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TESTING FOR NORMALITY IN ARBITRARY DIMENSION

BY SANDOR CSORGO

Szeged University and University of California, San Diego

The univariate weak convergence theorem of Murota and Takeuchi
(1981) is extended for the Mahalanobis transform of the d-variate empirical
characteristic function, d > 1. Then a maximal deviation statistic is proposed
for testing the composite hypothesis of d-variate normality. Fernique’s in-
equality is used in conjunction with a combination of analytic, numerical
analytic, and computer techniques to derive exact upper bounds for the
asymptotic percentage points of the statistic. The resulting conservative large
sample test is shown to be consistent against every alternative with compo-
nents having a finite variance. (If d = 1 it is consistent against every alterna-
tive.) Monte Carlo experiments and the performance of the test on some
well-known data sets are also discussed.

1. Introduction. Beside the permanent interest in testing univariate nor-
mality, recent years have witnessed a large increase of interest in the correspond-
ing equally important but more intricate problem of testing for multivriate
normality. The work of Weiss (1958), Anderson (1966), Cox (1968), Healy (1968),
Wagle (1968), Wilk and Gnanadesikan (1968), Day (1969), Mardia (1970, 1974,
1975), Andrews, Gnanadesikan, and Warner (1971, 1972, 1973), Malkovich (1971),
Aitkin (1972), Gnanadesikan and Kettenring (1972), Kessel and Fukunaga (1972),
Dahiya and Gurland (1973), Malkovich and Afifi (1973), Mardia and Zemroch
(1975), Giorgi and Fattorini (1976), and Hensler, Mehrota, and Michalek (1977)
has been discussed in detail by Gnanadesikan (1977, pages 161-195), Cox and
Small (1978), and Mardia (1980). The proposals by Sarkadi and Tusnady (1977),
Small (1978, 1980), DeWet, Wenter, and van Wyk (1979), Pettitt (1979), Rincon-
Gallardo, Quesenberry, and O’Reilly (1979), Hawkins (1981), Moore and
Stubblebine (1981), Yang (1981), and Koziol (1982, 1983), not covered in the three
surveys, are either continuations of earlier work or may be more or less fitted into
one of the classification sections in Mardia (1980). The goodness-of-fit tests
recently introduced by Bickel and Breiman (1983) [see also Schilling (1983a, b)]
for a simple multidimensional hypothesis do not seem to lend themselves easily
for adaptation to the composite case.

The approach of the present paper is based on the asymptotic behaviour of the
multivariate “studentised” empirical characteristic function and is a multivariate
extension of the recent approach of Murota and Takeuchi (1981) for testing
univariate normality. Thus the basic weak convergence theorem in Section 2
extends the corresponding result, Theorem 6, of Murota and Takenchi (1981) to
arbitrary dimension. The distributions of the most relevant functionals, such as
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the absolute supremum and the squared integral, of the limiting parameter-free
Gaussian process are not known even in the univariate case. Therefore, Murota
and Takeuchi (1981) have considered the simplest possible projection functional
as a test statistic for testing univariate normality. [See also Murota (1981);
related univariate tests are in Hall and Welsh (1983) and Welsh (1985).] Although
we briefly mention multivariate extensions of the projection statistics in Section
3, our primary aim is to give a tight bound on the tail of the distribution of the
absolute supremum of the limiting multivariate Gaussian process. This is achieved
by applying to all possible limits a powerful inequality of Fernique (1975) in
Section 4. The resulting formal conservative large sample Kolmogorov-type test
is new even in the univariate case. The consistency of the test is also discussed in
Section 4. Approximate computing formulae for our maximal deviation statistic
are given in Section 5, a limited simulation study under the null hypothesis is
discussed in Section 6, while in Section 7 the performance of the test is illustrated
on the well-known Norton’s bank data and Fisher’s Iris setosa data. A related
Cramér-von Mises type statistic is mentioned briefly in Section 8.

2. The basic weak convergence theorem. Let d > 1 be a fixed integer and
let X(1),..., X(n) be independent d-dimensional random column vectors identi-
cally distributed as X’ = (Xj,..., X,), where the prime denotes transpose. Let

Cu(8) = Uy(8) + iV,() = n ' ¥ exp(ict, X)), ¢ = (tyr..rt,) € RE

J=1

be the sample characteristic function, where (¢, s) =X¢_,¢t,s, with s’ =
(84,-..,8y) stands for the inner product in R and let S, = (s,,.(n)) be the
sample covariance matrix

son(n) = n? il(ka CX () (X)) - K(n),  Eom=1,....d,

where X'(n) = (X(n),..., X (n)) = n_l):;Ll X’(J) is the sample mean vector.
Assuming that the underlying distribution function of X is continuous, we may
almost surely consider the unique symmetric positive definite square root S /2
of the inverse S, ! of S,. The studentised empirical characteristic function, or,
rather, the Mahalanobis transform of C,(¢) is

C,(S, 1/%) =n7! zn) exp(i(S; /%, X(j)))

(2.1) 11 Y explit, X/(7)S; )

Jj=1

=n"! Z exp(i(t, X(J)))exp(it, X'(J)(8;* = I))),

J=1

where I is the d X d identity matrix. Since its squared modulus |C,(S, /*¢)|? is
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invariant under all nonsingular affine transformations of the sample
X(),..., X(n) for any vector ¢, there will be no loss of generality while proceed-
ing toward the main goal of this section, Theorem 2.2, if in the preliminary
Theorem 2.1 below, we assume that p = EX =0 € R? and = = I, or, in fact,
that the components of X are independent.

Let T be an arbitrary positive number and let €= €((— T, T]¢) and ¥2 =
X[ —T, T]%) be the separable Banach spaces of the d-variate continuous real
and complex valued functions, respectively, defined on the cube [—T, T']¢ and
endowed with the respective supremum norms. Let C(¢) = U(¢) + iV(t) =
Eexp(i(t, X)), t € R% be the population characteristic function. Our basic
stochastic process

Z,(t) = n"¥|C,(8;1%t)* — |C(8)|?}

is a random element of € for each n = 1,2,... . Let us introduce the vector of
partial derivatives of C

, aC(t) aC(t)
t)) = ceey
(et - (G2 T
and the corresponding d X d Laplacian matrix v 2C(¢) with elements
a%*C(t)
k =1,...,d.
atkatm b I m b b

Assuming that the vector (u®) = (p{V,..., u®) = (EX],..., EX}) is finite, con-
sider the d-variate complex Gaussian process Y(t) satisfying Y(¢)= Re Y(¢) —
iImY(¢) = Y(—t) and EY(¢) = 0 for each ¢ and for each s, t € R,

p(s, t) = EY(s)¥(t)
= C(s + t) - C(s)C(2)

+ 2 {S(9C(0)vC(s) + #(v7C(s)) ()

?["]&

1

(2.2) +C(s)(t,vC(t)y + C(t){s,vC(s))}
N 1{ aC(s) aC(t)
"4
+k,m¥§k¢m P T P TS

(b = Dsmtn ===
d [ aC(s) ac(t) aC(s) 8C(t)]}

That such a process exists, that is, that p indeed is a covariance function, may be

seen by considering the random function

R(t) = R(t; X)
2.3 A 1 4 d aCc(t
2 m=1 k=1,k#+m atm
in €2, where the components of X’ = (X|,..., X,) are independent with EX, =
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-+ =EX,=0and EXZ= --- = EX? = 1. Then a straightforward but some-
what lengthy computation shows that p(s, t) = ER(s)R(t). Moreover, since p®
is finite, C(¢) has uniformly continuous partial derivatives of the fourth order
over the whole space R?. Therefore a one-term d-variate Taylor expansion easily
gives
(2.4) E|Y(s) - Y(¢)]” = E|R(s) — R(¢)* < K|s — ¢/,
with some constant K > 0, and this is more than enough to imply the sample
continuity of the complex Gaussian process Y (Fernique, 1975, page 48). Hence Y
may be considered as a random element of %2, and consequently the d-variate
real Gaussian process

(2.5)  Z(t) =2{U(t)ReY(t) + V(¢)ImY(t)} = 2Re{C(—1t)Y(¢)},
with mean zero and covariance function
o(s,t) = EZ(s)Z(¢)

= 2Re{C(—-s)C(—t)p(s,t) + C(s)C(—t)p(—s,t)}
is a random element of ¥. Note that Z(¢) = Z(—t).

(2.6)

THEOREM 2.1. If the components of X’ = (X,,..., X;) are independent with
EX = .- =EX,=0, EX?= ... = EX? =1, and the vector p® finite, then
the sequence {Z,(-)} converges weakly, as n > o, in €([(—T,T]%) to the
Gaussian process Z(+).

The proof of Theorem 2.1 is in the Appendix.

Let N,(p, =) denote the d-dimensional normal distribution with mean vector
4 and covariance matrix 3, where d > 1. Our aim is to test the composite
hypothesis

H,: The law of X is Ny(p, =) with some p. and some nonsingular Z.
Note that when C(¢) is real then from (2.2) and (2.6) we obtain

o(s,t) = 2C(s)C(t)[C(s +t)—C(s—t)—2C(s)C(¢)
+ {s(v2C(t))vC(s) + t/(v?C(s))vC(t)
+C(s)(t, vC(2)) + C(£)(s,9C(s))}

1 d ac(s) 9C(t)
— 4) _ -
T2 {m{:l(""‘ R P T

d [ aC(s) aC(¢) aC(s) BC(t)}}]

+ )y Spts Sptm
kom=1 ktm ds,, dt, ds,, dt,

(2.7)

THEOREM 2.2. If H, holds then the sequence of stochastic processes
Z,(t) = n/¥{|C,(8; *t)? — e~ <40}
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converges weakly in €([ — T, T ]¢) to the Gaussian process Z(t) satisfying Z(t) =
Z(—t), EZ(t) = 0 and

o(s,t) = EZ(s)Z(t) = 4e” =<t Dlcosh((s, t)) — 1 — 3(s, £)?}.

ProoF. Since the limiting process is the same for any p and = under H,, the
theorem follows by substituting C(¢) = exp(— (¢, t)) and p{? = 3 into (2.7).
Then a lengthy computation yields the indicated formula.

Note that cosh(x) — 1 — (x2/2) = O(x*) as x — 0, and the process Z(-) in
Theorem 2.2 has the interesting property that Z(s) and Z(t) are uncorrelated
and hence independent for any vectors s and ¢ that are orthogonal to one
another. For nonzero and nonorthogonal s and ¢, o(s, t) > 0.

3. Simple projection statistics. The simplest possible such statistic is

obtained if we consider the nonzero vectors ¢,,..., t,, somewhere in the vicinity
of the origin, such that the L X L matrix R = (o(¢,, t,,)) be nonsingular and
form the quadratic form @, = Q,(¢,..., t,) = z,R"'z,, where z, =

(Z(t),...,Z,(t;)) with Z, and o of Theorem 2.2. Then under H, the asymp-
totic distribution of @, is the chi-square distribution with L degrees of freedom.
There is no theoretically justified ground, however, upon which the number L
and the location of the vectors ¢,,..., ¢; could reasonably be chosen.

Another, perhaps more appealing d-dimensional extension of the Murota and
Takeuchi (1981) statistic is based on the observation at the end of the preceding

section. Let ¢,,..., t, be nonzero, pairwise orthogonal vectors from R? and set
N{D = max(|Z,(¢)],.--,|Z,(t,)])- Then under H,,
d x
lim Pr{N® < x} = {2@(—)—1}, 0<x< oo,
n— o { } l;[:ll 0(|tk|)

where @ is the standard normal distribution function and o%(|¢|) = o(¢, t) =
4 exp(—2|¢|*){cosh(|#[?) — 1 — 1[¢|*} depends only on the length of ¢ The stan-
dard-deviation function o(|¢|) has a unique global maximum on [0, o),

(3.1) o(|t,]) = 0.23743 at |¢,| = 1.4684924,

determined on the computer. So N{¥) = N{¥)(¢,,..., t,) is asymptotically “most
variable” under-H, on the surface of the d-dimensional ball r? = |¢,|% For the
sake of later comparison let us choose all the points ¢,,..., ¢, on this surface and
record the asymptotic a level significance points obtained from the equation
(20(x/0.23743) — 1)=1—a,0 < a < 1.

4. The maximal deviation statistic. The natural extension of N is

M{"(T)= sup |Z(t)=n'? sup [|C,(S,'?t)? — exp(— |42,
te[-T,T)¢ te[-T,T1¢

where T is some positive number. Note at the same time that the restriction of
the supremum to a finite cube [~ 7, T']¢ is not a theoretical restriction for the
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TABLE 1
Asymptotic1 — a percentage points of N{¥(t,,..., t;)
with |t = -+ = |tg] = |t
d 1 2 3 4 5 6

a

0.1 0.3906 0.4630 0.5176 0.5276 0.5485 0.5893
0.05 0.4654 0.5318 0.5675 0.5912 0.6090 0.6481
0.01 0.6102 0.6672 0.6957 0.7194 0.7360 0.7669

problem at hand. Indeed, as a consequence of the corresponding well-known
univariate result and the fact that the univariate normality of all the linear
combinations of the components of a vector implies the multivariate normality of
the vector, we have the following: If a d-variate characteristic function coincides
with a given d-variate normal characteristic function in any small neighbourhood
of the origin, then they coincide everywhere on R <. Therefore, the only considera-
tions that should be made when choosing T > 0 are those that relate to finite
sample behaviour and computational ease.

Under H,,lim,_, Pr{M{‘(T) > y} = F, () for any y > 0, where with Z
as in Theorem 2.2,

Fuo(y) =P sw (2(e) 2 ).
te[-T,T)¢

Of course, this function is not known. We wish to give an upper bound for it. By
the inequality of Fernique [(1975), page 51], for any integer p > 2, we have

7\1/2
(4.) Fur(xK,o(p)) < 53] (1= @(x))
for any
(4.2) x> (1+ 4dlog p)"?,
where
(43) Kgp(p)=  sup  o'(s,0) + (2+12) [“44r(Tp™) du,
s, te[-T,T]¢
with
(44) o4 p(h) = sup (o(s,s) + o(t, t) — 20(s, t))1/2,

s,te[~T, T, lIs—ti<h
where ||s — t|| = max{|s, — {|: 1 < k < d} is the maximum norm.
By the Cauchy-Schwarz inequality we have

(4.5) sup o%(s,t)= sup a(|t]),
s, te[-T,T1¢ 0<|t|<Td'/?

where o2(|t|) = o(t, t) is the variance function. As noted, o(|{[) has a global
maximum at |¢,| of (3.1). For the sake of definiteness and in order to include the
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surface of the ball where Z(¢) is most variable, we choose
(4.6) T =1.47/d'?

and suppress henceforth this 7' in the notation. The first term of K (p) is then
given by (3.1), and the basic problem is to determine the function ¢,(%) in (4.4).
We shall see that the main advantage of the choice in (4.6) is that K ,( p) will not
depend on the dimension if it is higher than one. [See (4.10) and (4.11) below]. Set

o(s,s) +a(t, t) —20(s,t)

2

A,= sup Y
s, te[—1.47/d"2, 1.47/d"/?]¢ ls — ¢

and

(4.7) B= sup 4e *g/(u?),

0<u<1.47
where g’(x) is the derivative of the function
%2
g(x)=cosh(x) -1 - —, x>0,

and note that

(48) A sup 4e‘z"zg(zﬁ) + e 2%g(0v?) — 2¢ " 'g(uv)
' Y 0<uos147 (u - 0)2

The key step is the following lemma, also proved in the Appendix.
LEmMMA 4.1. Foranyd > 2, A, = max(A,, B).

Of course, B can be computed on the computer easily, and we obtain
(4.9) B = 0.1265243.

A combination of careful numerical analysis and some computer work also gives
that A, < 0.1085898. Consequently, for ¢,(4) in (4.4), we have

(4.10) o4(h) < AY/2dV?h, O0<h< o,
where by Lemma 4.1 and (4.9),

A1/2{ < 0.3295297, ifd=1,
4\ =0.3557025, ifd > 2.

Now putting T = 1.47d" /2 in K 4( p) of (4.3), by (4.5), (3.1), (4.10), (4.11), and
a simple substitution in the integral, we obtain

(412) K,(p) = Lu(p) = 02743 + V,flog p) (1 ~ 0(1og p)'"),

(4.11)

where

29314164, ifd =1,
1.47(2 +V2)(A,m) " <V, = {3.1642433 fd>2
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We may now return to (4.1) and (4.2). Fixan o, 0 <a <1, and introduce the set

E, (a) = {p: p integer, p > 2, ®7'|1 - > (1+4d log p)"2),

[44
5(m/2)"" p*
where ® ! is the inverse function to ®. Then, with L,(p) as in (4.12), for
M = M{“(1.47/d'/?) we have the following result.

THEOREM 4.2. If H, holds then
lim Pr{M{® > z,(a)} < a,

where

a
- -1
Z(l(a) pel}}f(a)q) l 5( ‘77/2)1/2p2d Ld(p)‘

The differences z,(a) — y,(@) > 0, where y,(a) is the real asymptotic 1 — a
percentage point, i.e., F,(y,(a)) = «, are not known. However, the following
table of the z,(«a) values suggests in comparison with Table 1 that the Fernique
inequality is quite powerful on our process Z(¢) and, therefore, the unknown
differences z,(a) — y,(@) > 0 are hopefully not too large.

The computation of this table required a table of ®(x) with x in the interval
[2.65, 8.35] and with 17 precise decimals. The p values at which the correspond-
ing infima were taken ranged from 7 to 12.

As to the consistency of the test, we can prove the following

THEOREM 4.3. If the components of X are linearly independent with finite
variances but H, does not hold, then M{\® — oo almost surely as n. — oo. Hence
the test is consistent against all such alternatives.

PrOOF. Since S;'/2 - 3 almost surely, where 2 is a symmetric positive
definite d X d matrix, and C,(-) converges to the characteristic function C(-) of
X almost surely uniformly on compact sets, C,(S, '/*t) > Cy(¢) = C(Zt) almost
surely uniformly on K,=[-T, T1¢, where T is as in (4.6). This implies
[C(S;'/2t)|? - |Cy(¢)|? uniformly on K.

Suppose that Cy(£)Cy(—t) = |Cy(2)|* = exp(—¢|?) on K ;. Since exp(— [t?) is
a d-variate normal characteristic function, and since [C(t)|? is a characteristic

TABLE 2
The upper bounds z,( ) of the asymptotic1 — a percentage points of M (d)
d 1 2 3 4 5 6
o
0.1 0.9648 1.2613 1.4963 1.6985 1.8804 2.0466
0.05 1.0101 1.2998 1.5294 1.7296 1.9024 2.0730
0.01 1.1087 1.3822 1.6034 1.7973 1.9719 2.1257
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function, the observation made at the beginning of this section implies that the
equality C,(t)Cy(—t) = exp(— [¢|>) must hold on the whole space R%. By the
obvious multivariate version of Cramér’s theorem [Lukacs (1970), Theorem 8.2.1;
obtained again from the univariate result by taking linear combinations] the
latter identity implies that the component Cy(¢) is a normal characteristic
function. This, in turn, implies that C(¢) itself is a normal characteristic function,
which contradicts to the assumption that H,, is not satisfied. Therefore,

lim sup [|C,(S; /%¢)|2 — e | = sup [|Cy(2)|2 — e | > 0
0

n—w ek, teK,

almost surely, and since the M{?) are n!/? times these suprema, n = 1,2, ..., the
assertion follows. .

If one of the components of X has an infinite variance, then one feels that the
test is “all the more consistent” that is, the natural conjecture is that it is
consistent against every fixed alternative. However, the behaviour of S, /2 is
unclear with infinite variances and I do not have a formal proof for this case,
except when S, '/? converges to the zero matrix. This is the situation if d = 1,
and so the test is indeed consistent against every alternative in the univariate
case. Note that if d = 1 and EX? = o0, then almost surely as n — oo,

sup  |C(t/SV?) —e | > sup [1-e ¥ =1—e 47" =(.8848.
147 <t<1.47 0<t<147

5. Computing formulae. Writing Y’/ = (Y/,...,Y)) = a,(L)X"(J)S, 2,
j=1,...,n, with ay(L) = 147/(d"?10%) and cy(x) = cos kx, s,(x) = sin kx,
where & and m will denote integers and L > 0, and using that Z (¢) = Z,(—t),
we have

n 2

% a(v)

Jj=1

—(kay(L)?
_e(al( )) s

MV = n'/? max
1<k<10*

(%iMWJ+

Jj=1

and using the sine and cosine addition formulae,

3 £ elma(n) - nix )

M®P = n'/? max
-10F<m<10*,1<k<10"

% é (sn(Y)ea(¥) + cm(Y{)sk(léj)})

—exp(— (kay(L))’ = (may(L))’)],

where the larger L is, the more precise are the approximate equalities = .
Analogously, increasingly more complex formulae can be written down for M ®,
d > 3. The point is that many computers compute sine and cosine slowly, and 1f
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we use the recursion
ey(1) =2¢,()ei(r) = 1,85(+) = 2¢,(+)s4(+),
crl+) =2¢,()ep () = cpmal+), s(0) = 2¢1(+)s,_1(+) — sp—s(-),
k=3,...,10%,

then in d dimensions we need to compute only nd sines and nd cosines. In
practice, L = 2 is usually sufficient.

6. Simulation. In the univariate case, we conducted a very limited Monte
Carlo experiment to determine empirically approximate values of the unknown
limiting percentage points y,(a), a = 0.1, 0.05, 0.01. Normal (0, 1) random num-
bers with sample sizes 50 and 100 were generated 500 times in both cases, and
M) and M{}), were computed by the above formula with L = 2. The obtained
percentage points of the 500 samples for M)’ and M{;), are the following:

n
» 50 100
0.1 0.5069 0.5160
0.05 0.6044 0.6173
0.01 0.9678 0.8455

These should be compared with the first columns of Tables 1 and 2.

Of course large order statistics of M in 500 samples are more unstable than
smaller ones.

In general (d > 1), the very sharp inequality of Borell (1975) says instead of
(4.1) that

where o is the supremum of the pointwise standard deviation of Z(f) on
[-T,T]% and m, is the median of the distribution of M(®) = sup{|Z(¢)|:
t € [- T, T]%). The problem is, of course, that we do not know m, With the
choice of T as in (4.6) (or larger), o = 0.23743 according to (3.1). (If we use
Fernique’s inequality first to give an upper bound for m, and then Borell’s
inequality with this upper bound, then we obtain larger values than those given
in Table 2.)

The median of the 500 samples for M{}) was 0.2258, and that of for M{}) was
0.2273. Arguing that simulation of middle percentage points is more stable, let us
accept that 0.23 is a close upper bound for m,. Then Borell’s inequality gives the
following tentative close upper bounds for y,(a):

« |
0.1 0.5344
0.05 0.6206
0.01 0.7832

A thorough simulation study of the properties of the M (¥ test would be
desirable.
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7. Examples. Our first example is testing the bivariate normality of Norton’s
rate of discount and ratio of reserves to deposits data of size 780 as given on page
205 of Yule and Kendall (1950). The histogram of Yule and Kendall shows clearly
that the distribution is not normal. Indeed, Mardia (1970) rejects normality by
his two tests and Rincon-Gallardo et al. (1979) also reject normality by both the
tests they use after their transformation. In our case M) = 19.9785 (with
L = 2), which in comparison with the second column of Table 2 shows an
extremely significant departure from bivariate normality.

The second example is the well-known Iris setosa data originally analysed by
Fisher (1936). The data consists of 50 observations on each of four variables
(sepal length, sepal width, petal length, petal width), and it is commonly believed
that, in some form or other, it is from a quadrivariate normal distribution.
Rincon-Gallardo et al. (1979) accept this hypothesis for the original data by both
of their tests. In our case M} > 5.6967 (we computed the latter value with only
L =1 in the approximate four-variate formula) which in comparison with the
fourth column of Table 2 shows a highly significant departure from quadrivariate
normality. Contradicting Rincon-Gallardo et al. (1979), Koziol (1982, 1983) accepts
the four-variate normality of the logarithms of the original Iris sefosa data as
given in Gnanadesikan [(1977), page 219]. For these logarithms, we obtained
M» > 5.8845 (again with L = 1), so that the significance of departure from
normality is even higher than for the original data. Hence we reject the hypothe-
sis of quadrivariate normality of both the original and the logarithmic data.

The limited experience in the present and preceding sections suggests that the
test based on M%) may be highly sensitive. The only arbitrary element in our
test M(?(T) is the choice T = 147/ Vd. It is conceivable that the larger is 7,
the more powerful will be the test. Of course, the A ; and hence the V, constants
belonging to another choice T = T,/ Vd > 1.47//d can be easily recomputed,
and then the subsequent bounds z,(a) can also be obtained. However, the larger
is T,,, the slower is the convergence of M{“\(T;/ Vd) and also more computer time
is needed for the computation of the statisticc. We believe that our choice
T, = 1.47, with the given motivation, is a reasonable compromise.

8. The Cramér-von Mises type statistic. Another plausible statistic based
on the process Z,(-) would be to consider

f[ Z2(¢) dt,

-T,T1¢

with some T > 0, which by Theorem 2.2 converges in distribution to X%_,A joZ,
where W,, W,, ... are independent standard normal random variables and A ; =
A (d, T) are the solutions of the eigenvalue—eigenfunction equation

[ ols,t)e(s) ds = Ao(2),
[-T,TJ

with the covariance function o(-, -) given in Theorem 2.2. It would be desirable
to compute numerically a sufficient set of the largest eigenvalules to approximate
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adequately the limiting distribution. A referee suggested a discrete approxima-
tion to the above equation using the covariance matrix o(s,, f,) on some
appropriate grid {(s,, t)}. [See, for example, Schilling (1983b).]

APPENDIX

Proor oF THEOREM 2.1. We have
Z,(t) = n/?{U,(S; /%) — U(t) }{U,(S, /%) + U(¢)}
+r V(S 17%t) — V(£) }{ V(8. 1%t) + V(¢)}.

Hence, on account of the fact that S, /> — I almost surely and the triviality
(Csorgd, 1981) that C, converges almost surely uniformly to C on any bounded
set in RY, the theorem will follow once we have shown that the complex valued
processes

Y,(¢) = n'/(C,(S; /%) - C(¢)}

converge weakly in #? to the complex Gaussian process Y(¢). We proceed to
prove this.

Applying the one-term d-variate Taylor formula to the second exponential
function in the third line at (2.1), we obtain

() =n~ ¥ {eplict, X()) - C(0)

+((8, 72 = I)t,vC,(2))} + A,(2),

where

1 n
sup |4, () < sup  ont2 X A(S7V - e, X())?

te[~T,T)¢ te[-T,T])? j=1
n
<@2n) 'L IX(H)E sup  nV?(S;V2-1)Y?
J=1 te[-T,T1?
= 0(n""?loglogn)

almost surely by the law of the large numbers and the law of the iterated
logarithm, the latter being applied to the elements of (S, — I) after the re-
arrangement

(A1) S/ — = —8;7V2(I+8Y2) (S, - I).

A result in Csorgd (1981), conveniently formulated for the present purpose in
Theorem 2.1 of Ledoux (1982), implies that

sup |VC,(t) — vC(¢)| = O(n“/2(loglog n)l/z)
te[-T,T)¢
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almost surely. Whence, using (A.1), we see that

sup [(n'2(S;V2 - I)t,vC,(t)) + 1(n/A(S, — I)t,vC(t))|
te[-T,T1?

= O(n"?loglogn)

almost surely. Let 1 <m < d. A simple computation justifies that the mth
component of the vector n'/%(S, — It is

d d _ .
w0 - Dt X 5 K] - K F), 0
Jj=1 k=1,k+m
The supremum of the second term here, over [-T, T 19, is again
O(n~'"?loglog n) almost surely by the classical loglog law. Hence

(A2) Y,(6) = n" 2% R,(6) + By(0),

J
where R (t) = R(t; X(j)) with R(¢; X) as in (2.3), and

sup |B,(t) = O(n"'%loglog n)
te[-T, T}

almost surely. Since the random functions R (¢) in the representation (A.2) are
independent and identically distributed with mean zero and covariance p(s, t),
the multidimensional central limit theorem implies that the finite-dimensional
distributions of Y,(-) converge to those of Y(-). The tightness of {Y,(-)} follows
from (2.4), and hence the theorem.

ProoOF oF LEMMA 4.1. First we fix the lengths u = |¢|, v = |s| of the vectors
and let the inner product x = (s, ¢) vary initsrange 0 < x < uv < 27 X(u? + 0?).
We have

Ad = sup sup fu, u(x)y

0<u,v<147 0<x=<uv
where
e ™g(u?) + e72g(v?) — 2¢7 g(x)

(u? + 02 — 2x)°

fu, o(%) = 4
with derivative
2{e‘2”2g(u2) + e 2%g(v?) — 2e"‘2“’2g(x)}

(u? + v? — 2x)’

fu,, o(x) =4

2¢ g/ (x)(u? + v? — 2x)
(u? + 0% - 2x)°

Clearly,
Ay> sup f, (uw) =A,,

O<u,v<147
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and

Ay>= sup  sup f,_(x)
O<u<147 O<x<u?®
g(u?) — g(x)
sup 4e % sup ——H5——=
O<u<1.47 O<x<u
=B
since g is a convex function. Hence A, > max(A,, B).
To prove the reverse inequality, consider the alternative:

2 u-—Xx

e 2g(u?) + e*“zg(qz) < (or >)2e " Ug(L(u?+ v?)).
If “ < ”, then )

w8+ 0%)) — g(x)
fu,o(%) < 4e W+ o) —x

< 49*“2_”25,1’(5(u2 + 02))

by the convexity of g. In the opposite case the numerator of f,/ (x) is larger than

169”‘2_”2{g(§(u2 +0?)) — g(x) - g’(x){%(u2 + v%) — x}}

and this lower bound is nonnegative again by the convexity of g. So if “ > ”, then
fu Ax) <[, (uv). Hence A, < max(A,, B) and the lemma is proved.
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