The Annals of Statistics
1986, Vol. 14, No. 2, 753-758

AN EFRON-STEIN INEQUALITY FOR NONSYMMETRIC
STATISTICS!

BY J. MICHAEL STEELE

Princeton University

If S(x,, x5,..., x,,) is any function of n variables and if X;, )2',, 1<i<n
are 2n ii.d. random variables then

n
varS<lEY (S-8)7,
i=1

where S = §(X), X,,..., X;,) and S, is given by replacing the ith observation
with X,, so S; = S(X,, X,,..., X;,..., X,,). This is applied to sharpen known
variance bounds in the long common subsequence problem.

1. Introduction. In Efron and Stein (1981) the following result was estab-
lished: If S(x,, x,,...,%,_;) is a symmetric function of n — 1 variables and
X,, X,,..., X, are independent, identically distributed random variables then for
S, =8(X, Xy,..., X; 1, X;11,-++, X,) and S = n"'L"_,S,, one has

(1.1) varS(X,, X,,..., X, ) <EY. (S,- S)°.
i=1

This inequality was motivated by a desire to understand the nature of the bias
in the jackknife estimate of variance, but it has also proved useful in the
probabilistic analysis of algorithms, Steele (1981, 1982b). There have been exten-
sions of the Efron-Stein inequality to the case where one drops out more than
one observation from S (Bhargava (1980)), and there have been new proofs of the
result by Karlin and Rinott (1982) and Vitale (1984).

The purpose of this note is to establish an analogue to (1.1) which is not
burdened by a symmetry hypothesis. It will be proved using the Hilbert space
technique introduced in this context by Vitale (1984).

Finally the inequality is applied to a problem of string comparisons by means
of long common subsequences, a problem considered at length in Sankoff and
Kruskal (1983). The best known bound on the variance of the longest common
subsequence is improved, and a new k string comparison problem is introduced.

2. Main results. Let S(x,, x,,..., x,) be any function of n arguments and
consider the statistics formed by

S=S(X, X,,..., X,,)
and S;=8(X,, X,,..., X, 1, X, X, 1,..., X,) where the X, and X, are 2n
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independent random variables with the distribution F. In other words, the S, are
formed by redrawing the ith datum independently and then recalculating S. We
will prove the following inequality:

n
(2.1) varS<!EY (S-S
i=1
First we can check that there is no loss of generality in assuming that
ES? < co. To do this, consider new variables which resample the first i observa-
tions, so S; = S(X,, X,,..., X;_ 1, X;, X;,1,---» X,,), where X; and X;,;,1 <i<n
are 2n ii.d. random variables. Setting S, = S, one has by Schwarz’s inequality
that

var(S) = }E(S - 8,)
(2.2) = %E( Z (Sz - §i+1))

n nf.l R R 9
< (5) Y E(S -8,

Since S, — S, has the same distribution as S — S, ,, we see from (2.2) that
the right-hand side of (2.1) is infinite unless varS < oo. This shows (2.2) holds
when ES? = o and thus lets us focus on the case ES? < co.

By elementary Hilbert space theory we know that there are functions ¢, such
that ¢o(x) =1 and E¢,(X)¢,(X) = §,,, i.e., we choose ¢,, 0 < k < o to be an
orthonormal basis for L%(dF). Further, if we let k = (&, ko, ..., k,) denote a
multiindex then the variables defined by

¢k(X) = (pk(Xl’ XZ"“’ Xn) = 1:[1¢k,(Xi)

are orthonormal and there are constants c(k) such that

(2.3) S(X,, Xypos X,) = Le(k) by X)
k

holds almost everywhere. Here we have just expressed S in what is sometimes
called the tensor product basis for L% dFdF --- dF). By orthonormality we
have ES? = ¥, c?k) and varS = X, . ,c%(k). All we need now is to relate these
identities to the right-hand side of (2.2).

Without loss of generality we can assume that ES =0 so c(k) =0 if k =
(0,0,...,0). We first note that E(S — ;)2 = 2ES? — 2ESS,. When X; is sub-
stituted into (2.3) to give an expansion for S; we see that

(2.4) E(SS) = X c*k),

k: k,=0

since the orthonormality of the ¢,(X;) and the independence of

A

X, X,,...., X,,..., X, and X, cause all other summands to have expectation

l
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zero. Summing over i we have

(2.5) EY (S-8,)"=2nES? - 2Y c(k)z(k),

i=1 k
where z(k) = X7, I (k; = 0), i.e., 2(k) is equal to the number of indices k; of the
multiindex k which equal zero. Since we were able to assume that c(0) = 0, we
have z(k) < n — 1 for all ¢(k) # 0. This is a crucial observation, which applied to
(2.5) gives us

(2.6) EY (S—8,)°>2nES? - 2(n—1)Y.c%(k) = 2ES?
i=1 k
which completes the proof of the main result.

One can easily extend this result to the situation where one redraws m
observations, i.e., one considers S(X,, X’il, e, Xim, ..., X,). We let [m] denote a
subset of {1,2,..., n} of cardinality m and denote by S;,,; the statistic obtained
by replacing Xi/ by Xi! for i; € [m]. The extension we seek for (2.1) is the
following:

(2.7) (r’; ~ 11 )varS < %E[%:,](S ~ Smy)”

The observations that we can assume ES? < o, ES =0, and S =
Yc(k)¢ (X) go on just as before. Now in calculating ESS;,,; we get
Zkea[m]cz(k) where G[m] is the set of all k such that k2, = 0 if i € [m]. Hence
using E(S — S[m])2 =2ES? — 2ESS;,,; and summing overall m subsets [m]
contained in {1,2,..., n}, we get

1 2_(n 2 _ 2 z(k
£ 2 (5 = Si) = (2)Es Te (k)( (m))

> (I )Es? - (n;tl)%c?(k) - (n70 s

This completes the proof of inequality (2.7).
Before attending to applications it is worth recording two key remarks.

(1) The arguments x; of S need not be real numbers, or for that matter even
vectors, although the case of vectors is by far the most important. The proofs
of (2.1) and (2.7) depend on the structure of the arguments x; only in the very
shallow sense that we need L%(dF) to have a countable basis.

(2) The inequalities (2.1) and (2.7) are both sharp as one can see from choosing
S(xy, X9y .00, %,) =20 1%,

3. Applications to long common subsequences. A benefit of the two
variance bounds of the last section is that they provide reasonably tight bounds
on the variances of statistics which may be computationally difficult or even
intractable. One illustration comes from the theory of string comparison.

The length of the longest common subsequence of the two random strings is a
statistic which arises in an amazing variety of fields from biology to computer
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science (see, e.g., Sankoff and Kruskal (1983)). Formally, we consider 2n indepen-
dent, identically distributed random variables X; and X, 1 < i < n, which take
values in a finite alphabet <7, and let

L,:= max{k: X, =X,X;,= X ,..., X;, = X| where
1<i<iy< -+ < <nandl<j, <j,< -+ <j,<n}.

Chvatal and Sankoff (1974) initiated the asymptotic study of EL,, proved that
EL, ~ cn, and established some bounds on c¢. Much subsequent work has been
done on ¢ by Deken (1979) and Gordon and Arratia (unpublished).

The most intriguing special case is that of coin-flip sequences; that is where X;
and X/ are independent random variables with success probability ;. In that case
the value ¢ =2/(1 + V2) is consistent with all of the¢ known bounds and
computational experience. This tidy expression was put forth by Richard Arratia
and subsequently we found the following suggestive heuristic.

By a “good k pair” we will denote any pair of subsequences of length % of the
X; and the X/ which coincide. We let Z denote the total number of good % pairs
which can be found in the two n strings of the X; and X/, 1 <i < n. The
expectation of Z is easily determined, -

E(Z) = 2*k(2)2

and, by considering ratios of successive choices of %, it is easy to see that E(Z) is

unimodal and the mode occurs for that integer value of % nearest n/(1 + V2).
We can also get a handle on the number of good % pairs by noting that every &

subsequence of the longest common subsequence gives a rise to good %k pair, so

there are at least L, of them. Now by the usual unimodality of the binomial

coefficients, as k& varies this sequence is unimodal with mode equal to the nearest
integer to L, /2. The heuristic leap of faith is that in expectation these two modes
are within a distance of o(n) of each other. A proof of that leap would prove that
Arratia’s suggested value for c is the correct one.

A second interesting problem concerning L, is the conjecture of Chvatal and
Sankoff (1974) that var(L,) = O(n?/3). It was put forth in Steele (1982a) that
var(L,) < (n'/? + 1)% As an illustration of the power of (2.1), we can now give
an easy proof of the stronger result,

(3.1) varL, < n;

in fact we can show

(3.2) varL, < n(l -y pf),
aEY

where p, = P(X,=a) = P(X, = a), for a €. Since ¥, .,p,., we have
YoewspPi>|"". To get (3.2) from (2.1) we consider S = L(X,, X,,...,
X,, X;, X;,..., X,) and consider S as a (nonsymmetric) function of 2n variables.
Changing any one of those variables will change S by at most one. Moreover if,
say, X, is replaced by X; then P(X; = X,) = Xp? so P(S =S;) > Lp2. These
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two facts give us E(S — S;)? < 1 — L p? and there are 2n such summands, so we
have established (3.2). This is a long way from the conjectured var L, = o(n?/?),
but it is the sharpest known result. The ease with which it comes from (2.1) is
surprising if one initially studies L, from a combinatorial perspective like that of
Chvatal and Sankoff (1974).

It is tempting to try to improve (3.2) by use of the change-m inequality (2.7).
To do so would require improving the naive bound

E(S = Sppy)’ < m?,

since this bound leads only to a variance bound given by the ratio m(n — 1)(n —
2) -+-(n— m+ 1)/(m — 1)!. This bound is not even linear in n for fixed m > 2,
and trying to optimally choose m for fixed n does not: help since the bound is
minimized for m = 1. One seems to need new combinatorial insights to improve
the naive bound on (S — S;,,;)*, and thus to use (2.7) with effect.

It is likely that (2.7) is in fact sharper than (2.1). Karlin and Rinott (1982)
found that to be the case with the Bhargava (1980) version of the original
Efron-Stein inequality and there is no reason to expect our version to break with
tradition. ,

The hard part of using (2.7) is not a lack of sharpness but rather an excess of
complexity. One has to find a way to get strong information on how L, changes
as one changes a substantial part of the sample. This is harder than getting a
decent bound on the possible variation due to changing a single observation.

The longest common subsequence problem has a natural analogue for & strings
for which much of the preceding theory goes through with little change. One
benefit of the k string analogue is that it gives a second handle on the constant c.

To define the simplest incidence of the k-sequence problem we consider k2 = 3;
let Y, = (X, X/, X/’) and set

L, =max{t: X, = X} = Xp,..., X, = X} = Xii)»

where 1 <i, <iy< -+ <i,<n,1<j,< -+ <j,<n 1<k < - <k<
n. The same proof that Chvatal and Sankoff (1974) give for 2 = 2 will show that
lim EL,/n = c4
n— oo

and the same proof given by Deken (1979) shows that L,/n — c,, almost surely.
It would be of interest to relate c; to ¢, and one is tempted to speculate that
c; = c? (and more generally that c, = c*~'). Computational evidence does
not yet rule this out. The application of (2.7) to this new functional gives
var L, < 2n(1 — Lp?) in the case £ = 3. Again, this seems difficult to improve.

Acknowledgments. I am indebted to Michael Waterman and Louis
Gordon for stimulating this work, and to Richard Arratia for his comments on

c=2/(1+2).
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