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The authors are to be congratulated on a succinct mathematical development
of time series influence functionals that generalises and usefully extends existing
concepts and techniques of classical robustness. The definition directly caters to
the types of outliers specific to time series and reflects the authors’ experience
with practical modelling and analysis using robust techniques. Central to the
paper is the general replacement model for linear (gaussian) series which, to my
mind, is the most interesting contribution. There are many ways of representing
the various outlier types associated with time series, all closely related to this
general model. My own preference is for the simple, state space type of model,
which allows for the various outliers hierarchically. Such a model is

Y,=2,+v,
(1) Z,=X,+4,
X, = Gt(Xt—l) + W,

where Y, is the observed series; v, is a zero mean observational noise process,
typically comprising independent errors; X, is the core process defined as a
function of X,_; = {X,_,, X,_,,...} and the process evolution noise w, and 9,
represents a superimposed contamination process. Additive, or purely observa-
tional, outliers are modelled by large », and changes in the core process X, are
modelled by large w,. The 8, process introduces patchy outliers that may be
viewed as purely stochastic or related to independent variables via regression or
transfer function effects.

Models such as (1), and more complex versions of them, have been used
extensively by Bayesian forecasters in applications where protection against
additive outliers and adaptation to changes in the Z, process, via 8, or w,, are of
importance. The authors are, of course, familiar with this approach but, in their
current paper, part company with Bayesian forecasters in important ways. In
my opinion the techniques proposed are most appropriate for fast processing of
long series of observations with short sampling intervals when a sustained,
stationary core process is evident. Such applications may arise commonly in the
engineering fields with which the authors are familiar. In such areas, where
interest centres on the estimation of the stable core process and large amounts of
data are available, the dominating data smoothing feature of robust techniques
is very relevant. Otherwise, the objectives of the time series modelling activity
must be more carefully considered. Models such as (1) are directly geared to the
specific operational requirements of sequential forecasting that is a primary goal
for Bayesian modellers. Here the ability to detect and distinguish the various
outlier types and adapt forecasts appropriately is paramount. Omnibus robust
methods would tend to oversmooth and hence obscure the local behavior that is
so relevant in short-term forecasting. Simple sequential techniques for outlier
detection, intervention and adaption to change are described in West (1986) and
applied in dynamic Bayesian forecasting by West and Harrison (1986). The
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occurrence of patchy outliers, and possible explanation using independent vari-
ables hitherto omitted from the model, is of great interest in improving forecasts,
with the emphasis on identifying and estimating the 8, process and its develop-
ment into the future.

A related point of contention is the assumption of a stable core process
defined by constant parameters whose estimation is the primary goal. A key
underlying principle in dynamic Bayesian modelling is the rejection of stationar-
ity in general and the associated allowance for parametric changes over time.
Unlike the above mentioned engineering application areas, business and eco-
nomic series, typically rather short in length, exhibit only local stability, global
nonstationary, with both sustained, steady, small changes and more marked,
abrupt changes in defining parameter values. Thus the primary goal of the
author’s robust estimation techniques would appear to be limited in scope for
application. Can it be adapted to allow for dynamic parameters changing over
time? This would be particularly important if independent variables were to be
incorporated. Change over time of regression coefficients is not only expected as a
general, steady dynamic, but also vital in allowing for the unpredictable effects
of further related variables not recognised as being of importance.

The authors may be interested in considering extensions of their techniques,
and their outlier models, to nonstandard problems such as those arising with
non-gaussian processes. Outlier models apart, there are important questions
raised as soon as the non-gaussian nature of time series is admitted. Suppose for
example, that the series is discrete, or simply binary. Binary series arise both
naturally and by construction in many areas. Particular examples, quite common
in applications where data rates are high, and data reduction necessary, concern
series derived from underlying, continuous processes via clipping operations.
Specifically, if Y, is such a basic process, a binary series S, is derived by clipping
Y, at level A if S, has the representation

g [b if Y,> A,
t7 0, ifYy<A.

Clearly the theoretical characteristics of the S, series may be derived from any
suitable continuous time series model for Y,. In the outlier modelling framework,
models such as (1) should produce interesting contaminated binary series.

My own approach to practical modelling for non-gaussian series has, however,
been somewhat different, being based on the development of dependence models
for the S, series directly. In the binary case, the family of dynamic generalised
linear (and nonlinear) models introduced in West, Harrison and Migon (1985)
provides a rich class of process structures currently under study. As a simple
example, a first order autoregressive type of model for S,, that parallels the
standard linear, gaussian state space model, is given by taking

P(S,=1m)=m (0<m<1),
where, setting Z, = log(w,/(1 — 7,)), then
(2 Z,=¢Z, \ + o,
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for some (gaussian?) noise sequence w,. Thus the unobservable AR process Z,,
provides the “success” probability for S, after transformation. Generalisations to
higher order processes, transforms other than the log-odds, and time-varying
parameters (¢, rather than simply ¢), are evident. The outlier model (1) can now
be extended to this binary series by a minor extension of (2) to

Z,=X,+8,
X, =¢X, , + o,

incorporating changes via w, series, patchy outliers, and, now, observational
outliers through appropriate models for the §, series. The only point of signifi-
cant difference between this model and (1) is that the sampling model is now
Bernoulli, rather than gaussian, which leads to a slightly different view of the
way in which observational outliers are generated. A closely related, but struc-
turally quite different, class of models for binary series provides for dynamic
evolution of transition probabilities in Markov chains. The first order case, for
example, has a basic model for P(S,= 1|m,) as above, but, instead of the
continuous process model for the log-odds probability Z, in (2), a discrete version

(3) Zt = 0: + 651 + @

where 6, and ¢, are time-varying process parameters and w,, as usual, process
evolution noise. Concerning outlier models, a basic problem arises with (3) in
that the observations S, are fed back into the process model, so a little more
thought is required in modelling pure observational outliers. Perhaps the authors
have some comments on such problems.
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The discussants have provided us with more than ample food for thought
concerning a myriad of issues related to our work on influence functionals for
time series. Leading issues include the following: (1) Relationships and dif-



