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for some (gaussian?) noise sequence w,. Thus the unobservable AR process Z,,
provides the “success” probability for S, after transformation. Generalisations to
higher order processes, transforms other than the log-odds, and time-varying
parameters (¢, rather than simply ¢), are evident. The outlier model (1) can now
be extended to this binary series by a minor extension of (2) to

Z,=X,+8,
X, =¢X, |+ w,

incorporating changes via w, series, patchy outliers, and, now, observational
outliers through appropriate models for the §, series. The only point of signifi-
cant difference between this model and (1) is that the sampling model is now
Bernoulli, rather than gaussian, which leads to a slightly different view of the
way in which observational outliers are generated. A closely related, but struc-
turally quite different, class of models for binary series provides for dynamic
evolution of transition probabilities in Markov chains. The first order case, for
example, has a basic model for P(S, = 1|m,) as above, but, instead of the
continuous process model for the log-odds probability Z, in (2), a discrete version

(3) Zt =0, + ‘stt—l + w,,

where 6, and ¢, are time-varying process parameters and w,, as usual, process
evolution noise. Concerning outlier models, a basic problem arises with (3) in
that the observations S, are fed back into the process model, so a little more
thought is required in modelling pure observational outliers. Perhaps the authors
have some comments on such problems.
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The discussants have provided us with more than ample food for thought
concerning a myriad of issues related to our work on influence functionals for
time series. Leading issues include the following: (1) Relationships and dif-
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ferences between ICH and IF. Aspects of this include (a) the model-dependent
feature of IF, and (b) the desirability or lack thereof of averaging inherent in the
definition of IF; (2) data-oriented measures of influence; (3) generalizations
and /or modifications of the IF to cover prediction, spectral estimates, non-
stationarity, testing, etc.; (4) lack of consistency and bias control; (5) robust
model selection; and (6) innovations outlier models, intervention, adaptivity, etc.

Relationships and differences between ICH and IF. Kiinsch has pro-
vided a transparent heuristic formula which displays the relationship between
ICH and IF for time series, and allows one to see clearly why a difficulty can
arise when T does not depend only on a finite dimensional marginal measure:
namely, boundedness of ¥ does not necessarily yield boundedness of IF. This is
an enlightening viewpoint, which gets at a problem special to the time-series
setting in short order. Also, Kiinsch’s suggestion to split Theorem 4.2 up in the
manner of his Theorem 4.1’ is a useful and welcome contribution. It is indeed
desirable to state a main result in a form which is as free as possible from
model-specific assumptions, and therefore facilitates a wider range of applica-
tions of the IF.

Kiinsch’s main concerns with our approach are that IF involves (too much)
averaging (of ICH), and that the IF and GES are determined by contamination
models which are too specific and narrow.

The basis of Kiinsch’s complaint about model specificity is evidently his view
that one seldom knows the type of contamination in advance. However, it is our
experience that on the contrary, for many time series arising in practice the
investigator does indeed have a pretty good idea of whether patchy or isolated
outliers are to be encountered (and perhaps a little detail is available concerning
qualitative patch shape, but not too much else.) Indeed, Wegman has indicated
the viability of the forms already included in (2.2) for a variety of real-world
applications, where either patchy or isolated outliers are expected. In the case of
radar glint noise, for example (Figure 14 of Martin and Thomson, 1982), the
outliers consist of spikes having a moderately consistent shape, with random
amplitude and separations which are approximately independent exponential
random variables. In target tracking contexts, the amplitudes will be negligible
and hence there will be no outliers at far range situations, whereas the ampli-
tudes will be large and the outliers will be quite potent at close ranges. Aside
from the varying amplitudes and separation times, the structure of the outlier
model is relatively constant.

Given that one can in many cases be relatively confident of outlier type, the
model dependent aspect of IF is highly desirable. In such cases, IF and GES
calculations, and optimality results over “narrow” classes can help indicate what
type of estimate is preferred with regard to its infinitesimal bias control. Further-
more, in case different specific types of outliers are considered likely to appear,
one may use the corresponding GES criterion to select the estimate instead of the
IF.

Of course when one is indeed relatively ignorant of the type of outliers to be
encountered, then optimality over narrow classes is indeed of little use, and
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Kiinsch’s suggestions concerning the choice of P in Definition 6.1 may be
appropriate. Furthermore, under complete ignorance one might be happy with
the conservative /pessimistic approach of optimally bounding GESH £ sup|ICH|
in the time series case as Kiinsch (1984) has done.

With regard to the pure replacement (PR) versus additive outliers (AO) issue,
Kiinsch’s PR calculations show that the Huber function can be preferred over
the bisquare function (which is opposite to the result of our AO calculation).
However, it is our opinion that the PR model is seldom appropriate in practice.
We are not thereby suggesting that AO is always appropriate. It is just that the
value of a time series at an outlier position will usually contain some shadow or
vestige of the core process, and in these cases AO will often be a better
approximation than PR. Furthermore, AO will often be quite a good approxima-
tion—this is true, for example, in the glint noise example cited above, and it is
certainly true in those situations for which intervention analysis (Box and Tiao,
1975) is appropriate. Also, it appears feasible to construct statistics which
discriminate between PR and AO.

In any event, we feel that the understanding gained by the calculation of IF’s
for different estimators at different contamination models yields insight concern-
ing the interplay between different estimators and different contamination mod-
els which is useful in its own right. Many more such calculations remain to be
carried out. Such calculations can help resolve the kind of question raised by
Franke and Hannan: How much does IF depend on different contamination
models having qualitatively similar sample paths? We pursue this question with
respect to their particular model (1).

Although model (1) does not quite fit into the general model (2.2), it does fit
into the following slight generalization:

(2.2) Y= (1 -2 )x; + 2wy,

where now the contaminating process w} has a distribution depending on y. In
order to get model (1) we can take z} as in (2.4) with y = kp and 2} = g(¢;)
where g(¢) = 1 for ¢ # 0 and g(0) = 0, and then set w = x; + L¥2B;¢, ;. Since
the distribution of the ¢;’s depends on p and therefore on y, we need (2.2%)
instead of (2.2).

The definition (4.5) of IF can be extended without modifications to the more
general model (2.2’). In the case of model (1) with x; an AR(1) process we get for
GM estimates

k-1
IF({HL}’ Toms {H}}) = Z Eﬂ(ul + (Bj - ‘15,3,'-1)80» h($)(xy + Bj—leo))
Jj=1
+E77(u1 - ¢Bj£0a h(¢)(x0 + BjSO))a
where A(¢) = (1 — ¢*)/% In the case of B, = --- = B;_, = 1, we get

IF({“L}’ Toms {:‘"}}) = (k- 1)En(u1 + (1= ¢)eg, h(¢)(x + 30))

+En(u, — ¢gy, ($)(x + &),
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which is very close to our formula (5.8) for patchy additive outliers. This is
reassuring, since, as observed by Franke and Hannan, the qualitative behavior
of model (1) will be very similar to our case of patchy additive outliers, provided
that all the 8; have the same sign.

The issue of whether or not IF involves too much averaging is a most basic
one. It is primarily when the number of outliers is small, which corresponds on
average to yn small, that the averaging-based IF is unlikely to provide a good
indication of the influence of outliers on an estimate in finite samples. Such
situations are indeed troublesome, for neither sup|ICH| nor IF is likely to give a
uniformly accurate assessment across different configurations of outliers. On the
other hand, such situations are precisely where totally data-oriented measures of
influence for time series, such as that suggested by Brillinger, may come into
their own. Of course when the number of outliers is moderate to large, one must
use an appropriate averaging in order that IF adequately reflect the influence of
the outliers. Analysis of the data at hand, aided by any reasonably robust
method, will often provide useful guidance here.

Data-oriented measures of influence. Brillinger’s suggestions concerning
“leave-one-out” diagnostics/influence measures for time series are highly ap-
propriate, both for their own sake and for the complementary nature the
techniques have relative to ICH and IF. The “leave-one-out” approach is
tailor-made for Kiinsch’s “single outlier in a series of length n.” This natural
data-oriented approach for time series has been neglected for so long, in spite of
Brillinger’s (1966) proposal, only because the method is fairly computing inten-
sive, and (as Brillinger points out) good algorithms for handling missing data
problems in time series have been developed only relatively recently (see
Brillinger’s references). There are, however, some issues concerning leave-one-out
diagnostics for time series which should be mentioned.

First of all, there is a clear smearing effect associated with the influence of
isolated outliers in the leave-one-out approach. This effect is evident in
Brillinger’s Figure 3: Adjacent to each “large” peak there are one or two values
of roughly half the local amplitude of the peak. The reason for this behavior is
inherent in the Gaussian maximum-likelihood leave-one-out technique, and it can
conceivably give a false indication of a single dominant ovtlier when in fact there
are two outliers separated by a single good point.

Another, perhaps more serious difficulty, is that leave-one-out diagnostics can
fail to give an indication of problems when the outlier is of a *“k-in-a-row” patch
form. This is a special form of what has been called the “masking” problem in the
regression diagnostics literature. In the regression setting the masking problem
has been relatively ignored due to the computational burden required to check
for masking in unstructured problems, namely order (Z) when & well-masked
outliers are present. However, in the structured time-series setting we can easily
detect masking due to a single patch of length &2 in order n
by computation of “leave-k-out” diagnostics whereby ¥,,:, ¥,19,.--» Y4z are
deleted and a Gaussian missing-data MLE is used to fit the model for
1=0,1,...,n— k.
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FI1G. 1. Residuals y, — £, for Canadian lynx data, where %, is smoother-cleaned value based on
robust ARMA (3, 3) fit.

Of course one cannot completely solve the masking problem with any degree of
computational ease. The existence of more than one patch, or more than one
isolated outlier, or both, can result in masking which can only be completely
dealt with by an order of computational complexity which approaches that of
unstructured regression problems. It is possible that some data sets may contain
too many configurations of outliers to effectively cope with. Fortunately, experi-
ence indicates that: (i) complete masking does not occur with great frequency,
even with multiple patches and isolated outliers, and (ii) iterative interpolation of
the most influential data points will often reveal other influential points which
are initially masked.

Details concerning some of the various claims made above are provided in
Bruce and Martin (1986).

In answer to Brillinger’s question to us: There exist good robust techniques for
fitting ARIMA models to data with many outliers, based on robust filter-cleaners
or smoother-cleaners (see for example Martin, 1981, or Martin, Samarov and
Vandaele, 1983), and these techniques along with their robust residuals diagnos-
tics should always be used (along with other methodologies, including leave-%-out
diagnostics) when one is not absolutely sure that the data is outlier free. These
residuals diagnostics generally give a much clearer view of outlier structure than
leave-k-out diagnostics, and take considerably less computational time (our
current version of “leave-k-out” is still too slow to be really pleasant on a PC).
Figure 1 shows the residuals y, — £, for a robust fit of an ARMA(3, 3) model to
the Canadian lynx data. Since %, =y, for “good” data points, most of the
residuals are zero. The nonzero residuals indicate nearly the same “suspect” data
points as those revealed by Brillinger’s plot.

In summary: while “leave-k-out” diagnostics appear to have a useful role in
time series analysis, procedures based on robust filter- or smoother-cleaners
would be preferred if just one of the two techniques were to be used.

Generalizations of IF. The issue of generalizations and/or applications of
the IF to problems such as prediction, testing, spectral estimation and long-mem-
ory processes have been touched upon by Franke and Hannan, Robinson, Tsay,
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and Poor. Although Sections 8.1 and 8.2 make small contributions to IF’s for
spectral estimates and tests, there remain a number of questions to be pursued.
At the moment we are able to respond to some of the specific questions raised by
these discussants.

Consider the case of an ARMA-type spectral estimate. Let S(T(u})) =
S( f; T(pY)) denote the asymptotic functional representation of an ARMA-type
spectral estimate, where

() = (62(1),-r 6(17), 8:(82),-.., 8,(3), s2(n1))

with T(p,) = a the parameters of an x; process ARMA model and S(a) the
corresponding spectral density. Then it is straightforward to calculate a point-
wise influence functional IFg(p,,, f,T) for S. Use of the chain rule gives:

dy

and the first factor of the right-hand side does not depend on T (but does depend
upon frequency f). Therefore in order to compare the influence curve of two
estimators S(T,) and S(T,) of S(a), we only need to compare the influence curves
of T, and T,. Hence, in answer to Franke and Hannan, robustness of ARMA
model parameter estimates determined by IF properties is inherited by an
ARMA-type spectral estimate, albeit with a frequency dependent weighting
factor. Essentially the same is true if one computes IF,, 5 for log S.

Of course, S(T) may not be a good estimate of the functional S in the case
where x, does not conform to a parametric ARMA model, but the main issue in
such cases is parametric approximation rather than robustness of T.

Unfortunately, nonparametric robust spectral density estimates, such as those
involving robust prewhitening described in Kleiner, Martin, and Thomson (1979),
are much more complicated, and simulation will be required to determine an IFg
or IF,, ¢ in such cases.

Franke and Hannan note that the computed IFg(¢, f ) in Section 8.2 does not
depend on frequency. The reason for this is that the contamination is white noise,
along with the averaging involved in the IF (see the earlier comments by both
Kiinsch and ourselves). To get a measure of influence which will show the
frequency-dependent effects associated with specific outlier patterns, one can
either take a data-oriented approach as suggested by Brillinger and discussed
above, or pursue the IF approach with an appropriate contamination model. In
the data-oriented approach one could use the leave-k-out technique to fit a good
AR or ARMA model and interpolate at the deleted points—the difference
between spectrum estimates based on the original data and those based on
“leave-k-out and interpolate” modifications of the data will show frequency-
dependent influence (however, this data-oriented approach may often involve an
embarrassing amount of computation). In the IF approach, u, might be selected
so as to generate outliers resembling those seen in the data, e.g., in the waveguide
of Kleiner, Martin, and Thomson (1979), the outliers might come in pairs having
a fixed separation, but with random separation from pair to pair—the resulting
IFg(S, f) will depend upon f. (Incidentally, such possibilities suggest how IF
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may give a useful indication of how an estimate reacts to a specific configuration
of outliers in the data at hand.)

Franke and Hannan have also raised the question of how stable the IF is
when the nominal model is known only approximately. Here stability is equiv-
alent to asking for some kind of continuity of IF with respect to p,. If we use the
weak topology, continuity of IF is closely related to robustness (Hampel, 1971;
Boente, Fraiman, and Yohai, 1982). According to (4.2) and (4.6)

E(¥(y;,t
IF(p,, T, (4}}) = —~C 'lim , _, _ﬁ(%o_)l

with C given by (4.2"). If ¥ is bounded and depends only on a finite number % of
coordinates, then the second factor on the right-hand side will depend continu-
ously (with respect to the weak topology) on the corresponding k-marginal
distribution of the nominal process x,. Similar results occur when ¥ depends on
an infinite number of coordinates, but this dependence decreases quickly enough,
e.g., as with GM and RA estimates. However, typically the behavior of C will be
different. For example, in the case of GM and RA estimates, C depends on the
first moment of x,; when the 7 function is of the Mallows type and on the second
moment of x, when it is of the Hampel type. Thus in order to have continuity of
IF with respect to p, at a nominal model p, , one may have to use a metric
which implies closeness of the moments for u, and p, ,.

Kiinsch, Poor and Tsay all raise more or less directly a quite important
question: How does one deal with nonstationarity in the central model p,, in
deviations from the central model, or in both?

In order to be as general as possible, one might proceed as follows. Let {7} be
a sequence of univariate estimators indexed by sample size n, and let T, denote
the value of T, for the contaminated process y). The arc {u}} may now be
nonstationary by virtue of one or more of the measures p,,p,,{n)} being
nonstationary. Then define the (absolute-value) influence functional for nonsta-
tionary processes as

1
IF, (1o, (T}, {1)}) = lim —Eﬂy(limsup|Tn7 - T,,°|).
Yy=0Y U\ s

Of course for many cases of interest, including the nonstationarity examples
presented by Kiinsch and Poor, one will have T, — T(p)) and T, - T(,uy)
almost surely. In such cases we have hmsupn_,w|TY - T°| = |T(pt ) - T(u))l,
the expectation is superfluous, and IF , = |IF|. Correspondingly, given a family
P of nonstationary arcs {p}} we deﬁne the gross-error sensitivity:

GES(P, (T,}) = sup IF(u,. (T}, {13)).

Similar definitions may be given for the multivariate case.

For some types of contamination, nonstationary process {w,} are not more
harmful than stationary {w,} in terms of GES. For example, consider the AR(1)
model with independent and additive outliers, i.e., w; = x; + v;, and suppose that
7 satisfies (A1)-(A4), along with

(A5) n(u, v) is monotone in each variable and uv > 0 implies n(u, v) > 0.
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Then we can prove that the GES for GM and RA estimates when {v;} is allowed
to be nonstationary is the same as when it is restricted to being stationary, and
is given by Theorem 5.1 of Martin and Yohai (1984b). Further study is needed to
determine the extent to which similar results may be true for other models and
different types of contamination.

Concerning robust tests, Robinson’s suggestion regarding robustified score
tests is a good one which has been recently pursued (Basawa, Huggins, and
Staudte, 1985). In fact, the general area of formal inference for robust procedures
is in need of more attention not only in the time-series setting, but also in the
more classical contexts such as linear regression, etc. However, the construction of
useful finite-sample tests and confidence intervals has proved difficult enough in
the non-time-series setting, and the problem can hardly be any easier for the
time-series setting.

Franke and Hannan, and Tsay are quite correct in pointing out that one
should consider the purpose of the analysis when defining influence functionals.
Thus if one is concerned about prediction, then one should use an appropriate
influence functional IF, for prediction.

If one is willing to focus on prediction based on the “good” data x,, then the
following definition would be suitable. Consider the autoregression context: Let
¢(pY) denote the functional representation of the parameter estimates, and let
xT = (x;_y,...,%,,); suppose we use the linear predictor £,(u?) = x1o(pY).

Then

d
IF, = a;a’é,(,u})h:o = xTIF
where IF = IF(u,) is the influence functional for ¢(uY). It may be convenient to
use the square root of the average squared value of IF,:

AR (n,) = (E,IF?)"* = (IF7C,IF)"”,
where C, is the p X p covariance matrix of x,. It is easy to check that
y?>AIF2(p,,) is the squared-bias component of prediction mean-squared-error for
small v: oggp = 02 + Y2 AIFZ(p,,).

However, one would be considerably more interested in a measure of influence
for robust predictors which reflects the effect of outliersin (y;*)T = (y7.,,..., y1. »)
used as predictor variables, as well as the effect of outliers on the parameter
estimates. Correspondingly, we expect a robust predictor of the core value x; to
have the nonlinear asymptotic form

£ = g(yiy—h ¢(P«§,)),

where yY | = (¥ 1, ¥ 2,...). Predictors based on joint robust filter-cleaners and
AM-type estimation (Martin, 1981; Martin and Yohai, 1985) will have such a
form. Then one might define

9
IF, = a_yEn;gQ(yiy—v () )y=o-

Poor is interested in the possible use of IF’s in connection with long-memory
processes. Since long-memory processes of the type mentioned by Poor do not
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result in asymptotic bias for most parameter estimates, the IF is not a useful tool
for assessing the influence of such long-memory processes. For parameter estima-
tion problems where the rate of convergence can be maintained in the face of
variance inflation due to long-memory contamination (the notable case where
this is not so being that of the sample mean), perhaps an analogue of the
change-of-variance curve CVC (Hampel, Rousseeuw, and Ronchetti, 1981; Hampel
et al., 1986) would be a useful tool.

Lack on consistency and bias control. Robinson has made a number of
interesting comments and suggestions having to do with the issues of asymptotic
bias and the second-order structure of time-series contamination models. First of
all we should recall that the spirit of robustness is that of doing well near a
parametric model (see Huber, 1981; Hampel et al., 1986). In terms of contamina-
tion models “near” means not too large a fraction y of contamination, but the
contamination can be arbitrarily bad when it occurs. Obviously quite small y in
our (2.2) can give rise to m, and c(/j)’s that are quite far from the m, and
¢,(J)’s in Robinson (1)—(4). On the other hand, when v is small, the measures p.,
and p?, will be close in metrics which are suitable for robustness in the time-series
setting (see for example Boente, Fraiman, and Yohai, 1982). For this reason the
second-order viewpoint is not too appealing.

With a view toward asymptotics one can of course put down a richer, more
accurate class of models, perhaps from a second-order point of view as suggested
by Robinson, and then estimate everything in sight. However, some caveats are
in order. In the first place, the fact that we may have some knowledge of what
type of outliers may occur does not exclude the possibility that other types may
occur which we do not anticipate, and hence one may find it difficult to specify a
sufficiently rich model. Furthermore, we have not run into many situations where
the sample size is sufficient to render estimation of a rich outlier model a
practically realizable goal.

On the other hand there do seem to be many applications where the sample
size is nonetheless sufficiently large that squared bias will be the dominating
component of mean-squared error. In such situations bias control is a dominant
robustness consideration. Hampel’s approach of optimally bounding the influence
curve, pursued by Kiinsch (1984) in the autoregression context, takes a significant
step toward obtaining analytic results with regard to bias control. However, one
must remember the ICH and IF are infinitesimal in nature, as are optimality
results based on them. Global robustness results are also highly desirable.

To date the main focus of global robustness has been on the breakdown point
(see Hampel, 1971; Huber, 1981; and Hampel et al., 1986, for definitions). Indeed,
the problem of constructing (and computing) high breakdown point estimates has
been a lively area of research in recent years (see for example Rousseeuw and
Yohai, 1984; Hampel et al., 1986; Yohai, 1985; Yohai and Zamar, 1985). High
breakdown point estimates having high efficiency may well provide the preferred
approach in areas such as robust regression.

On the other hand, global bias optimality results have received little attention.
One approach to global bias optimality is to define an optimal bias robust
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estimate as one which minimizes the maximum asymptotic bias for a given
fraction of contamination y. In spite of Huber’s (1964, 1981) proof that the
sample median has this property (see also Section 2.7 of Hampel et al., 1986), the
approach has been essentially neglected. From recent results (Martin and Zamar,
1985; Zamar, 1985) it appears that min-max bias robust estimates, both with and
without an efficiency constraint at the Gaussian model, can be obtained in
situations such as estimating location, scale, and regression parameters with
independent observations. It is hoped that one can obtain similar analytical bias
robust solutions in the time-series setting. Again, the issue of how large a class P,
of contaminating measures one should use will arise. Both relatively narrow and
quite broad classes should be considered, in correspondence with a practitioner’s
state of knowledge.

We concur with Robinson that the identification problem should be taken
seriously, but our emphasis in this area would be somewhat different than his, as
reflected in the following comments on robust model selection.

Robust model selection. Franke and Hannan, Robinson and Tsay all
raise the issue of the interplay between model fitting and robustness, and
implicitly this raises the issue of robust model selection. This is a thorny issue
concerning which there is a notable lack of understanding, even in the ordinary
regression setting.

As Robinson has aptly pointed out, an (arbitrarily small) PR- or AO-type
contamination results in a more complicated model. A pure autoregression
becomes an ARMA model, and an ARMA model becomes an ARMA model with
a higher-order moving average component, etc. Similar effects will be caused by
almost any kind of contamination. The basic point is that in arbitrarily small
neighborhoods of an ARMA ( p,, q,) Gaussian model there will be non-Gaussian
ARMA (pq) models with p, g arbitrarily large—and as Robinson points out,
the covariances of the ARMA ( p, ¢) model may be quite far from those of the
ARMA (p,, g,) model.

As a consequence, one cannot, for example, expect any robust procedure to
asymptotically fit a finite-order autoregression to a contaminated time series y;
in which x; is AR(p,). However, GM, RA and (probably) AM estimates are
qualitatively robust in the AR case, i.e., a small fraction of contamination y will
produce only small biases (a proof for GM estimates is given in Boente, Fraiman,
and Yohai, 1982). Thus, for such estimates most of the estimated AR coefficients
will be small, and one expects that a good AR ( p) fit can be made with p close
to p,. Correspondingly, one expects to obtain a quite reasonable identification of
the order if a good robust order selection rule is used.

We propose that a robust model selection rule be constructed in the following
way. Let s,(p,q)=s,(p,q, &) be a robust measure of scale of the prediction
errors. Here n denotes sample size, and & is a robust estimate of the parameters
of an ARMA (p, q) model, with p < P,, ¢ < @,, and P,, @, nondecreasing in n.
Robustness of both & and s, are needed. Then choose p,, §,, to minimize

RMOD,(p,q) =s,(p,q)(1 + K,),
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where K, is a penalty term for overfitting. For a specific proposal using pure
autoregressive fits, see Martin (1981), where a robustified AIC-type statistic was
proposed and the efficacy of its use illustrated by example.

Let RMOD(p?, P, @) be the asymptotic value of RMODn( Dn» G,) when the
observations are y, ~ p), and P =1lim P,, @ = limQ,, P, Q finite or infinite, and
Po<P, q,<@Q where Bro is for an ARMA (p,, q,) model. The basic
requirement is that RMOD(-, P, @) be continuous at Ex,0 and preferably also
continuous at all p, in a nelghborhood of i, , (where it is possible that p, > P,
g, > Q). In fact it is desirable to be somewhat more nonparametric. Simply
assume that we agree to fit with ARMA (p,, q,) models, but that u, , is an
arbitrary stationary Gaussian measure. The basic robustness property of
RMOD(-, P, @) should still be the same.

It is also natural to require “Fisher” consistency in the sense that
RMOD(g, o, P, Q) = o2, where ¢ is the innovations variance of the ARMA
(P> o) model. One might then try to establish consistency of p,, g, at p, o.
(Because small biases are inescapable—unless one wants to be super-
adaptive—one cannot expect consistency of any model selection rule except at
the nominal model p, ,.) It would also be desirable to establish optimality
properties at p, , (see, for example, Shibata, 1980; Hardle, 1985).

Innovations outliers, intervention analysis, adaptivity, ete. Kiinsch
points out that (2.2) is not sufficiently general to include innovations outlier
models, which is certainly true. However, we regard this as relatively unim-
portant for the following reasons. First of all, though heavy-tailed symmetric
innovations distributions will produce outliers (of highly structured form), such
distributions will not result in asymptotic bias. Even asymmetric innovations
distributions will not result in asymptotic bias for GM and RA estimates of AR
models, provided an intercept term is included in the model (this will even be
true for ARMA models, but the RA and GM estimates will no longer be robust
without “truncation”—see Bustos and Yohai, 1986). Secondly, innovations out-
liers are often good in the sense that they are “good” leverage points which result
in increased precision for estimates of the parameters ¢,,..., ¢,, as has been
pointed out in earlier literature. Poor’s system identification problem provides
an interesting contrary case since the innovations are replaced by measured
system inputs u; which may be observed with contamination errors.

Of course, innovations outliers represent just one of several kinds of deviations
from a nominal Gaussian model which are often substantially different in
character from the kinds of contamination-type deviations we have focussed on.
Level shifts, changes in trend, a variety of other ‘“shaped” changes, and time-
varying parameters are among the problems West and Miller and Lee are
concerned with. These kinds of behavior certainly occur with some frequency in
economic time series, and in other subject-matter areas as well. It is clear that
the use of intervention analysis/structured dummy variables often gives good
results in those situations where shaped changes in a time series are attributable
to known causes.
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Wegman expresses his concern with the possibility that a robust method
might mask an effect which would be well accommodated by intervention
analysis. We consider, on the contrary, that robust estimates have two distinct
and useful roles in conjunction with intervention analysis. The first role occurs in
those cases where there is enough knowledge to specify an intervention form. In
such cases one in general still has no assurance that outliers will not cause
problems. This can be dealt with by adapting AM, GM, or RA estimates to
intervention models. The second role occurs in those situations where one
overlooks the possibility of intervention modeling, or where one is rather uncer-
tain about what intervention shape to use. A robust estimate will produce large
residuals in locations where an intervention should be applied (the AM
estimate /robust filter- or smoother-cleaner approach may be preferred in this
case). These residuals will help suggest the form of the intervention and therefore
enable its incorporation into the model. If, instead, a nonrobust procedure is
used, the parameters of the core model can be severely biased in an effort to
explain the overlooked intervention effects. As a result, examination of the
prediction residuals may not reveal the need for an intervention.

Of course the adaptive and Bayesian techniques proposed by West have
substantial appeal. We would emphasize that for forecasting purposes, one of the
most crucial needs is for a methodology which can assess whether or not unusual
behavior near the end of a series is passing in nature, or represents real changes in
the structure of the process (e.g., are the last few points additive outliers or
innovations outliers). A Bayesian approach is quite natural and appealing.
However, one difficulty is clearly paramount even when a user is able to specify
good priors: There will be relatively few data points with which to estimate the
unusual new structure, and hence even short term forecasts based on such
changes may not be very good. One must give an honest assessment of this to the
user. In general we would both push the Bayesian approach hard, and also force
the user to carefully evaluate multiple forecast options (including the associated
models and uncertainty). Perhaps this is the kind of thing West has in
mind—however, his 1986 references were unavailable to us.

We do question West’s almost total rejection of stationarity for economic time
series—this runs against the grain of a considerable amount of experience
according to which specialized adjustment for nonstationarity and structured
effects results in a stationary core process—and it is the parameters of this core
process which determine the confidence intervals for short-term forecasts. Also,
one must be careful that adaptivity does not become superadaptivity with little
precision or confidence in the model—the data can certainly be fitted too well
(see Los, 1985).

West is correct in saying that omnibus robust methods will in some cir-
cumstances tend to oversmooth the data, and this is an issue which one certainly
must pay attention to. It should be noted, however, that a good smoother-cleaner
(Martin, 1979) handles isolated outliers or short patches nicely (just as does a
good filter-cleaner, e.g., as in Martin, Samarov, and Vandaele, 1983) while at the
same time making rapid transitions (not oversmoothing.) at level shifts (where a
filter-cleaner may result in smearing of the shift). Furthermore, we would never
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recommend blind use of an “omnibus” method to the exclusion of other reason-
able procedures.

In fact, one needs a variety of methodologies, robust and otherwise, at one’s
disposal, and the good data analyst follows Tukey’s dictum of multiple analysis.
Among the methodologies we should have in hand are those which combine
robustness with other features. For example, in answer to one of West’s ques-
tions: The extension of robust methods, particularly AM-type estimates (see
Martin and Yohai, 1985), to cover estimation of the fixed parameters in the
dynamic/time-varying parameter problem seems quite feasible. Also, we do not
see any problem in applying the current IF concept to estimation of the fixed
parameters in dynamic models with time varying parameters.

West raises some very interesting questions about outliers and binary time-
series models, about which we have not thought very much (but are stimulated to
do so very soon).

Some of the questions raised by Miller and Lee have been covered by our
preceding discussion, and we shall respond to a few others. It is true that we
should assume joint stationarity of (x,, w,, z)). Note, however, our comments
above concerning IF’s for nonstationary processes. With regard to assumptions
on the estimator sequence {T,}, consistency is the main requirement. The
important point with regard to the domain of T is that T(pY) be well defined by
(3.3). The fact that ICH is defined for measures that are not stationary and
ergodic is quite consistent with the fact that, in general, the directional derivative
of T in the direction determined by §, is not the same as the derivative IF along
a stationary arc.

While it is true that outliers with no assignable causes may deserve to have
full weight, it is equally true that they may deserve to be downweighted. One
must distinguish between downweighting in estimating structural parameters
and downweighting for estimating error variances and for forecasting. There is
usually little harm in downweighting for estimating structural parameters—
at most some efficiency is lost. Forecasting is quite another matter, which we
have commented upon above. With regard to error-variance estimates: it is true
that a robust residuals scale estimate can result in a considerably smaller
estimate of variance of future observations than the usual sum-of-squares esti-
mate. However, how much reliability will one put on the latter type of estimate
when it is influenced quite heavily by a very small number of observations?

With regard to the above issues, the recognition of PR- and AO-type behavior
versus innovations outliers- (I0) like behavior is relevant. Miller and Lee cor-
rectly note the difficulty of assessing AO structure using conventional methods,
and the poor quality of ARMA(], 1) least-squares fits in such situations. The
latter point is hardly surprising since the ARMA(1, 1) structure may often be
determined by just a small fraction of observations, and only a very large sample
size would then result in good estimates via a least-squares/second-order fit.
Robust estimates on the other hand have at least some useful role in both
supplying good parameter estimates and checking for 10 versus AO structure.
Some evidence concerning the latter point is provided by Martin and Zeh (1977).

We would also address an attitude which permeates the Miller and Lee
viewpoint—and which is held by others, particularly those who concentrate on
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analysis of economic time series. Namely, “the analyst knows enough about his
data to provide sufficient model structure to accommodate all conceivable prob-
lems, including contamination by outliers” (take away a competent statistical
modeling capability, and this becomes a rather antistatistical attitude). Thus
robust techniques are not needed, they probably are not to be trusted anyway,
and they certainly are not completely developed. True, some analyst will do quite
well without robust techniques most of the time. However, our experience is that
many will do not so well much of the time, and this group will often benefit from
the availability of good robust techniques to aid their analysis. Even the first
group will sometimes benefit from the use of robust procedures by virtue of
discovering the difficulties in the data more quickly.

Although the last sentence of Miller and Lee makes a valid point, it also
reveals a certain myopia concerning the nature of the universe of time series. This
universe is incredibly large and diverse, and the “other events” which impact
economic time series would be regarded as highly specialized by a radar engineer
(who might be concerned with real-time problems) or an oceanographer, for
example. We can think of many users who would be quite delighted to have
available robust estimates which promise only good estimates of parameters of
core processes.

Finally, we certainly do not believe that robust procedures are a be-all and
end-all. They are simply an often useful statistical tool which should be on the
shelf with other standard statistical methods for the user to choose. Intervention
analysis and other modeling techniques, such as those of West, and robust
estimation for time series are methodologies which can and should live happily
next to one another, and as such they will be mutually complimentary.

Donoho’s comments. Although not a formal discussant, Dave Donoho has
raised a number of very interesting questions concerning our paper. We respond
to some of them here. The first has to do with the relationship between IF and a
“Hampel” influence curve IC = IC,(») defined as the directional derivative of
T(u) at p, in the direction of statlonary ergodxc measures » (rather than in the
direction of nonstationary point masses §, as in (4.1). With p, = (1 — y)p, + v,
we have

T =\
1C,(») = lim () (ux).
y—0 Y
Let A, be the linear functional (defined on the set of signed measures for which
ICH is lntegrable) given by
A,(v) = [ ICH(y,,t,) dv.
Then A, (v) = IC,(»), and Theorem 4.1 states that

IF(V‘w’T’ {”’}'}) = AI-”x vy = Bye) = A#x(”;)’

where
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and A, (p,) = 0. The tangent line to the arc pY at y = 0 is given by
V} = (1 - .Y)p‘x + ‘YV;‘

Although v} is a signed measure, it is not necessarily a probability measure and
it need not be bounded. Thus IF does not in general have any heuristic
interpretation as IC,(v) = A (v) with » such that p, = (1 — y)», + y» corre-
sponds to a mixture of processes. Furthermore, we do not see any simple way to
determine A, (v) using the values of A, (») with » ranging over the class of
stationary ergodic measures.

Nonetheless a “long-patch” interpretation suggested by Donoho is correct: If
v is an ergodic stationary probability measure, and uY k is the probability
measure corresponding to a process y’* defined by observing patches of length %
of a contaminating process with measure » a fraction of time y, and observing the
nominal process x; the rest of the time, then under regularity conditions

A,(v) = lim IF(»,T, {uy*}).

Donoho has also suggested that it would be interesting to determine GES’s
using the largest natural class P of measures in (6.1), which would be the class of
all possible arcs {uY} corresponding to processes defined by (2.1) and (2.2). The
corresponding “least-favorable” measure would appear to be of considerable
interest. It follows from our comments above that the GES in question is given
by

GES= sup |A, (),
vy eP*

where P* is the family of all stationary ergodic signed measure »} as specified
above. Unfortunately, it appears at the moment to be difficult to compute the
least favorable measure 7. It seems likely that the least favorable arc {5} will
correspond to a process yY with z} depending on the nominal process x;, the
reason being that GES should be attained by placing outliers where they will be
most harmful and this would depend on x;. Thus the least favorable arc may
correspond to a rather complicated process. Perhaps some real effort here will
nonetheless pay off.

One other question raised by Donoho was “What does a fixed finite patch
length, say k = 20, mean, when the sample size goes to infinity?” Let’s focus
briefly on GM estimates of order p autoregressions for simplicity, where the
estimate has a “span” of p + 1. Then the length % of the patch relative to the
span p + 1 determines the proportion of end effects of the patch relative to
the estimate (an end effect occurs when the patch does not cover the entire span),
and thus & should clearly affect IF.

In the general case one also expects IF to depend upon k, and furthermore
patch length effects have their own asymptotics (see Theorems 5.2(ii) and
Corollary 5.3 of Martin and Yohai, 1984b): patch length asymptotics have set in
when £ is such that

k
Z ‘I’(Wzl,xo,to) = E‘I‘(Wpto)-

i=1

1
k
This depends on: (i) How fast $(w,x,,t,) is approximated by J(w,, t,), and
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(ii) how fast the ergodic theorem holds for &~ 'TX {(w,, t,). Factor (i) depends
upon the patch length and effective span of 4.

Vote of thanks. Borrowing on a nice tradition of the Royal Statistical
Society, we offer our vote of thanks to the discussants.

Acknowledgment. The authors wish to thank Adrian Raftery for some
useful comments made during the preparation of this rejoinder.
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