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BAYES RULES FOR A CLINICAL-TRIALS MODEL WITH
DICHOTOMOUS RESPONSES!

BY GORDON SIMONS

University of North Carolina

The risk in a trial to compare two medical treatments is borne by the
patients who receive the inferior treatment during the experimental phase
and by those remaining after the experiment who will all receive the inferior
treatment if the results are misleading. The Bayes rule indicates, for the
observed progression of successes and failures, when it is optimal to stop this
experimental phase. This stopping rule can be described exactly, or nearly so,
for symmetric two-point priors. Less precise descriptions are possible for other
types of priors. An admissible stopping rule is described which is best possible,
among symmetric Bayes rules, in that it minimizes the probability of choosing
the inferior treatment no matter what the values are for the probabilities of
success.

1. Introduction. Much of the literature on sequential clinical trials cir-
cumvents the difficulties of working with Bernoulli-type responses, ““successes”
and “failures,” by assuming that the treatment responses are normally distrib-
uted. While such an assumption has certain advantages, it has significant disad-
vantages as well, including some technical disadvantages:

(i) The more delicate results for normally distributed treatment responses
apparently are not directly obtainable [cf. Chernoff and Petkau (1981, 1985)].
One first studies a continuous-time free boundary problem associated with the
heat equation and obtains suitable approximate solutions. Then suitable adjust-
ments, additional approximations, are required to return to the discrete-time
setting. This is a difficult agenda. The technical details can seem quite forbidding
except, perhaps, to a few experts.

(ii) It is not easy to extrapolate from the normal results comparable results for
the Bernoulli setting, particularly for small and moderate sample sizes.

The intent of the present paper is to derive a variety of results directly within
the setting of Bernoulli-type responses. These, of course, have the advantage of
direct applicability. Another advantage of working with Bernoulli-type responses
is that the quality of approximations can easily be assessed by direct numerical
calculations, without having to resort to more costly and less accurate simulation
studies.

The model is as follows. Two contending treatments are to be assigned at
random to pairs of patients. With the total number of patients, the “horizon,”
prespecified, this sampling by pairs is to continue until there is sufficient
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information about the relative quality of the two treatments that it is prudent to
assign the more promising treatment to all of the remaining patients. This
formulation was proposed by Anscombe (1963) for normally distributed treat-
ment responses. The statistician’s task is to find a suitable stopping rule which
indicates when sampling by pairs, the “testing phase,” should be stopped. The
risk (function) used here is the “expected successes lost” (ESL) by the stopping
rule because it is unknown which of the success probabilities p, and p, is larger.
It is mathematically equal to the product of |p, — p,| and the expected number
of patients assigned the inferior treatment.

For any prior distribution on ( p,, p,), the posterior Bayes risk depends on the
size of the horizon N and on the Markovian state (n, r, s), where n is the current
number of sampled pairs, and where r and s are the current numbers of successes
for the first and second treatments, respectively. If the prior distribution is
supported by two symmetric points (a, b) and (b, a), then the optimal stopping
rule depends on N and (n,r, s) only through the values of ¢t = N — 2n, the
number of patients remaining (the “time to go”), and » — s, the current “success
difference.”

There are several reasons for being interested in these two-point priors. It was
demonstrated by Bather and Simons (1985) that the minimax stopping rule, for
most of the first 200 values of N, is the Bayes stopping rule for a “least
favorable” symmetric prior on two such points with ¢ + & = 1 (a and b depend-
ing on N). Another reason is that for any symmetric stopping rule, the risk at
(p1, P2) = (a, b) is equal to the Bayes risk for a symmetric prior on the two
points (a, b) and (b, a). (A symmetric stopping rule is one which is indifferent to
the ordering of the treatments.) Thus the risk at a particular point (p,, p,) =
(a, b) can be minimized among all symmetric stopping rules by finding the Bayes
stopping rule for the symmetric prior supported on (a, ) and (b, a). The value
of this minimum risk is of some interest when one has little or no reason to think
that one particular treatment is better than the other. It is a reasonable standard
by which to evaluate the risk for any symmetric stopping rule. This kind of
perspective has been pursued in another paper (Simons (1986)).

The Bayes stopping rules for two-point symmetric priors are discussed in
Section 2. Inner and outer approximations to the stopping boundary are obtained
(Theorems 2 and 4). These are good enough to provide an asymptotic description
of the stopping boundary as ¢ - oo0. The inner approximation is exceptionally
good for small as well as large values of ¢. In some cases, it quite reliably specifies
the exact values of ¢ at which the optimal boundary expands. Even when it is not
this accurate, it suggests a barely suboptimal stopping rule. Approximations to
the minimal Bayes risk are obtained (Theorem 3) which are good for most values
of ¢.

It turns out that the optimal stopping boundaries for two-point symmetric
priors have an outer envelope. This envelope is approached by letting (a, b) go to

3» 3)- There are several reasons for being interested in this envelope. Firstly, it is
the optimal stopping boundary for an easily described random walk S, when the
stopping reward takes the form ¢|S,|, where ¢ = N — 2n is the time to go. It is
not difficult to find this optimal stopping boundary; the corresponding stopping
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rule can be described as:
(1) Continue when |S,| = k if t > T, k>0,

where T, T}, T,, ... is an increasing sequence of positive integers. The first twelve
values are 2, 14, 41, 82, 136, 204, 285, 381, 490, 613, 749, 900.2 Secondly, the outer
envelope is an outer envelope in a much stronger sense: For any symmetric prior
distribution G for (p,, p,) (i.e., any prior which is exchangeable in p, and p,)
and any horizon N, the Markovian state (n, r, s) is a point of optimal stopping if
t < T, where t=N—2n and k= |r—s|. It might be difficult to give a
complete description of the optimal stopping points (n, r,s) for G, but the
sequence T,, T}, ... can be used quite simply to establish large numbers of triplets
(n, r, s) as points of optimal stopping. Thirdly, one is led to consider the simple
symmetric “envelope” stopping rule:

(2) Continuewhen [r — s| =k ift=(N—-2n)>T,, k=0.

This rule is a Bayes rule (for a symmetric two-point prior depending on N), and
it is admissible. Among Bayes symmetric stopping rules, it uniformly minimizes
the error probability (the probability of choosing the inferior treatment) at all
values of ( p,, p,), providing the value T, = 2 is used instead of 3. (See footnote
2.) These ideas and assertions are discussed further in Section 3.

There are practical reasons why one might wish to work with other than
symmetric prior distributions. A physician® may begin with a preference for one
of the two treatments. In such a case he should choose a nonsymmetric prior.
And even if he has no initial preference, he will probably develop a preference
during the course of the clinical trial, i.e., his symmetric prior will probably
become a nonsymmetric posterior eventually. One should be able to begin anew
with this nonsymmetric posterior, viewing it as an updated prior. If one is to
continue optimally from this point, one must be able to work with certain types
of nonsymmetric priors.

On the other hand, there is no end to possible priors. Even the staunchest
Bayesian must recognize the futility of asking a physician to specify a prior
which accurately reflects his true beliefs in complete detail. With this in mind,
the author suggests to those who are Bayesians (and perhaps to those who are
not) that a simple compromise is possibly in order. It is suggested that the
physician be asked to express his beliefs by specifying a single real, possibly
integer-valued, parameter 6, one whose interpretation is easily communicated in
a layman’s language: It is positive when the first treatment is considered
preferable, and negative when the second is preferred. Its magnitude is to denote
the number of failures of the physician’s preferred treatment, together with an
equal number of successes of the other treatment, which jointly would cause the
physician to come to view the two treatments as equally promising. For the
Bayesian, the posterior effect on § from assigning the two treatments at random

2The first of these is a matter of some indifference. The value T, = 3 is optimal as well.
3The word “physician” should be understood as referring to those whose medical judgments enter
into the design of the clinical trial.
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to a pair of patients is to increase 8 by one if the first treatment is successful and
the second is not, to decrease 6 by one in the opposite circumstances, and to keep
it the same if both treatments yield the same results. For this interpretation to
make sense, one must begin with a “symmetrizable prior,” a prior which permits
(at least when @ is integer-valued) a symmetric posterior. If the physician, after
due reflection, should choose a value of § very far from zero, it seems likely that
frequentists, like Bayesians, would be uncomfortable with a symmetric stopping
rule. If one has a symmetric stopping rule which one is pleased with to handle
situations of no initial treatment preference (8 = 0), it easily can be modified to
accommodate situations of an initial treatment preference (6 # 0). The subject of
symmetrizable priors is discussed in Section 4.

Our theory extends to encompass “ethical costs,” which recently have been
considered by Chernoff and Petkau (1985). An ethical cost occurs whenever it
appears that a patient is being given the inferior treatment. This extension is
discussed briefly in Section 5.

2. The Bayes stopping rule for two-point symmetric priors. Let G be
any prior distribution for (p,, p,) and let E, denote conditional expectation
based on the results from assigning the two competing treatments at random to n
pairs of patients. The conditional expected successes lost for these 2n patients is
nE, |p, — p,|. Suppose N is the total number of patients. If all of the remaining
N — 2n patients are given the more promising treatment, their conditional
expected successes lost is (N — 2n)E, (p, — p;)* or (N —2n)E,(p, — D)™,
whichever is smaller, depending on which treatment is the more promising. Thus
the posterior Bayes risk at “time” n is

nEn'pl _p2| + (N - 2n)mln(En(p2 _p1)+’ En(pl _p2)+ )

Conveniently, this can be rewritten as

N N
(3) 9 nlpl_p2|_(E_n)lEn(pl_p2)|'

The first term is a martingale in n and, hence, has no bearing on the question of
optimal stopping. Consequently, the problem of optimal stopping can be recast in
terms of a reward sequence defined by

(4) Rn=(N_2n)|En(p1_p2)|'

It can be easily checked that this problem is Markovian with a state parameter
(n, r,s), where r and s are the numbers of successes produced by the first and
second treatments, respectively, among the first n pairs of patients. For the prior
G, one can identify certain states (n, r, s) as optimal stopping states (or points)
and the remainder as optimal continuation states (or points). As a matter of
convenience, states (n, r, s) for which stopping and continuation are both opti-
mal will be assigned both appellations.

Now suppose that the prior G assigns the probability ; to each of two
symmetric points (a, b) and (b, a) with a > b. Then (4) becomes

(5) R, = (a — b)(N - 2n)tanh(jr — s|a),
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where

(6) a = jlog(a(l - b)/(1 - a)b).

The Markovian state (n, r, s) can be replaced by the simpler Markovian state
7 (t,k) =(N-2n,r—s).

Then (a — b)"'R,, becomes

(8) R(t, k) = t tanh(|k|a).

The maximum expected reward using an optimal stopping time for the initial
state (¢, k) can be written as (a — b)S(¢, k), where S(¢, k) is defined recursively
by

©) S(t, k) = max{R(t, k), u,S(t -2,k —1)
+0S(t—2,k) + w,S(t -2,k +1)}, t>2,
with the initial values S(¢, k) = R(¢, k) for ¢t = 0,1, where

B cosh(k — 1)a
(10) v=ebt(1-a)i-b)  u= cosh ka

_ Bcosh(k + 1)a

wy, = ,  B%=ab(1—-a)(1-0b).

cosh ka
Observe that fe”* = a(1 — b) and Be * = b(1 — a), so that 28 sinha = a — b.

The point (¢, k) is an optimal stopping point if S(¢, k) = R(t, k). It is
an optimal continuation point if S(¢, k) > R(¢, k) or if u,S(t—2,k—1) +
oS(t — 2, k) + w,S(t — 2, k + 1) = R(¢t, k). In the latter case, (¢, k) is both an
optimal continuation point and an optimal stopping point (according to a
previously announced convention).

THEOREM 1. Given a, b with 0 < b < a <1, there is a strictly increasing
sequence of positive integers 1, T;, Ty, ... for which the state (t, k) is an optimal
continuation point if t > 1,, and an optimal stopping point if t < ,.

Proof. The difference S(¢, k) — R(t, k) satisfies recursive relationships akin
to those in equations (22) and (23) of Bather and Simons (1985). The argument
then proceeds as for their Theorem 5. O

Within the region of continuation, S(¢, k) satisfies the difference equation
(11) Z(t, k) =up,Z(t— 2,k — 1) + 0Z(t — 2, k) + w,Z(t — 2,k + 1).

This equation has many solutions besides the one defined in (9), including some
fairly simple solutions that can be used to obtain several useful approximations.
The general form of the symmetric separable solutions is

12 cosh kx

(12) Z(t, k) = (v + 2Bcoshx) .
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where the variable x is arbitrary. When x = «, this becomes Z(¢,k)=1. A
multiple of the partial derivative of the right side of (12) with respect to x,
evaluated at x = a, yields another solution, namely

(13) Z(t, k) =t+ tanh ka.

2
a—b
THEOREM 2. The point (t, k), k > 0 is an optimal continuation point if
2sinh kasinh(k + 1)a 2k tanh ka

(a — b)sinha * a—-b
Proor. Consider a particular solution Z(¢, k) of (11). A point (¢, k) will be
called “good” if Z(t, k) > R(t, k), and called “warm” if Z(¢, k) < S(t, k). If a

point (¢, k) is good and each of its immediate successors (¢t — 2, & — 1), (¢ — 2, k),
(t — 2, k + 1) is warm, then it is an optimal continuation point. For then

u,S(t— 2,k — 1)+ 0S(¢t —2,k) + w,S(t — 2,k +1)
(15) >uZ(t—2,k—1)+0Z(t— 2, k) + w,Z(t — 2,k + 1)
=Z(t, k) > R(t, k).

Clearly a point (¢, k) is warm if Z(¢, k) < R(t, k) since S(¢, k) > R(¢, k). But
other warm points can be found. In particular, (¢, k) is warm if each of its
immediate successors is warm. For then

Z(t, k) =u,Z(t—2,k— 1)+ 0Z(t — 2, k) + w,Z(t — 2,k + 1)
<uS(t—2,k—1)+0S(t—2,k) + w,S(t — 2,k + 1)
< S(t, k).

To prove the theorem, the particular solution Z(¢, £) must be chosen with

some care. Consider a specific point (¢,, k,), £, = 0. For &k, = 0, the solution

Z(t, k) =0 can be used to establish (14), namely that (Z,,0) is an optimal
continuation point when ¢, > 2. For k£, > 0, use

(14) t>2+

2k
Ob tanh?k ja,

tanh ka| —

16 Z(t, k) = tanh kpa|t +
(1) Z(t,k) = tanh kot + — p—

which is a linear combination of (13) and Z(¢, k) = 1. The equation Z(¢, k) =
R(t, k) divides the first quadrant into four regions as indicated in Figure 1.

The lattice points (¢, k) in the cross-hatched regions II and IV satisfy the
inequality Z(t, k) < R(t, k) and, therefore are warm. It follows by straightfor-
ward induction, based on £, that all of the points in region I are warm as well. All
of the points in regions I and III are good, but only some of them are optimal
continuation points. To be optimal continuation points, it is enough that their
immediate successors are warm. Thus every lattice point (¢, k) in region I is an
optimal continuation point except, possibly, those (upper) boundary points of the
form (¢, k) for which (¢ — 2, k, + 1) is in region III. But if (¢,, k) satisfies (14),
the point (¢, — 2, K, + 1) has to be in region II. So (¢,, k,) is an optimal
continuation point. O



960 G. SIMONS

(t,-2,ky*1) k
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Fic. 1.
The values of ¢, and ¢,, appearing in Figure 1, are
2k, 2k, 2 _
t, = — atanh koo, t, = o btanh koa + msmh koa.

Not only do Z and R agree at (¢,, k), but so do their first partial derivatives.
Thus one should expect Z to closely approximate S in the vicinity of (¢,, k) [cf.
Chernoff (1972), page 93, and Bather (1983)]. This is the case. For instance, when
a = 0.75 and b = 0.25, the first several values of the right side of (14) are 2, 22.98,
189.56, and 1651.72, which exactly predict the integer-valued transition points
referred to in Theorem 1: 7, = 2, 7, = 23, 7, = 190, and 73 = 1652. The same kind
of accuracy has been observed for 7, through 7, when a = 0.6 and b = 0.4, except
7, is overestimated by one unit. The quality of the approximation is less when a
and b are close together. For instance, when a = 0.6 and b = 0.5, the values of
T, T1» Tgs T1p @nd 7, are exactly predicted But for 7, through 7; the predictions
are too large by the amounts, 1, 2, 4, 5, 4, 2, and 1, respectively. This suggests
that (14) is a good approximation for small and for large values of k.

The relevant question is: How well do the predicted transition points perform
when used in place of the (harder to obtain) correct transition points? The
answer is, they perform exceedingly well. For instance, for the case a = 0.6,
b = 0.5 referred to above, the actual expected reward is within one-tenth of one
percent of the optimal expected reward for every state (¢, k), t < 2,500. For
k = 0 (which is relevant for computing the Bayes risk), it is always within two
one-hundredths of one percent. (The worst values found for ¢ are less than 200; it
seems unlikely that z-values larger than 2,500 can cause problems.)

THEOREM 3. The Bayes risk for the clinical trial is bounded above by

a— 2k,
(17) —2—{(1 — tanh k)N +

5 tanh?k Oa}

a —

for each k,=0,1,2,....
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Proor. The Bayes risk takes the form ((a — b)/2)(IN — S(N, 0)). (See the
discussion preceding Theorem 1.) Now, it is apparent from Figure 1 that the
point (N, 0) is “warm” in the sense described in the proof of Theorem 2. That is,
Z(N,0) < S(N,0). The desired conclusion follows immediately from (16). O

The quality of the smallest obtainable upper bound is typically quite good. For
instance, when N = 100, a = 0.6, and b = 0.5, the best choice for %, is 3, and the
upper bound is 3.17. The actual value of the Bayes risk is 3.14. For N = 2,500,
the best bound is 13.360 and the Bayes risk is 13.359.

There is an interesting analogue to Theorem 2.

THEOREM 4. The point (¢, k) (k > 0) is an optimal stopping point if
2sinh kasinh(k + 1)a
(a — b)sinha

(18) t<2

PRrROOF. Again let Z(¢t, k) be a particular solution of (11). And again there is a
need to refer to “good” and “warm” points, but with new meanings. Here a
point (¢, k) will be called “good” if Z(t, k) < R(t, k), and called “warm” if
Z(t, k) = S(t, k). If a point (¢, k) is good and each of its immediate successors
(t—2,k—1),(t—2,k), (t— 2,k + 1) is warm, then it is an optimal stopping
point. This is proved by reversing the inequalities in (15).

Clearly, a point (¢, k) is warm if Z(¢, k) > R(t, k) and S(¢, k) = R(t, k). But
other warm points can be found. In particular, (¢, k) is warm if Z(¢, k) > R(¢, k)
and each of its immediate successors is warm. For then

upS(t—2,k— 1)+ oS(t—2,k) + w,S(t— 2,k + 1)
SuZ(t—2,k—1)+0Z(t — 2,k) + w,Z(t — 2,k + 1)

=Z(t, k),
so that
Z(t, k) > max(R(t, k), u,S(t—2,k—1) + 0S(t — 2, k) + w,S(t — 2,k + 1))
= S(¢, k).

If Z > R at (¢, k) and at all of the successors of (¢, k), then (¢, k) is warm. This is
easily shown by induction.

To prove the theorem, the particular solution Z(t, k) of (11) must be picked
with care: Consider a specific point (¢, k), t, > 2, ko > 0. The case k, =0 is
easily disposed of with Z(¢, k) = 0. For &, > 0, use

(a — b)tgtanh kya
(a — b)t, + 2ktanh kja
Since R(t, k) = t tanh |k|a, it follows that Z(¢,, k,) = R(t,, ko). Thus (¢, k) is
a good point. It must be shown that its immediate successors (¢, — 2, kb, — 1),
(to — 2, ky), (ty — 2, By + 1) are warm. It is enough to show that Z > R at all of
the successors of (¢, k).

Now the equation Z(t, k) = R(t, k) divides the first quadrant into two regions
as indicated in Figure 2. In region I, Z > R. In region II, Z < R, so that all of its

(19) Z(t, k) = (t+ a2_kbtanh ka).
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Fic. 2.

lattice points are good. The point (¢,, &,) is located somewhere on the boundary
of region II. If its position is like one of the points B and C, shown in Figure 2, all
of its successors will be in region I, where Z > R, and the argument will be
complete. However, if its position is like one of the points A and D, then some of
its successors can be in the interior of region II, where Z < R. This situation
must be avoided. It can be avoided by restricting the range of ¢,. Because of
Theorem 1, it is enough to complete the proof when

2sinh kyasinh(k, + 1)a 2sinh kasinh(k, + 1)a
, <t <2+ :
(a — b)sinha (a — b)sinha

(20)

For if (¢, k) is an optimal stopping point whenever (20) holds, then it must also
be an optimal stopping point whenever just the latter inequality in (20) holds.

When (20) holds, all of the successors of (¢,, 2,) are in region I. Since the proof
of this is tedious but not difficult, it will be omitted. (Several elementary
inequalities involving hyperbolic functions must be isolated and checked.) This
completes the proof. O

Together, Theorems 2 and 4 provide for the proper classification of a large
number of states (¢, k). They show that the transition points 1, referred to in
Theorem 1, grow asymptotically with % like 2 sinh ka sinh(k + 1)a/(a — b)sinha.
Thus the boundary grows with ¢ at the rate (2a) ~'log ¢. More precise statements
are possible.

Certain pairs (¢, k) are optimal stopping states for every a and b (a > b).
Some of these “universal optimal stopping states” can be found by using
Theorem 4. It can be shown that the right side of (18) is (tightly) bounded below
by 2 + 4k + 4k2. So (¢, k) must be a universal optimal stopping state whenever
t <2+ 4k + 4k2 Now the lower bound 2 + 4k + 4k? is achieved only in the
limit as @ and b approach one-half. This suggests that the set of optimal
stopping states approaches its minimal possible size as a and b approach
one-half. Further encouragement for this suggestion is provided by the fact that
the lower bound (2 + 4k + 8%?2) of the right side of (14) is also achieved in the
limit as @ and b approach one-half. Since the suggestion is correct, it should not
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be surprising that the key to characterizing the universal optimal stopping states
is the examination of the limiting forms of R(¢, k) and S(¢, k) as a and b
approach one-half.

For the first of these

(21) lim (a—b) 'R(t,k)= lim (a— b) 'ttanh|k|a = 2¢|%|.
a,b—1/2 a,b—>1/2

It easily follows, by induction, from (9) and (21) that (a — b)~'S(¢, k) converges
to a limit S*(¢, k) as a, b — § and that
S*(t, k) = max{2¢|k|,1S*(t — 2,k — 1
(22) (t, k) {281k, 1S*( )
+1S*(t—-2,k) +1iS*(t -2,k + 1)}, t>2,

with initial values S*(t, k) = 2¢|k| for t = 0, 1.

THEOREM 5. The pair (t, k) is an optimal stopping state for every a and b
(a > b) if and only if S*(t, k) = 2t|k|. Moreover, there is an increasing se-
quence of positive integers T,, T}, T,, ... for which S*(t, k) = 2t|k| if and only if
t < T,. The first five values of the sequence are 3, 14, 41, 82, 136.

Proor. The second assertion is proved in the same way Theorem 1 is proved,
and the values of the sequence are found by direct numerical calculations using
(22). If (¢, k) is an optimal stopping state for every a and b, then

* — N _ -1 _ . _ -1 —
S*(t, k) a’il_r)nl/z(a b) S(t, k) a,zlrl—rg/z(a b) 't tanh|k|a = 2¢|k]|.

Now consider a specific pair a and b, a > b. To establish the converse, it will
be shown that

48 cosh ka
————[S(¢, k) — ttanh|k|a] < S*(¢, k) — 2¢|k|

(a—b)
for all pairs (¢, k). It will follow whenever S*(t, k) = 2t|k| that S(¢, k) =
t tanh|k|a, so that (¢, k) is an optimal stopping state for a and b. Denote the left
and right sides of (23) by Q(¢, k) and Q*(¢, k), respectively. It follows from (9)
and (22) that for ¢ > 2,

_ [0Q(t - 2,0) +2BQ(t —2,1) + 4B8(t — 2), k=0,
(24) @z, k) = {max(O, Q(t, k)), k#0,
and

(23)

. [ 3Q*(t—2,0) + 3@*(¢t - 2,1) + ¢t -2, k=0,
(25) Q (t, k) - {max(O,Q*(t, k)), b+ 0,

where

Q(t,k)=BQ(t—2,k—1)+ vQ(t—2,k)

26
(26) sinh|k|a

+BQ(t—2,k+1) —

a—b
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and

(27) Q*(t’k)=ZQ*(t—2’k_ 1)+§Q*(t_2’k)

+1Q*(t— 2,k + 1) — 4]k|.

The task is to show that Q*(¢, k) > Q(¢, k) for all (¢, k). This is obvious from
(23) for t = 0,1; both sides of (23) are zero for all k. The proof proceeds by
induction. Assume that @*(¢t — 2, k) > Q(¢ — 2, k) for all k. Then

Q*(t,O) - Q(t’O) = (% - :B)(Q*(t - 2’1) + 4(t - 2))
+(1—0)Q*(¢t—2,0) + (1 — B)@*(t — 2,1)
and since Q(t — 2, k) > 0 for all 2 and

86| %|
a—b>b

(28)

sinh|k|a > sinha = 4|k|,

a—b>b
one obtains for k& # 0,

6*(t’ k) - 6(t7k) = (i_ :B)Q*(t_ 2, k- 1) + (%_ D)Q*(t_ 2, k)

+(1-B)Q*(¢— 2,k +1).

It will be shown that the right sides of (28) and (29) are nonnegative, so that
Q*(¢,0) > Q(t,0), and @*(t, k) > Q(¢t, k) for k # 0. From (24) and (25), it follows
that @*(¢, k) = Q(t, k) for all (¢, k).

The right sides of (28) and (29) have the form a,x, + a,x, + a;x; with
(ay, ay) = (5 — B, 3 — v). Since, in general, a,x, + a,x, + a,x3 = a(x; + x5 —
2x,) + (2a, + ay)x,, this expression is nonnegative if

(29)

a, >0, 2a,+a, =0, Xy 20,2, + 25— 2x,> 0.

But a, > 0 since B2 =a(l — a)b(l — b) < &, and 2a, + a, > 0 since 48% =
4a(1 — a)b(1 — b) < (a(l — b) + b1 — a))?2 = (1 — v)% Clearly, the values of
x,, arising from the right sides of (28) and (29), are nonnegative. Finally, it
follows from Proposition 1 below that the values of x; + x5 — 2x,, arising from
the right sides of (28) and (29), are nonnegative. [It is enough to consider 2 > 0
since (19) is symmetric in k.] O

ProrosITION 1. For each t > 0, the sequence Q*(t,1) + 4t, @*(¢,0),
QR*(t, 1), Q*(¢,2),... is convex in the sense that all of its second differences are
nonnegative.

Proor. This is obvious for ¢ = 0 and 1 since, for such ¢, @*(t, k) = 0 for
all k. Suppose the sequence is convex when ¢ is replaced by ¢ — 2, ¢ > 2. The
task is to show the convexity for ¢. It is enough [see (25)] to show that the
sequence @*(t,1) + 4¢, @*(¢,0), @*(¢,1), @*(¢,2),... is convex. For convenience,
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Q*(t — 2, k) will be abbreviated to @(%). Then
(@*(t,1) + 4t) + @*(¢,1) — 2Q*(¢,0)
- —1Q(0) + 1Q(2) + 2(t - 2)
= 3([Q() + 4(t - 2)] + Q(1) —2Q(0)) + 3(Q(0) + Q(2) — 2Q(1)) = 0.
Likewise,
Q*(¢,0) + @*(t,2) — 2Q*(£,1)
= —iQ(1) +iQ(B) + (¢ -2)
= 1([Q(1) + 4(t — 2)] + Q(1) — 2Q(0)) + 3(Q(0) + Q(2) — 2Q(1))
+1(Q(1) + Q(3) — 2Q(2)) = 0.
Finally, for & > 2,
Q*(t,k—1) + @*(t, k+ 1) — 2Q*(¢, k)
=1Q(k —2) +;Q(k +2) - ;Q(k) 2 0. o

3. The Bayes stopping rule for symmetric priors. Let G be a symmetric
prior distribution for ( p,, p,) and let N denote the horizon. As noted earlier, the
Bayes stopping rule can be described in terms of Markovian states (n, r, s),
where n represents the (current) number of sampled pairs, and where r and s are
the (current) numbers of successes for the first and second treatments, respec-
tively.

It seems unlikely that there is anything comparable to Theorem 1 which could
provide a simple description of the optimal continuation region for this more
general setting. For instance, (n, r + 1, s + 1) need not be an optimal continua-
tion state when (n, r, s) is. This cannot happen with two-point symmetric priors
because, for such priors, the relevant Markovian stateis (¢, k) = (N — 2n,r — s).
Moreover, (n, r, s) can be an optimal continuation state even though (n — 1, r, s)
is not for a larger horizon. Again, this cannot happen with two-point symmetric
priors. The full range of possibilities is unknown.

Nevertheless, there is one simple result which can be used to identify certain
triplets (n, r, s) as optimal stopping states.

THEOREM 6. The triplet (n, r, s) is an optimal stopping state for a symmet-
ric prior G if for each (a, b), a > b in the support of G, (t, k) = (N — 2n,r — s)
is an optimal stopping state for the symmetric prior on the two points (a, b) and
(b, a). In particular, (n, r, s) must be an optimal stopping state if

(30) S*(N —2n,r—s) =2(N —2n)|r —s|,
where S* is defined in (22).

Proor. Let U(n,r,s) and V(n, r,s) denote the reward for stopping [im-
plicitly defined in (4)] and the optimal stopping reward, respectively, for the state
(n, r, s). Further, denote the functions R(¢, k) and S(¢, &) (described in Section
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2) by R, ,(t, k) and S, ,(t, k), a > b, in order to reflect their dependence on a
and b. For b > a, let R, ,(t, k) = R, ,(t,k) and S, ,(t, k) =S, (¢, k). It is
easily checked that

31) U(n,r,s)= f1f1|a - bR, (N —2n,r - s)G(da, dbin, r,s),
0o

where G(:|n, r, s) denotes the posterior distribution for (p,, p,) in the state
(n, r, s). Finally, by a routine backward induction argument based on the size of
n, it can be shown that

(32) V(n,r,s) < W(n,r,s),

for all possible states (n, r, s), where

W(n,r,s) = flflla — blS, o(N — 2n, r — 5)G(da, dbln, 1, ).
0 Y0

Now consider the first statement of the theorem. By assumption, S, ,(¢, k) =
R, (¢, k) for every pair (a, b) in the support of G. Thus W(n, r, s) = U(n, r, s),
and it follows from (32) that V(n, r, s) = U(n, r, s). Consequently, (n, r, s) is an
optimal stopping state. When (30) holds, it follows from Theorem 5, that
S, i(t, k) = R, ,(t, k) for every pair (a, b). O

Let us briefly consider the stopping rule suggested by Theorem 6, namely stop
as soon as one reaches a state (n,r,s) for which (30) holds. Stated more
explicitly: stop in state (n,r,s) if 2n > N — T, where k = |r — s|. The begin-
ning of the sequence T, T),... is given in Theorem 5, and the terms of the
sequence can be computed using (22). Additional values are given in the introduc-
tion. Since (a — b)7'S(¢, k) = S*(¢, k) as a, b — 1 (see Section 2), it can be
shown that the rule is Bayes for appropriately chosen symmetric prior distribu-
tions, depending on N, and that it is admissible.* It can be expected to perform
well, from a Bayesian perspective, whenever the prior distribution is symmetric
and concentrated near (p,, p,) = (3, 3)-

One pleasant feature of this stopping rule, when T, = 2, is that it minimizes
for every pair (p,, p,) the probability of rejecting the better treatment among all
Bayes symmetric stopping rules. While the probability of rejecting the better
treatment is not of direct concern under Anscombe’s (1963) model, Bather (1985)
has made a reasonable case for its consideration in the context of sequential
clinical trials. The proof that this probability is minimized depends upon two
facts. Firstly, among Bayes symmetric stopping rules, this “envelope” rule with
T, = 2 is the largest possible, i.e., the slowest to stop. This is a consequence of
Theorem 6. Secondly, for any symmetric prior distribution, the sequence of
posterior probabilities of rejecting the better treatment, for n=0,1,2,...,
2n < N, is a supermartingale. Consequently, the obvious is true: the longer one
samples by pairs the smaller is the probability of rejecting the better treatment.

*These assertions are still true if the value T, = 2 is used instead of the value T, = 3 given in
Theorem 5. The risk function is unaffected by the change.
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It seems highly plausible that this “envelope rule” is, in fact, the largest
admissible symmetric stopping rule.’ If so, then the obvious rule based on N/2
pairs is excluded because of the loss structure; it could not be admissible.

Finally, some insight into the nature of this stopping rule can be obtained by
considering the random walk S,=0, S, S,,... whose step sizes —1,0,1 are
taken with probabilities }, 3, ;, respectively. The same stopping rule with |r — s|
replaced by |S,| is optimal for the reward sequence (N — 2n)|S,|, ie., it is
optimal to stop as soon as 2n > N — T,, where k = |S,|. The connection is
apparent from the form of (22). One can use T, = 2 or T, = 3. (See footnote 4.)
The values of all of the other T},’s may be unique; no other exceptions have been
found between k& = 1 and & = 23. (Ty; = 3,773.)

4. Symmetrizable distributions. The rationale for this topic has already
been indicated in the introduction. It is not always appropriate to use a
symmetric prior. And yet it seems too much to expect to find a theory of much
depth which includes all possible priors. Both of these issues are addressed by the
consideration of symmetrizable distributions. The class of symmetrizable priors is
probably sufficiently large to meet the needs of practitioners. And yet they are
convenient to work with theoretically. Roughly speaking, whatever is true for
symmetric priors is also true, in a suitably modified sense, for symmetrizable
priors. Currently, the theory for symmetric two-point priors is quite a bit more
satisfactory than is the theory for general symmetric priors. This distinction
carries over to symmetrizable priors.

The emphasis in this section is expository. While the concepts and results are
stated precisely, no proofs are given. Most of the proofs are fairly straightforward
and can easily be supplied by the reader.

A distribution G on the open unit square is said to be symmetrizable with
associated parameter 0, and one writes G € ®(0), if G(p, # p,) > 0 and the
measure G’ defined by

(p1Q2)_0G(dp1, dp,), 6 >0,
(33) G'(dp,, dp,) =
(p2q1)0G(dp1, dpz), 0 < 09

is symmetric in p, and p,, where ¢, =1 — p, and ¢, = 1 — p,. The restriction
to the open unit square is for convenience and seems harmless. Likewise, a prior
G for which G(p, # p,) = 0 is of no interest here. The parameter § can assume
any real value. When 6 is integer-valued (and the horizon N is sufficiently large),
G can have a symmetric posterior.

In the sequel, it is convenient to think of the measure G’ as a prior. It may not
be a finite measure, in which case it is better thought of as an improper prior—it
cannot be normalized to make it a probability measure.

5The envelope rule is the largest admissible symmetric stopping rule. As Larry Brown has
pointed out to the author, this easily follows from a remarkable lemma appearing in Gutmann (1982):
Any admissible symmetric stopping rule must be Bayes and, hence, no larger than the envelope
(stopping) rule.
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The associated parameter 6 is unique. Moreover,
. 1r1 .
(34) mgn(f f (p, — p2)G(dp,, dpz)) = sign(6).
0 Yo

So when G is the prior distribution, the sign of  indicates which treatment is
preferred. The first treatment is preferred when 6 > 0, and the second when
0 < 0. When # = 0, neither treatment is preferred because G is symmetric.

Suppose G € ®(0) is a prior distribution. Then the posterior distribution G,,,
after the two treatments have been assigned to n pairs of patients, is symmetriz-
able with the associated parameter

(35) 6,=0+r-s,

where r and s are the numbers of successes with the first and second treatments,
respectively. Without having to compute any posterior expectations, one can
decide which treatment is currently preferred by simply examining the sign of §,.

Now suppose G is a prior on two symmetric points (a, ) and (b, a). Then
G € ®©(8), where

(36) = 10g(G((a, 8))/G((b, @),

and where « is defined in (6). Under this prior, the problem of optimal stopping,
described in Section 2, depends upon the Markovian state (¢, k) defined in (7).
There are analogues of Theorems 2, 3, and 4. The analogue of Theorem 2 states
that (¢, k) is an optimal continuation state if

2sinh(k + 8)asinh(k + 8 + 1)a  2(k + 0)tanh(k + )«
- + )
(a — b)sinh« a—b
k+8=0.

It seems likely that the stopping rule which continues as long as (37) holds will
perform very nearly as well as the optimal stopping rule.

The picture is less complete for a general symmetrizable prior G. When 6 # 0,
G is not symmetric and it is convenient to work, instead, with the symmetric
“prior” G’ defined in (33). For the sake of definiteness, assume 6 > 0. The
horizon N and the Markovian state (n, r, s) need to be replaced by N’ = N + 24
and (n/,r’,s’) =(n+ 0, r+ 0, s), respectively. These are easiest to interpret
when 6 is an integer. In any event, the new “number of patients remaining,”
N’ — 2n’, in state (n’, r’, s’) is an integer, and it is equal to the old number of
patients remaining, N — 2n, in the state (n, r, s). So even if 4 is not an integer,
there is no inherent problem in carrying out the required backward induction to
decide which points (n’, r’, s’) are optimal continuation points under G’, and
which are optimal stopping points. Notice that

(38) pipsay "9y ~*G'(dp,, dp,) = pip3q? "qy °G(dp,, dp,).

So even if G’ is viewed as an improper prior, there is a proper posterior in state
(n/, r’,s’). And as (38) shows, this posterior agrees with that for G in the state
(n,r,s). It follows that (n, r,s) is an optimal continuation point under G

(37) t=2+
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whenever (n’, r’, s’) is an optimal continuation point under G’. And the same
relationship applies to optimal stopping points.

It is presently impossible to obtain many of the benefits promised by the
“machinery” just described because the current theory for general symmetric
priors is far from adequate. Nevertheless, Theorem 6 can be exploited when 8 is
an integer: The point (7, r, s) is an optimal stopping state for the symmetrizable
prior G € ®(9) if 2n > N — T, where k = |r + @ — s|. (The meaning of T}, has
been discussed in previous sections.)

A second benefit suggests itself for those who already have a stopping rule
which they prefer to use whenever there is little or no reason to believe that one
treatment is better than the other. [Several candidates for this kind of rule have
been suggested by Vogel (1960a, b), by Anscombe (1963), by Lai, Levin, Robbins
and Siegmund (1980), and by Bather and Simons (1985). Such rules can be
modified to handle situations for which there is an initial preference; stop in state
(n, r, s) if the preferred rule says to stop in state (n’, r’, s’).

5. Ethical costs. Chernoff and Petkau (1985) have recently shown how
“ethical costs” can be incorporated into Anscombe’s (1963) model when the
treatment responses are normally distributed. The same thing can be done when
the treatment responses are “successes” and “failures.” The idea is quite simple:
For any prior G, after n pairs of patients have been treated, with the results
observed, one expects the two treatments to yield successes in the future with
probabilities E,p, and E,p,, where “E,” denotes conditional expection given
the results from the n pairs of patients. Thus |E,(p, — p,)| represents a
reasonable estimate of the “expected successes lost” (a fraction of one) should
a future patient be assigned to the apparently inferior treatment. Accord-
ing to Chernoff and Petkau’s reckoning, the physician incurs an ethical cost
Y|E,( p; — pg)| if the inferior appearing treatment is actually assigned to a future
patient, where the proportionality constant y > 0 is a known parameter.

The mathematical effect of this innovation is fairly slight. Instead of the
reward sequence described in (4), one must use

n—1

(39) R,=(N-2n)|E(p, —p;)| -2y X |E,.(p, - ps)|

m=0

In general, this reward is no longer a function of a Markovian state (n, r, s),
where r and s are the numbers of successes registered by the first and second
treatments. Nevertheless, the optimal stopping problem is still Markovian,
i.e., dependent on (n,r,s). Intuitively, this is because the ethical cost
yX2_Y|E, (P, — ps)|, entering into (39), is the result of past decisions; it is
nonrecoverable. Consequently, the difference between the optimal stopping re-
ward and the reward for stopping is a function of the state (n, r, s). When this is
strictly positive, it is optimal to continue; when this is zero, it is optimal to stop.

The previous results in this paper can be extended to this setting without
much difficulty. For instance, for Theorem 2, the simpler Markovian state (¢, k)
is still appropriate, and it turns out that (¢, k), £ > 0 is an optimal continuation
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point whenever
2(1 + y)sinh kasinh(k + 1)a 2k tanh ka
: + .
(a — b)sinha a—b
The asymptotic growth rate of the transition points 7., referred to in Theorem 1,

is increased by the factor 1 + y. The boundary still grows with ¢ at the rate
(2a) "log t, independent of y (as a first-order approximation).

t>2+
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