.7 holds for the proportion intetval [1 — 2a,1] for
some a.

When v,(F) has only one change of sign for u € [0, ;], central skewness and
tail skewness are all that is required to describe the skewness properties of F. The
relative importance of the central and tail skewness depends on the value of u at
which the change-over occurs as well as the context of consideration. Figure 1
presents the hierarchy of skewness orderings.

2.4. Measures of asymmetry. Doksum (1975) defines an index of asymmetry
for the central 100(1 — 2a)% of the distribution by

(2.22) sup Op(F '(u)) — inf /QBF(F“I(u))]/oF,

a<u<l/2 asus<l

where o, is the standard deviation or some other measure of spread, and where
0.(F Yu)=3[F ' (u)+ F'Q-uw)l

From Section 2.2, it follows that it is more appropriate to consider either
central-density or inter-quantile scaling, thus using instead of (2.22), either

(2.23) sup n(F)— inf w(F)
a<u<l/2 a<u<l/2

or

(2.24) sup v,(F)— inf y,(F).
a<us<l/? asus<1/2

The class of distributions that are skew to the right according to < ' is now
denoted by %, and the class of distributions skew to the left according to <
by %,.
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Fic.1. Partial orderings of F and G with respect to skewness.

Within #, inf,_, 1 ?(F)=0=inf,_,_,, v(F), and hence (2.23)
and (2.24) preserve < 7' for any a < 1 (and hence all the preceding orderings in
the hierarchy of Theorem 2.2). For the class %5, Doksum calls the index of
asymmetry an index of skewness for the central 100(1 — 2a)%. Within %,
SUP, <y <12 Vu(F) = 0 = sup,_ , <15 Y,(F), so that —(2.23) and —(2.24) preserve
<7 for any a < 3. Of course, these comments may be generalised to the wider
classes of distributions that are centrally skew to the right or left for some
fixed a.

Hence for distributions that are skew to the right or to the left for their whole
domain, the proposed measures of asymmetry (2.23) and (2.24) are measures of
the amount of skewness regardless of whether it is to the right or left. This seems
to be a reasonable interpretation of the concept of asymmetry and it can be
extended to comparing distributions that do not belong to either #; or #%;. For
example, if F € %, and G € #; satisfy F < 7' G, then, sup|v,(F)| < sup|r(G)|
and sup|y,(F)| < sup|y,(G)|- G is more skew to the left than F is to the right,
and it is reasonable to say that G is more asymmetric than F. Continuing this
concept to cover distributions whose skewness may change direction within their
domain, leads to a definition of an ordering between distributions with respect to

asymmetry.

DEFINITION 2.9. F is skew to the right (left) in the proportion interval
(1 — 2a,y,1 — 2a;) if F is as least as skew to the right (left) with respect to the
median as F in this interval.
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DEFINITION 2.10. Suppose that [0,1] is partitioned into intervals so that in
each interval F is skew to the right or left and G is skew to the right or left.
Let

F o= {F where F is skew to the right,
! F  where F is skew to the left.

Similarly for G,.

Then G is at least as asymmetric as F, F < 4G, if, in each interval of the
partition, G, is at least as skew to the right as F,.

Similarly G is at least as asymmetric as F in the central 100(1 — 2a)% of the
distribution, F < , ,G, if instead of [0, 1], only the proportion interval [0,1 — 2a]
is considered.

THEOREM 24. [v,(*)], |v.(*), and their suprema over u € (0,3) preserve
<4 . Similarly v,(-)|, 1Y), and their suprema over u € (a, ;) preserve <, ,.

Proor. Follows immediately. O

Hence sup, ., <1 ,2/7,(*)| and sup, ., <1,2/v.(*)| are suggested as measures of
asymmetry instead of (2.23) and (2.24), coinciding with them for distributions
belonging to %, or %;.

The quantities sup,|7,(-)| and sup,|y,(:)| also have further justification as
measures of asymmetry. Of all the distributions symmetric about m,, H(x),
defined by H %(u) = {[F~'(1 — u) — F~'(u)] + m, best approximates F(x) in
the sense that sup,|F~ %u) — H %u)| is a minimum [Doksum (1975)]. Since
|F~Yu) — H Nu)| = LF Yu) + F7Y(1 — u) — 2my|, this is the distance the
uth quantile has to move to become the uth quantile of the “closest” symmetric
distribution. H(x) is also the only distribution symmetric about mj with the
same inter-quantile scale measure, namely F~'(1 — u) — F~Y(u) for all u. Thus,
as well as preserving a reasonable ordering with respect to asymmetry, sup|v (F)|
and sup|y,(F')| give a minimum standardised distance between F and a distribu-
tion symmetric about m.

Figure 2 shows v,(F') for some members of the Ramberg et al. (1979) asymmet-
ric Tukey lambda family with A; = 2A,. Let F correspond to A, = 2.5 and G to
A, = 3. Then for the interval 0.1 < u < 0.5, sup|y,(F)| > sup|y,(G)| but
sup v,(F) — inf y(F) < sup y,(G) — inf v,(G). Essentially a change in the di-
rection of the skewness within the domain of a distribution does not necessarily
increase the overall asymmetry—it may help to decrease it. The graph for
A, = 0.2 is also included to show that the family, at least for A; = 2\, is not
ordered according to any of the orderings of Theorem 2.2.

3. Skewness properties of some distribution families. The relationship
of F and F is examined in this section for some important families of distri-
butions, also illustrating some points of interest from Section 2. All the results
have been obtained analytically but because the study of sign changes can
sometimes be laborious, no proofs are given here. Functions such as F~(F(x)),
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F7'Q1—u)+ F Y u) — 2mg, or F({ + x) + F({ — ax) — 1 may be considered,
and sometimes may all need to be considered.

3.1. Weibull distribution. This has F(x) =1—¢e7%", x>0; ¢>0, 6 > 0.

Hence F~Y(u) = [0 'log(1 — u)~']"/¢, and it can easily be shown that F, <, F,
for ¢, > c,. That is, as c increases, the distribution becomes less skew to the
right. Now it is known that g, changes sign from positive to negative values at
¢ = 3.6 [Johnson and Kotz (1970), page 253] and examination of m — M shows
that this changes from positive to negative values at ¢ = (1 — log2)~! = 3.26.
Since I = (0, 0), the distribution is always at least tail-skew to the right,
but the changes in p; and m — M show that F & %,. Detailed examination
shows that for ¢ <1/(1 — log2), F is strongly skew to the right, and for
¢ > 1/(1 — log2), it is centrally skew to the left and tail-skew to the right. It can
also be shown that for ¢ > 1/(1 — log2), F"'(1 — u) + F~%(u) — 2m  not only
has one change of sign but also only one turning point.
_ The strong result may be shown by considering the second derivative of
F~(F(x)) at x = F~'(u). The weaker results may be shown by considering
derivatives of F~Y(u) + F~'(1 — u) — 2my, and, by considering log f({ + x) —
log f(¢{ — x), it may also be shown that ST[F " %u) + F7'1 — u) — 2m;] =1,
from positive to negative values for u € (0, 3).

Figures 3 and 4 show that for most of I, the family virtually behaves as a
strongly ordered family that includes a symmetric distribution. The tail skewness
has practically no influence except on global measures such as pu; and p — m for ¢
between 3 and 4.

3.0

2.0

fx) |

I L I ox

3.0 4.0 5.0

F16. 3. Weibull density functions for c = 2, 3.26, 8.
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0.9,

0.2¢

F1c. 4. vy, for members of the Weibull family.

3.2. Johnson system [Johnson (1949)]. For this system F(x)= ®(b(x))
where ® is the distribution function of the standard normal and b(x) is an
increasing function. For skewness properties, ®(z) may in fact be any distribu-
tion symmetric about zero; the properties are determined by the transformation
b(x). Johnson identified three main systems called S;, S;;, and Sg, corresponding
to three general forms of b(x).

For the S, system, b(x) = §logx + vy, x > 0. For § > 0, this is concave and F
is strongly skew to the right; conversely for § < 0 and similarly for any concave
or convex b(x).

For the S, system b(x)=8sinh x4+ 7y, —o0 <x < o0, and for the Sy
system b(x) = &loglx/(1 — x)] + v, 0 < x < 1. Without loss of generality, con-
sider § > 0. For y <0, S, has F<'"Fand F <! F while S has F<'"Fand

F <t F; conversely for y > 0. For these two systems, there is an 1nterest1ng point

when considering F({ + x) + F({ — ax) — 1. In both cases this has no more than

two changes of sign for any { and a, but when there are two changes of sign there

sequence of signs depends on { and a so that F and F cannot be ordered by < ,.
The Pearson system also has the property that

S (F(¢{+x)+ F({—ax)-1) <2,
but again, for individual distributions it is necessary to check that the sequence

of sign changes in the case of equality does not change with ¢ and a.

4. Conclusion. This paper has aimed to bring together into one structure
the variety of views of skewness that have been previously considered, filling in
any gaps. The structure so obtained is intended to provide a background for
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reference purposes as obviously not all the orderings and measures will be
required for any one situation.

Yule (1911, page 162) described the quantile measure vy,.5(:) as a “rather
rough-and-ready” measure of skewness. Although the relative importance of the
different orderings and measures depends on circumstances, and it is unlikely
that any one could be described as most important, it appears that the general
quantile measures y,(-) play a valuable role in discussing both skewness and
asymmetry.

A particular point that has emerged in the course of the paper is that
describing the skewness of individual distributions is not only a special case of
comparing different distributions, but also may be a necessary inclusion in a full
description of the comparative skewness properties of a family of distributions.
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