The Annals of Statistics
1986, Vol. 14, No. 2, 759-765

CHI-SQUARE GOODNESS-OF-FIT TESTS FOR RANDOMLY
CENSORED DATA!

By M. G. HaBig? anD D. R. THOMAS

Oregon State University

Two Pearson-type goodness-of-fit test statistics for parametric families
are considered for randomly right-censored data. Asymptotic distribution
theory for the test statistics is based on the result that the product-limit
process with MLE for nuisance parameters converges weakly to a Gaussian
process. The Chernoff-Lehmann (1954) result extends to a generalized Pear-
son statistic. A modified Pearson statistic is shown to have a limiting
chi-square null distribution. *

1. Introduction. In this paper we consider the problem of testing the
goodness of fit of a parametric family {F(¢t; 8); 8 € O} of survival distributions
from arbitrary right-censored data. Pearson-type chi-squared statistics which
compare the Kaplan—Meier (1958) estimateAﬁ‘N( t) to the parametric MLE F(¢; 0 N)
are studied. The random functions N'/2[F\(t) — F(t; 8,)] are shown to have a
limiting Gaussian process, which generalizes the result of Breslow and Crowley
(1974) for NV2[F\(t) — F(t; 8)] where 0 is the true value. From this result
limiting distributions of the Pearson-type statistics are obtained. The limiting
process result may be of more general use than for the Pearson-type statistics
considered here.

We use the random censorship model. There are N pairs of independent
nonnegative random variables (X, U,),(X,, U},),...,(Xy,Uy), where the X'’s
denote failure times and the U ’s the random censoring times. The observed data
consist only of Y, = min(X; U;) and the indicator functions §; = I;x _y;; for
i=1,...,N. Let Hu) = P(U > u) denote the unknown absolutely continuous
survival function for the censoring variable and assume that the distribution of X
belongs to a family of absolutely continuous survival functions { F(x; 6): § € 0}
where © is an open set in k-dimensional Euclidean space R*. We consider MLE
6 ~ of the parameter 8 based on a random sample from the joint distribution of Y
and & with density function

(1) ‘ g(t,8;0) = [{(t; 0)H(t)]°[F(t; 8)h(t)]'°

with respect to the product of Lebesgue measure on (0, c0) and counting measure
on {0,1}, where f(¢; 8) and h(t) are the density functions corresponding to
F(¢; 0) and H(t), respectively.
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We consider generalizations of Pearson type statistics to randomly censored
data. Let 0 = ¢, < ¢, < --- < t, < oo denote boundaries for r + 1 cells. The cell
boundaries could be random, e.g., for specified survival probabilities P, we may
select £, satisfying F(Z,; 8,) = P, as our boundaries. The test statistics are
quadratic forms in the random vector

(2) Zy=NV*Fy - F),

where ﬁ’N = (F‘N(tl),..., ﬁ'N(t,))’ and Fy = (F(t; 9,\,), e, F(t, 9,\,))' are respec-
tively the product-limit estimator and the MLE for the survival function.

In Section 2 the product-limit process with estimated parameters ZN(t)

NV Z[FN( t) — F(t 0N)] is shown to converge weakly to a Gaussian process under
the null hypothesis H,: F(t) € (F(t,0); 8 € ©}. This generalizes the result of
Breslow and Crowley (1974) for a completely specified survival function F(t). In
Section 3 a modified Pearson statistic Q N(HN) and a generalized Pearson statistic
Q N(0 ) are considered [see (7) and (8)]. The modified Pearson statistic @ N(0 ) is
shown in Theorem 2 to have a limiting x? distribution. For uncensored data the
statistic @ N(0N) reduces to that proposed by Rao and Robson (1974) and Nikulin
(1973), with further development by Moore and Spruill (1975) and Moore (1977).
The limiting distribution of the generalized Pearson statistic @ N(ON) is shown in
Theorem 3 to be bounded by x2_, and x2 distributions, which is a generalization
of the Chernoff and Lehmann (1954) result. These asymptotic results hold for
random cell boundaries as well as for fixed cell boundaries.

Chen (1975) and Turnbull and Weiss (1978) proposed goodness-of-fit tests for
composite null hypotheses with randomly censored data. Chen considered a
generalized Pearson statistic Q(), of the same form as (8), based on a modlﬁed
minimum x? estimator #. The statistic @(#) was shown to have a limiting x2_,
distribution under composite null hypotheses. Turnbull and Weiss considered a
likelihood ratio test based on the more restrictive model where both the failure
distribution and the censoring distribution are assumed to be discrete with finite
support. Several tests have been suggested for the case of a simple null hypothe-
sis with randomly censored data; see Koziol and Green (1976), Hollander and
Proschan (1979), Fleming et al. (1980), Fleming and Harrington (1981), and Nair
(1981). For the case of Type II censoring (when censoring occurs at specified
ordered failures), Mihalko and Moore (1980) used sample percentiles as cell
boundaries to obtain Pearson-type tests of fit that have limiting chi-square
distributions for composite null hypotheses.

2. Weak convergence of the process ZN(t) Let the random function

Zy(t) = NV2[F\y(t) — F(t; )] be defined on an interval [0, T] where
H(T)F(T; 6) > 0. Breslow and Crowley (1974) proved that Z,(t) converges
weakly to a mean 0 Gaussian process Z(t) with

2; 0
(3) Cov(Z(t), Z(s)) = F(t; 0)F(s; 0)-/ 1?([)(1’12(—2),0)&

for0<s<t<T.
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To show weak convergence of Z, ~(2) we make the following assumptions:

(A1) F(t; 0) and f(¢; ) are twice differentiable in § with continuous deriva-

tives.
(A.2) The information matrix J = J[8, H] satisfies

d%1In f(t,0 d*In F(¢,9)
Ht t;0)dt — | —————F(t; 0)h(t) dt
=~ [0 HOH(E 0) dt - [——5a=g==F(t 0)h(2)
for 7, j = 1,..., k, is positive definite, and is continuous in 6.

(A.3) The MLE 0, exists and is efficient with N'/2(8y — 0) = J "Wy, + 0p(1),
where W), is the normalized score vector

N .
Wy -1/2 2 dIn(g( 80’ 5;0)) ’

THEOREM 1. Let T < oo satisfy H(T)F(T; 6) > 0 for 6 € ©. Then, under
the Assumptions A, the random function ZN(t) for 0 <t < T, converges
weakly to a mean 0 Gaussian process 2(t) with

Cov[Z(s), 2(¢)]
dF(s; 0)’J_1 aF(¢t; 0)

= Cov[Z(s), Z(t)] — 90 36

for0<s<t<T.

ProOF. Expand Z (&) around 9N = 0 to give
(4) Zn(t) = Zy(t) + Z3(¢t) + Ry (t),

where

daF(t; 6 A
zi(0) = 50 jua(a, o)

and R ,(t) — 0 in probability uniformly in ¢.

First we show convergence of finite-dimensional distributions of Z,(¢) + Z,"(,(t)
For an arbitrary partition 0 < ¢, < .-+ <t, < T, let Zy = (Zn(t,),-.., Zn(L,))
and Z} = (Z}(t,), ..., Z}(t,)), so that Z* = BN 1/ %(8y — 0), where the elements
of B are B;; = 8F(t 0)/36,. The components of Zy and of N'2(8,, — 0) can
each be written, to order op (1) as a normalized sum of continuous functions of
(Y}, 8,),...,(Yy, 8y). This follows from Breslow and Crowley’s (1974) results
(7.9), (7.12), and Assumption A.3, respectively. Hence, from the Central Limit
Theorem, we have

0 [l o] lEl2 )

where the elements of V are glven by (3) with V;; = Cov[Z(¢,), Z(¢;)] and J is
the information matrix given in A.2. Hence Z, = Z -2=7Z+ Bn ~ N(O, %).
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Further, ¥ can be evaluated without direct computation of C in (5) as follows.
Under A.1-A.3 it follows from the result of Pierce (1982) that Z and 7 are
independent, and thus that V = ¥ + BJ~'B’. This gives the main result here
that

(6) Var(Z) =% =V - BJ 'B".

Having shown this, the weak convergence of Zy(¢) + Z%(t) will then follow
from marginal weak convergence of Z(¢) and Z}(¢) to continuous limits; see, for
example, the argument used by Breslow and Crowley (1974, Theorem 4). The
convergence of Zy(t) is a standard result and that of Z%(t) is clear, since it is a
nonrandom vector function of ¢ multiplied by a random vector (free of ¢) with a
limiting distribution. O

3. The test statistics. Let V and il denote respectively the estimators
obtained from the covariance matrices V and ¥ by replacing 6 by the MLE 0
and the censoring distribution H by the product-llmlt estimator H. N

The modified Pearson statistic is defined as’

(7) Qn(by) = Zz’vi_IZN
and the generalized Pearson statistic as
(8) QN(éN) = ZIIVV_IZN-

The limiting distributions for these test statistics are developed in the following
two theorems. The arguments are given for fixed-cell boundaries first, with
subsequent extension to random-cell boundaries.

THEOREM 2. Under composite null hypotheses, Assumptzons Al1-A3 and
that ¥ is of full rank r, the statistic QN(0N) has a limiting x2 distribution.

Proor. The components V, B, and J are each continuous in 6. It can be
shown that V is continuous in H with respect to the supremum metric over that
interval [0, T'] and <J is continuous in H with respect to the supremum metric
over the interval:[0, o0). Since f, and H, are consistent estimators it then
follows that ¥ and i converges in probablhty to V and ¥, respectively. Theorem
1 can then be used to complete the proof. O

THEOREM 3. Under composite null hypotheses, Assumptions A.1-A.3 and
the assumption that the gradient matrix B is of full rank (k) the statistic Q y(6y)
has a limiting distributions which is bounded by x?_, and x2 distributions.

PROOF. From Theorem 1 and the convergence of V to V in probability it
follows that @ y(8y) =, Z'V~'Z, where Z ~ N(0, £). Let A be a diagonal matrix
of eigenvalues of V and P the corresponding orthogonal matrix of eigenvectors.
Then let A* be a diagonal matrix of eigenvalues of A~'/2P’¥PA~'/? and P* the
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corresponding orthogonal matrix of eigenvectors. We can then write
r
(9) ZV-Z =Y \§2,
i=1

where the £,’s are independent N(0,1). The eigenvalues A% satisfy the equation
0 =| PAV2(A~2P'SPA1/2 - NAT)A/2P|
=|E-AV]|
=(-1)*BJ'B' - (1 - AH)V]|.

To conclude the proof, note that the nonzero roots of*|BJ 'B’ — uV| = 0 and
those of |B'V™!B — udJ| = 0 are identical [see Rao (1973, page 68)] and BJ ~'B’
and B’V 'B are nonnegative definite implies that (9) reduces to

k r
VIZ= Y 8N+ X &,

i=1 i=k+1

where A; € (0,1)fori=1,..., k. O

The treatment of random change of time on pages 144-145 of Billingsley
(1968) can be applied here. He shows that if ®, is a random monotone function
which converges in probability to a function ® w1th ®, and ® having the same
finite domain then the random composite function Z n ° @y converges weakly to
the Gaussian process 7 o ®. The asymptotic distributions of the test statistics § N
and @, given in Theorems 2 and 3 then hold for random partition points which
depends on ®,. For example, in our chi-square goodness-of-fit appllcatlon one
can truncate the fitted survival function at ¢ = T and define F*(t 0N) = F(t; 0N)
for — oo < t < T and 0 otherwise. Then use ®(P) = F*~{(P; §) for0 < P < 1
to produce random cell boundaries based on specified values on the survival scale
1>P > -+ > P >0. For a sample of size N one mlght need to reduce the
number of cells from r* to #y where fy = max{i: F* " (P; by) < T}. Then 7y
converges in probability to r where r = max{i: P, > F(T 0)} The asymptotic
distribution of the test statistics Q ~ and @, then holds for the random partition
points £y, = F* (P, 8y).

4. Computation. Let there be ¢ censored observations with censoring times
tf <ty < --- <{t;. Define t; = 0 and ¢},, = 0. Let m(s) = max{j; ¢/ <s}.
Then, the uncorrected covariance matrix V and the generalized Pearson statistic
Q N(é ) reduce to the following simple forms:

‘A/ij = F(ti; 9N)F(tj; 9N) (zi

and

Qully) = NE (By(ti)/F(ti: By)  Fult)/F(t 0)) /(d— d,_,),

i=1
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where

yraN)
4= fH(y)F )

dy

m(t,)
= g] {l/F( oN)_l/F(j 1 N)}/ISIN(tJ*)

+{1/F(t;1kz([,); éN) - 1/F(t; 9N)}/H ( m(t))

Unfortunately, the computation of the modified Pearson statistic QN( 9N),
which uses the corrected covariance matrix i is not as simple as that of @n( 0N)
However, one could take advantage of the identity i’ V-1 + C, where
¢ = V BBV 'B—-J)- lB'V‘1 to get QN(ON) = Qn(8y) + Z),CZ,. Thus, if
QN( 0N) is greater than x(r « then Qn(8y) would be also. Further, because
7 ;VCZ v is bounded by x2, it following that, if Qn( 6y) is less than x2_,(«) then
Q N(GN) would be less than x%(a). Hence, Qy(8y) need only be computed when
X2 a) <@ N(ﬂN) < x%(@). In such a case, the components of the information
matrix o are required. They are given by .

c+1
th = Z HN(t;k—l){Kij(t;:l) - Kij(t;k)}
=1
<+l 9%In F(t*; 8y)

- IZ BT (U by) {Hn(t1) — Hy(8)),
-1 i 09

where
N s92In f(¢; 0y) A
K. =[] —f(¢; 6y) dt
lj(s) /(; aal 801 I( ’ N)

These components, K ;;(8), require numerical integration in some applications,
for example the two-parameter Weibull and gamma distributions.
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