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EMPIRICAL PROCESSES ASSOCIATED WITH V-STATISTICS
AND A CLASS OF ESTIMATORS UNDER RANDOM
CENSORING

By MICHAEL G. AKRITAS

The Pennsylvania State University

A class of empirical processes associated with V-statistics (V-empirical
process) under random censoring, and a class of nonparametric estimators
based on the corresponding quantile process are defined. The V-empirical
process is the censored data analogue of the U-empirical process considered
by Silverman (1976, 1983). The class of estimators is the analogue of the class
of generalized L-statistics introduced by Serfling (198%) and it includes the
results of Sander (1975). The weak convergence of the V-empirical process and
the corresponding quantile process is obtained and, through that, the asymp-
totic behavior of the estimators is studied. Linear bounds for the
Kaplan—Meier estimator near the origin are established. A number of exam-
ples are given, including the generalization of the Hodges-Lehmann estimator
for estimating the treatment effect in the two-sample problem under random
censoring. A measure of spread, a procedure for estimation in the two-way
ANOVA model, and a modified version of the two-sample Hodges-Lehmann
estimator, all of which are new even in the uncensored case, are proposed.

1. Introduction. For each s, s = 1,..., k, let XJ,..., X% be a sample of
independent identically distributed observations with distribution function F;
(id. F,) and Y,,,..., Y,y beiid. G,. Assume that X o Y,,; are independent for
al s, m=1,...,k j=1,...,N,,i=1,...,N,. For each s =1,..., k we ob-
serve
(1.1) X,,=min(X%,Y,;) and &,=I[X,=X3, i=1,...,N,.
Clearly X_;,..., X,y areiid. H, where (1 — H,) = (1 - F)(1 - G,). For r, <
N,s=1,...,k let

s

(1.2) B e =P(Xyp,e s X053 X R e s X))

be a real valued kernel where r = (r,,..., r;). In this paper we deal with the
problem of estimating some functional of the distribution of A, , under F,,..., F,
(such as the median, or some other linear combination of its quantiles) when the
sample is of the form (1.1) (random censorship model).

In the uncensored case the problem of estimating the mean of A, , was
initiated by Hoeffding (1948), who introduced the class of U-statistics and
triggered a long sequence of interesting research. See Serfling (1980) for a modern
treatment and references. However, the problem of estimating other functionals
of the distribution of A, , did not receive any attention until very recently
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(Serfling, 1984). This is even more surprising in view of the fact that the lack of
robustness of averages was recognized a long time ago.
The class of estimators to be studied includes such statistics as

med{X”‘ +o Xy Xy +X2jr;

r r

iy i =1, Ny, iy = 1,...,N2}

(and its censored data analogue), which can be thought of as a Hodges-Lehmann
type statistic for estimating the shift in the two-sample case. A similar extension
of the one-sample Hodges-Lehmann estimator, namely

X+ X,
med{—'——————’; byennr iy = 1,...,N}
r

was considered (in the uncensored case) by Serfling and Thornton
(1982); it was found that using r = 3 (instead of the usual r = 2) increases the
asymptotic relative efficiency from 0.95 to 0.98, while r = 4 increases it to 0.99.

Consider for simplicity the case 2 = 1. In the case of uncensored observations,
the problem of estimating the distribution of h,,, has been treated by con-
structing the empirical distribution function corresponding to the set of
N(N — 1) --- (N — r + 1) random variables A(X;;,..., Xj;) obtained by every
possible choice of ordered sets of r distinct integers drawn from 1,..., N. Such
empirical processes were considered by Silverman (1976,1983). See also Serfling
and Thornton (1982). The problem of estimating functionals of the distribution of
h,,, was initiated by Serfling (1984), who defined a class of generalized L-, M-,
and R-statistics essentially by placing the above mentioned empirical distribu-
tion function into the functional form of the usual L-, M-, and R-statistics.

In this paper we consider the random censoring model and deal with the
problem of estimating the distribution of 4, , as well as functionals thereof, thus
extending the results of Serfling (1984) and Silverman (1976, 1983) in this case.
For reasons that will become apparent, we consider instead the empirical distri-
bution function corresponding to V-statistics [cf. Serfling (1980), page 174].
Section 2 presents, for illustrative purposes, the generalization of the
Hodges-Lehmann estimator for estimating the treatment effect in the two
sample problem under random censoring. In Section 3 we present the empirical
distribution function corresponding to the general kernel (1.2), establish its weak
convergence to a Gaussian process and do similarly for the corresponding quantile
process. The proof uses a Skorokhod construction; in the absence of censoring the
results we obtain are identical with that of Silverman (1976). Incidentally, we
show that in the uncensored case the V-process is asymptotically equivalent to
the U-process so that our method provides a simpler proof for the weak conver-
gence of the process considered by Silverman. In Section 4 we follow Serfling
(1984) in defining generalized L-estimators. This does not only extend Serfling’s
results to the case of censored survival data, it also generalizes the results of
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Sander (1975). Serfling’s approach of differentiable statistical functionals could
also be applied in our case; however, we chose to present a proof adapted from
Shorack (1972). A number of results concerning the behavior of the ratio of the
V-empirical process to the true distribution of the kernel that are required for
such a proof are formulated and proved in the appendix. In particular, we
establish linear bounds for the Kaplan-Meier estimator near the origin. A
number of examples including a modified version of the two-sample Hodges—
Lehmann estimator, a measure of spread, and a procedure of estimation in
two-way ANOVA, all of which are new even in the uncensored case, are presented
in Section 5.

2. The Hodges-Lehmann estimator. In the-notation of Section 1, let
k = 2 and consider the kernel
(2-1) h2;1,1 = h(x1; x2) =X~ X,
In the uncensored case the Hodges-Lehmann estimator for estimating the
treatment effect in the two sample problem is the median of the uniform
probability measure that assigns mass N; 'N; ! to each of the points A(X,; X)),
| = Nl, j =1,..., N,. Noting that N; !, s = 1,2, is the mass assigned to
each X it N,, by the corresponding empirical distribution function, we
conclude that an appropriate analogue of the Hodges-Lehmann estimator in the
presence of censoring is the median of the probability measure that assigns mass
[F(Xu) 1(Xu )] [FI(XQJ) 2(X — )] to each of the points (X ; X, ).
Here F F N» §=1,2, is the Kaplan- Meler estimator corresponding to the
sth sample (Kaplan and Meier, 1958). Thus, the above weights are nonzero only
if both X, ; and X, are uncensored observations.

Formally, let N = N, + N,, let h(x;;x,) be as in (2.1), and set

(22) V(o) = [ [T[R(x;2;) < o] dFi(x)) dFy(x;), £ € (=o0,00).

Thus, VN(t) is, for each ¢, a V-statistic with kernel I[A(x;x,) < t]. Further let

(2.3) Vy'(p) =inf{t: Vy(¢) =p}), O<p<l.

Then the generalized Hodges-Lehmann estimator defined above is given by
V5 '(0.5). In the absence of censoring, this is the usual Hodges—Lehmann estima-

tor. Thus, the generalized Hodges-Lehmann estimator belongs in the class of

statistics considered in Section 4 where its asymptotic distribution is obtained.
Before concluding this section we give a proposition which shows that the

above generalization of the Hodges-Lehmann estimator is a reasonable one.

First, recall that Efron’s generalization of the Mann-Whitney-Wilcoxon statistic
is given by [(1 — F)) dF;, (Efron, 1967).

PROPOSITION 2.1. Let VN 1(0.5) be the generalized Hodges—Lehmann estima-
tor as defined by (2.2) and (2.3). Then VN 1(0.5) is given by

(2.4) inf{t: fﬁ’l(x +t) dFy(x) > 0.5}.
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ProOF. Clearly the T that satisfies (2.4) is the median of the convolution of
X, and — X, when the distribution of X, is F', and that of X, is F). But this is
just Vy 0. 5)

Thus VN 1(0.5) is obtained from Efron’s statistic the same way that the usual
Hodges-Lehmann estimator is obtained from the Mann-Whitney-Wilcoxon
statistic (Hodges and Lehmann, 1963). Clearly we can obtain other estimators for
the treatment effect in the two-sample problem under random censoring by
inverting appropriate generalizations of other rank statistics. O

REMARK 2.1. Padgett and Wei (1982) derived (from different context, moti-
vation, and method) the same generalization of the Hodges—Lehmann estimator
but they only proved a consistency result. Also Wei and Gail (1983) considered
inversion of a class of two-sample rank tests in order to obtain rank estimates of
the scale ratio; since their method was tailored out of Hodges and Lehmann
(1963), the entire class of their estimators was called generalized Hodges-
Lehmann estimators. The results of these authors, however, were derived under
the additional assumpticn that the censoring variable in the second sample has
undergone the same scale transformation as the “survival” time and thus their
applicability may be limited.

3. The V-empirical process. Now let 4., be the general kernel of relation-
ship (1.2) and consider the problem of estimating the distribution of it under the
random censoring model, that is, when the data are of the form (1.1). In the case
of uncensored observations the problem has been treated by constructing an
empirical distribution function associated with U-statistics corresponding to
kernels I[h,, , < t], —oo <t < oo. With censored data, however, it is computa-
tionally more convenient to consider an empirical distribution function associated
with V-statistics. To see why, consider the special case & = 1, r = 2; then the
U-statistic in the uncensored case assigns weight N™(N — 1)‘1 to each point
ITh, (X, X,;) < t], i # . This is the weight that the empirical distribution

function correspondmg to the whole sample X,,,..., X,y assigns to X;; times
the weight that the empirical distribution functlon corresponding to
X X6 Xy v Xin ass1gns to X, ;. Thus the analogue of a U-statistic

for censored data would require, in the general case, computing several
Kaplan—Meier; estimators.
Consider now the general kernel as in (1.2), and set

k
(3.1) N=YN, A= lim (N/N),

(3.2) V() —fT' fl"I[hk <] T1 dF(X,),

(s,1)

(3.3) V(¢) =[()T'...f0"“1[h,ﬂ,.g t1T1 dF(X.,).

(s,1)
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Here ﬁ = ﬁ n» 8 =1,..., k, is the Kaplan-Meier estimator of F, (see notation
in Section 1), I, ;, denotes the double product IT*_,IT}-,, and if we define

(3.4) T, = sup{¢: F(t) <1}, where F is a distribution function,
then the numbers T),..., T} are any numbers satisfying

(3.5) T, <min(T,,T; ), s=1,....k.

We are going to study the weak convergence of the process

(3.6) Wy(t) = N'2[Vy(t) — V(2)].

In order to formulate the first theorem, we need additional notation. Set

g (xlty = [ [1lhy, <] T1  dR(x,,),

(Sl»j)
(s1, N#(s, 1)

(3.7)
x>0, s=1,...,k,

where the domain of integration with respect to F, is [0,7] ].
REMARK 3.1. The x that appears on the left-hand side of (3.7) corresponds to

the (s, i)th argument of A, .. Thus in the absence of censoring, g, (x[t) =
P[hk; r =< th” = x]'

Next set
(3.8) g(xit) = Y g, (xt), x20, s=1,..k,
=1
and

(89)  Lyx) =L, () =N2[A(2) - F(x)], s=1,...k

It is then well known that there exists a version of L, and a Gaussian process L,
such that

1Ly~ L)% >0 as, s=1,..,k,
where || - || denotes the sup-norm. The process L(x), x > 0, is equivalent in law
to
1 — F(x)
B°[K (%) ——— >0,

where B is the Brownian bridge process on [0, 1], and K (x) = C(x)/(1 + C(x))
with C(x) = J3(1 — F,)"1 - G,)""dF,.
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Finally set
(3.10) W(t) = z A; I/Zf (x]t) dL(x),
where T, is defined by (3.4) and (3.5).

THEOREM 3.1. Assume that A, as defined in (3. 1), is positive for all
s=1,...,k, and let g(-|t) be of bounded variation in [0, ) uniformly in
te (—oo, oo) foreachs = 1,..., k (see Proposition 3.2). Let WN(t) and W(t) be
the processes defined by (3.6) and (3.10), respectively. Then there exists a version
of the process WN such that

[Wn(t) = W(t)[*, =0 asN - oo
almost surely, where || - || denotes sup-norm.

ProoFr. Write

() = N[0 [ < 0 TT i) = TT dR(x)

(s,1) (s,1)

and use the formula
k-1

o~ 16, X (a0 T1 o100+ (0.~ 0)

=1 k+1

Z(ak by) ]—[ b{}i—[lb + terms involving (a, — )}
k=1

i=k+1 =1

N
Y (a,— b,) []5, + terms of at least second order in (a; — b,).

1#k
We get
l_—l dﬁ;(xsl) - ].—[ dF.L(xhl)
(s,1) (s,1)
=Y I1 dF(x,,)d[E(x,) - F(x,)]

(s,1) (M;])
(s, J)#F(s,1)

+terms of at least second order in d [ F,(x,,) — F(x,;)].

From this and a simple argument it follows that
k
- T, A
(1) W) =N ¥ [Pg(al) d[F(x) - F(x)] + 0n(0),
s=1

where the process Oy(+) is such that |Oy||**,. — 0 in probability. Using this and
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Natanson (1961), page 232, we have
IWy(2) = ()™ <lon(8)]”.,

k N 1/2A -
1) B - I,
s=1 EN,
IR IAYE: T.
+ (ﬁ) Ls - A;l/st SupTV[(),T,][gs(' |t)]’
s=1 s 0 t

where TV, ,; denotes the total variation in [a, b]. So it suffices to show that
each of the terms above converges to zero a.s. This is true for the last term since
TV[O,x)[gs(~|t)] < M < o for all ¢ by assumption; noting that, by (3.7) and
(3.8), sup,[g(T,|t)] < r,, the second term is easily seen to converge to zero, and

this completes the proof of the theorem. O

Next, in order to find the covariance p(v, t) of the process W(t), note that the
k terms in (3.10) are independent, so that p(v, t) = Yr_ A7 lp(v, t), where
p(v, t) is the covariance function of

0 = [ty o) =, o .01 05 |

But B“u) =, B(u) — uB(1), u €[0,1], where B is the standard Brownian
motion. Thus,

- F(x
WAe) = a0 ABLK.L)]

- K,(x)
T, 1 - F(x)

319) + [ e BIK (] dT— oy

1 - F(x)

~ B(1)f0T“gs(x|t) K Tk ()
= A, (t) + Ay(t) — Ay(t), say.

Direct computation gives’
COROLLARY 3.1. LetK_ s =1,..., k, be defined in connection with (3.9) and
A, i1=1,23, s=1,...,k, be defined b.y (3.12). Then under the notation and

assumptions of Theorem 3.1, the process Wy (t) converges weakly to a mean zero
Gaussian process with covariance function given by

k
(3.13) p(v,t) = XA p(v,t),
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where
ps(v,t) = EA, (0)A(2) + EA,(0)Ay(t) — EA(v)As(2)

(3.14) +EA5(0)Ag(t) + EA(0)A(2) — EAy(0)Ag(2)

_EA33(D)Asl(t) - EAsa(”)Asz(t) + EAsa(U)Asa(t)
and

EA(0)44(t) = [“g,(x1t)&,(x10)D}(x) dK (x),

EAy(0) A1) = [ [“8,(xl0)a y10)[K(x) A K ()] dD(x) dD,(),
BA(0)A(0) = ["2.(x0) d[K (D] - ["a.(x10) d [ K (D ()],
EA(0)An(t) = ["axlt) - [ 8 (510) D7) dK,(7) dD,(x),
EAL(0)A() = [ (x1t) d[K,(x)Dx)] - [ “a.(xl0) D.(x) dK (),

EA(0)A,(t) = [ "8, (x10)K (x) dD(x) - [“a.(xlt) d[K,(x)D(x)],
where D, = (1 — F,)/(1 — K,) and a A b = min(a, b).

COROLLARY 3.2. Let Vii(p), 0 <p <1, be the empirical quantile process,
where V3 p) = inf{t: Vy(t) = p}, let V" p) be similarly defined, and consider
the notation and assumptions of Corollary 3.1. Then

(a) N'2[VoVyi(p)—pl, 0<p< VN(oo), converges weakly to a mean zero
Gaussian process Z( p) with covariance p(V~ (p), V'1(q)).

(b) NV2[Vii(p) — V' i(p)l, 0 < p < Vy(w), converges weakly to
Z(p)/ V' (VY p)) provided the derivative V' of V exists and is continuous on
(0, V(c0)).

ProoF. The proof follows from Corollary 3.1 and the results of Vervaat
(1972).

Note that in the uncensored case D, = 1 so that, for 2 =1 and for T, = o,
formula (3.14) reduces to the formula of Theorem B, Silverman (1976), or formula
(5) of Silverman (1983). This, however, does not constitute yet an alternative
proof of the weak convergence of the U-empirical process G (1) considered by
Silverman. In order to obtain such a proof, set N; = N, r, = r and note that
since G (2) is, for each fixed ¢, the U-statistic with kernel I[A,,, < t] we have

Pl6) = 32600 + (138 | (o).

Here VN(t) is given by (3.2) with 4., and no censoring, H ~(t) is the average of

all terms I[h,, (X,;,..., X;;) < t] with at least one equality i, = ig, a # B,
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and N,

(r)

= N(N - 1)...(N — r + 1). It follows that

830 = Gl = N1 = 32 ity - G

r

|/2N Neviig g
< N'VE——== [ HIl + |Gyl

=2N1/2
Thus we have established

PROPOSITION 3.1.  In the uncensored case the U-empirical process G N(b) is
asymptotically equivalent to the V-empirical process Vy(t).

The next result provides a sufficient condition for g (-|¢) to be of bounded
variation in [0, o) uniformly in ¢ (see Theorem 3.1). Assumption 3.1 below is also
used in the appendix. Consider

h (x,)= h(X,,..., XipsooosXgirenes Xgisonr Xops o5 Xy ooy Xkrk)

as a stochastic processin x;, i=1,...,r,s=1,..., k.

sis

AssumPTION 3.1. Almost surely [P,], where P, = F' X .-+ X
E» v X ... XF/* there exists a partition of [0,00) such that the function
h, (y), 0 <y < oo is monotonic within each interval of the partition for all
i=1,...,r,s=1,..., k. Moreover there exists a positive number M, < oo such
that the number of intervals in each of the above partitions is < M, almost
surely [P, i=1,...,r,s=1,..., k.

PROPOSITION 3.2. Under Assumption 3.1, the function g (- |t) is of bounded
variation in [0, 00) uniformly in t € (— o0, ) for eachs =1,..., k.

Proor. From (3.8) it follows that
(3-15) TV[(),oo)[é’s(‘V)] < Z TV[(),oo)[gs,i(‘V)]-

=1

By definition,
TV, oil&,, (- 18)] = sup}

J

sprf--- flI[hs,i(yj) = t]

—I[hs’i(yj,,) Stll n qul(xs,,zl)’

(s1,4))
(-ﬂ,“)*(s,l)

&, i(yjlt) — 8s, i(yj—llt)l

where the supremum is taken over all partitions of [0, a]. But under Assumption
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3.1, the number of times that the process A, (y), 0 <y < oo, will cross the
number ¢ is < M, almost surely P,. Thus

LI [h, () <t] —I[h, (51 <t]l < M,

for all partitions of [0, a] almost surely [ P,]. Since this is true for all a > 0, the
result follows from (3.15). O

REMARK 3.2. If T, < TG then the sth domain of integration in (3.2) can be
from 0 to T, = max{XSl, , N,} while in relation (3.3) it can be from 0 to
T =T. Indeed in this case (1 — K s)/(1 — F,) remains bounded away from zero
and thus Theorem 1.2 in Gill (1983) 1mp11es that ||L - Ls||0~ — 0 a.s.; the rest of
the arguments in Theorem 3.1 follow with minor adjustments.

4. Generalized L-statistics. In this section we extend the notion of gener-
alized L-statistics, as introduced by Serﬂmg (1984), to the case of censored
survival data. Recall that if X,,..., Xy are iid. F and F\, denotes the corre-
sponding empirical distribution functlon an L-statistic N~ IZ CN,g(F (i/N))
may be written as

1 ol A
(4.1) /OJN(s)g(FNl(s))ds
where Jy(s) = Cy, for s € (i — 1)/N,i/N]}, i = , N. This functional form

of an L-statistic lends itself to generalization. In partlcular if we substitute the
empirical process considered by Silverman (1976, 1983) instead of FN in (4.1) we
obtain the class of generalized L-statistics considered by Serfling (1984). And if
we substitute the process V,, considered in Section 3 we obtain the extension of
the class of generalized L-statistics to the case of censored survival data, which
will be the object of study in this section. But now Jy(s) is not suitable as
defined above. Due to the fact that VN has jumps of random size, /5, will have to
be replaced by a function jN, say, which is constant over random intervals. Also
VN(oo) is not necessarily equal to one. Thus the statistic we will study is of the
form

(4.2) Ty = LVN(w)JN( )g(VNl(s))

To illustrate this point further, consider for simplicity the case 2 =1 (one
sample) and A(x) = x, so that VN FN, the Kaplan—Meier estimator. Due to the
fact that under random censoring we end up with a random number of N < Nof
uncensored observations, the construction of linear combinations of order statis-
tics consists, in addition to choosing the weights Cy,, ..., Cyy, in deciding what
weight corresponds to each uncensored observation. If we define the rank of the
uncensored observation X; as NF\(X,), then we may assign to X, the weight Cy; :
with j = [NFN(X )] ([-] denotes integer part). Note that if JN(s) = Cy, for
s € (i — 1)/N,i/N], as before, then the above assignment of weights corre-
sponds to JN(s) = JN(FN(F 1(s))) in (4.2) with V replaced by FN, since in the
uncensored case (i.e.,, when F is the usual empmcal distribution function)
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JIy(8) = JN(F'N(F'IQ !(s))) it follows that the above choice of weights is a reason-
able one. Some other assignments of weights are discussed in Lemma 4.1.

The purpose of this section is to study the asymptotic distribution of T}, given
by (4.2). This will be done by adapting the method of Shorack (1972) which
allows unbounded “scores.” Let

Co=Vi'0+), €, = V3 (Vy(0)),
(43) o=Vy'(0+) 1= Vi (Vy(e0))
G = V—I(O)r C, =
and for ¢ > 0, B = B(¢) > 0, set
Qn. = [V(t) < B7V(2), —o0 < t < o0; Vy(t) = BV(2), C, < t < oo;
(4.4) 1-Vy(t) <B 1 -V()], -0 <t<C

1-Vy(t) 2 B[1-V(#)], 0 <t<C].

VH(V(e0))

PROPOSITION 4.1. Let Assumption 3.1 hold with M, = 1 (see Remark Al in
the Appendix). Then for any € > 0 there exists B = B(e) > 0 such that

P(Qy)=1-c¢
holds for all N, where Qp is defined in (4.4).

Proor. It follows directly from Theorem A.2 of the Appendix. O

AssuMPTION 4.1. The function g=g-V~! is of bounded variation on
(6,1 — @) for all § > 0.

For fixed numbers b,, b, and K > 0 define a “scores bounding” function SB
by
(4.5) SB(s) = Ks (1 —s)"" for0<s<1
and for fixed § > 0 define
D(s) = Ks™V/2+0%3(1 — )71/ 450 <s < 1.
Further, let J be a fixed measurable function on (0, 1).

_ AssUMPTION 4.2 (Boundedness). Assume |g| < D, |J| < SB and for all N,
|yl < SB almost surely.

AssUMPTION 4.3 (Smoothness). Except on a set of s’s of |g|-measure zero, we
have both that o is continuous at s and «J/,, — </ almost surely uniformly in some
small neighborhood of s as N — co.

AssUMPTION 4.4. The function SB[V(#)] is Z-integrable on [C,, C,] for all
s=1,..., k.
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Before going into the main result of this section we will provide a result that
helps check the assumptions |JN| < SB as. (Assumption 4.2) assuming that we
are willing to accept a definition of JN that depends on the choice of b,,b,. In
particular, if Jy is defined as J,(,”, i= .,4 depending on the choice of b,, b,
(see Lemma 4.1 below), then |JN| < SB almost surely holds provided that
Jy < SB holds. Let h, , r=(r,...,1,), be the kernel in question and let
Jy(s) = Cy, for s € (i — 1)/M, i/M] where M = N'... N/, be the choice of
weights that would have been used for the generalized L-statistic in the absence
of censoring.

LEMMA 4.1. Let SB be given by (4.5) and assume that |Jnl < SB where Jy is
given above. Then

(@) if b, > 0, b, <0, |J§| < SB, where J{{(s) = Ju(Vn(Vx'(s)));

_ (i) i b, <0, by>0, lJ@| < SB, where JP(s) = Iy(Vy_ (V5 ((5))), where
Vy_ denotes the left-continuous version of Vs

(i) if b, > 0, by > 0, |JP| < SB, where JP(s) = Jy(Vy(Vy () for s €
[0, S,] and J‘3)(s) = JN(VN (V5'(s)) for s € (S,,1), where S, is the point at
which SB attains its minimum;

(iv) if b, <0, by <0, |JP| < SB, where JP(s) = In(Vy_(Vi(s))) for s €
[0, S,] and JP(s) = Jy(Vi(Vy'(s)) for s € (S,,1), where S, is the point at
which SB attains its maximum.

PROOF. (i) This follows from Vy(Vy'(s)) > (i — 1)/M when s € ((i — 1)/M,
i/M] and the fact that SB is, in this case, decreasing. (ii) This follows from
VN,(V,Q (s)) < (i — 1)/M and the fact that SB is, in this case, increasing. (iii)
and (iv) follow by combining (i) and (ii). O

REMARK 4.1. If |Jy| < SB, with b, < 0, there does not exist another SB*,
b* < 0, such that |Jy| < SB* with JN(s) = JN(VN(VNl(s)))

THEOREM 4.1. Under Assumptions 4.1-4,
V(o) _
CNVATy = ) > = [T WV (5) deg(s)

in probability, as N — oo, where

by = _{ww)jlv( s)&(V-(s)) ds

ProoF. Let

Yy(s) = —fv(w)jN(u) du

s
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and write

T = =2(6,)¥0(0) = [ (V1)) d2(2),

b =8O (VIE, = [PV (D) + [ 2(0) d¥u(V(2)),

where C,, C, are given in (4.3) and [C,, C,) denotes the complement of [(,, C,)
with respect to [C,, C,]. Thus,

Sy = Nl/z(TN — py)
Cl 2 -
= *‘/(1 AX()Wy dg(t) — (Yyy + Ynz + Yas)s

where

WO (s) ds
LT
Tu(t) = V(z) 1o

Yne = Nlﬂg(éo)[\]/N(()) - ‘I,N(V(é()))]’ Tne = N1/2g(él)\l,N(V(él))’
and '

A% () =

Yn3 = N1/2f[(, & )(E‘(t) d¥y(V(1)).

Now fix ¢ > 0 and let B be as in Proposition 4.1. If x y, = I (w), Assumption 4.2
implies

[¥OSB(s) ds
Vn(8) = V(2)
where the constant C depends on ¢, b,, b,. Thus with

§= _f(’lJ(V(t))W(t)dg(t)
G

(]

Xnel AR (2)] < Lig, 61(t) < C-SB(V(2)) - Lig, ¢,9(2),

we have
C R -
IX neSn — S| Sf | X ne AR () Wi () = J(V(2))W(t)|dE(t)
(4.6) G
+lvv + Yaz T sl
But

| X neAX(B) Wi (8) = J(V(2))W(2) | < C - SB(V(2))| Wy (2) e, ¢,1(2)
+8B(V(¢))|W(¢)],
and, for N large,

k
Wa(0)l <2 2 [2(Te) [ E(T) [+ TV ry [ DI E 1T,

k
W)l X Vi nleC1ONLO)
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so that
X ne A% (E) Wy (£) — J(V(2))W(2)|

T, T,
L1

k
< X SB(V(¢)) - TV[(),T,,][gs :

s=1

k
+2C|L(T,)| X SB(V(2)gT.lt) - Iie,,c(2).
s=1
Thus, since A%(t) — J(V(t)) almost everywhere |g| (Assumption 4.3) and
IWy(t) — W(¢)|| = 0, we may, by Assumption 4.4 and Proposition 3.2, apply
Pratt’s dominated convergence theorem (Pratt, 1960) to conclude that, for each w
the integral on the right-hand side of (4.6) converges to zero. That vy, Yne, Yn3
are asymptotically negligible may be shown as in Shorack (1972). Hence,
XneSn = S

which implies that Sy, = S in probability. O

5. Some examples. The wide applicability of generalized L-statistics is
demonstrated by the following examples.

ExXAMPLE 5.1. Simple L-statistics. For the kernel h(x) =x (k=1, r, = 1),
we obtain a version of the results of Sander (1975).

ExaMpPLE 5.2. Hodges— Lehmann estimator. For the kernel given in (2.1)
g(x) =x, and JN(S) = (a1 —a,) ! (a(, ,1(8), where a,= mf{P VN (p)=
V5 '(0.5)}, a, = sup{p: Vy(p) = VN 10.5)}, relation (4.2) gives Vy(0.5). Note
that the asymptotic distribution of VN 1(0.5) may also be obtained from Corollary
3.2.

ExamMPLE 5.3. Modified Hodges—Lehmann estimators. In the spirit of
Serfling and Thornton (1982) we may consider modifications of the Hodges—
Lehmann estimator for the shift in the two sample problem corresponding to
kernels

Xy tx, oyt 4y,

Ry o =h(x, %5 Y5, 9) = -
r r
Thus in the uncensored case and for samples X,,..., X Ny Y,..., YN2 one esti-
mates the shift by
X, + - +X, Y+ +Y )
med{ ! S Syt =1,..., Ny,
r r

For r = 1 we have the usual Hodges-Lehmann estimator.
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EXAMPLE 5.4. A measure of spread. Bickel and Lehmann (1979) propose as
a measure of spread the quantity med|X, — X |. We can extend this measure of
spread to the censored data case by taking A(x,, x,) = |x, — x,| (k =1, r, = 2),
and g, JN as in Example 5.2. Again its asymptotic distribution may also be
derived from Corollary 3.2. Moreover by Theorem 4.1 [or the corresponding result
of Serfling (1984) for the uncensored case] we may study, as a measure of spread,
any other linear combination of the quantiles of VN.

EXAMPLE 5.5. Another measure of spread. 1t is well known that the sample
variance is the U-statistic corresponding to the kernel hA(x,, x,) =
(x, — x,)* [cf. Serfling (1980), page 173]. In the spirit of the present paper we
may consider, as an alternative measure of spread, the quantity med{( X, - X; )2
Thus, with the above kernel (£ =1, r, =2), and &, JN as in Example 52
Theorem 4.1 or Corollary 3.2 will give the asymptotic distribution of this
quantity. Again, by Theorem 4.1, we may study the asymptotic distribution of
any other linear combination of the quantiles of VN.

EXAMPLE 5.6. A measure of association. It is easy to see that the sam-
ple covariance is the U-statistic corresponding to the kernel A(x,, y,, o, ¥,) =
(x, — y)(x5 — ¥,); again we may form the V-empirical process and consider
instead some combination of its quantiles. Here, however, it is the bivariate
Kaplan-Meier estimator that is required and until recently the available results
were inconclusive [see Campbell and Féldes (1980)].

ExaMPLE 5.7. Two-way ANOVA. Consider for simplicity the noninteraction
model X, =p+a;+ Bi+eijm m=1,...,Ng i=1,...,R, j=1,...,C,
La;,=0,28,=0, and assume that R, C remain fixed while N;; tend to co. Hall
(1982) proposes a method for estimating the parameters that ﬁts our formulation.
For each choice of one observation per cell (there are N, ... N such choices)
compute the average of the observations and take as an estimate fi of p the
median of these averages. Computing, for each choice of one observation per cell
again the average of the ith row minus the total average we obtain, for
i=1,..., R — 1, an estimate 4, of «, by taking the median of these differences;
for ap take —Z,R Sla;. Estlmates ,B of B, J= ., C_are obtained similarly.
With £ = RC it is easily seen that the estlmatorq )u, a,, ,8 are the medians of the
V-empirical processes corresponding to kernels ’

(X0 X e X R X pe) = R 'Zx{j,

;;;;;

............

respectively. The extension of these estimators to the censored data case is, in the
spirit of the present paper, straightforward.
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APPENDIX

Linear bounds for the Kaplan-Meier estimator and for VN The pur-
pose of this appendix is to establish linear bounds for VN (Theorem A.2) which
are needed in the proof of Theorem 4.1. This, however, requires linear bounds for
the Kaplan—Meier estimator near the origin. This result (Theorem A.1) extends
to the censored data case the corresponding result of Shorack (1972) for the usual
empirical distribution function. Linear bounds for the upper tail of the
Kaplan—-Meier estimator have been established in Gill (1980) but the correspond-
ing bounds near the origin remained an open problem (Gill, 1980, page 40).

It should be mentioned that the proof of Theorem A.1 is due to a referee; the
original proof of this result (Akritas, 1983) is based on a different argument that
yields a (much) lengthier proof. The statement and proof of Lemma A.1 below,
however, are contained in the original proof.

For the statement and proof of Lemma A.1 and Theorem A.1 we will let F
denote the Kaplan-Meier estimator based on a sample (X 1081, (X,,8,)
generated from a “survival” dlstrlbutlon F and a “censoring” distribution G; also
we will let Hy(¢) = [{(1 — G_)dF, H denote the empirical c.d.f. based on the
random number m (m = X7§;) of observatlons from H, = H,/H (o), and H, =
m/ nHl.

LEMMA A.1. In the notation above we have

A A

(A1) H,< F < H, almost surely.

Proor. Let S, denote the largest uncensored observation and X, =
max{X,,..., X,,}. We will first show the right inequality in (A.1).

Case 1. S, = X,,- Note that both F and H, assign positive mass only on
the uncensored observations and that the j Jumps of F are increasing (that is, if
X; < X, are both uncensored, the mass that F assigns to X; is greater than or
equal to the mass it assigns to X;). Next it is easy to see that the mass that F
assigns to S, (= smallest uncensored observation) is always less than or equal to
the mass that H assigns to S,. This means that F(X ) = H ,(X;) can happen
only when X, = S or when it happens that the smallest n — m observations are
all censored and the m largest are the uncensored observations in which case

F=H,.Inallo'ne cases F < H,.

Case2. S, < X, Note first that F(S,) <1 = H(S,). If we now relabel the
largest cubervatlon as uncensored and S, as censored, the new Kaplan—Meier
estimator will assign the same mass as F to all uncensored X ’s that are less than
S,,- Thus by Case 1 F< H on [0,S,) and thus the proof of the right inequality in
relation (A.1) is complete. The left inequality in (A.1) follows easily by noting
that H ; /I:’ is largest (when we interpret 0/0 as 0) at S, and in particular when
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S, equals min{X,,..., X, } in which case ¥ = m/nH,. This completes the proof
of the lemma. O

THEOREM A.l. Given ¢ > 0 there exists B = B(¢) so that

IS
(A.2) P “f ) _,B') <e
and
(A.3) —i "2,8') <e,
Fiig,

where S, (S,) is the largest (smallest) uncensored observation.

ProoF. From the definitions of H;, and H, (given right before Lemma A.1)
we have

[1 - G(t,—)]F < Hyon[0,t,],” Hyoc)H, < Fon[0, ).

Thus, using Lemma A.1 we have ||F/F||$ < ||A,/(Hyo0)H,)||S which (condi-
tionally on m and hence unconditionally too) is O,(1) uniformly in n, giving
relation (A.2). Similarly, considering only the 1nterval [0, ¢,] which is easily
shown to be sufficient, ||F/F||’° < (Hy/[1 — G(t, — )])/H0|| 0,(1) giving rela-
tion (A.3). O

We are now ready to present the linear bounds for VN.

THEOREM A.2. Let Assumption 3.1 hold with M, =1 (see the remark
following the proof ). Then for any ¢ > 0 there exists a B = (&) > 0 such that

(A.4) P[I—VNSB‘l(l— V) on(—oo,(:‘l]] >1-—c¢,
(A.5) P[1-Vy=B1~-V)on(-o,C]] =1-c¢,
(A.6) P[Vy<B Won(-c0,0)] =21 —¢,
and ~

(A7) P[Vy=BVon [C),0)] =21 —¢

hold for all N, where (:’0, C‘, are given in (4.3).

Proor. We will show only relation (A.4); the other relations are established
similarly. In what follows [T* will denote the product I ; with (s, j) # (s, i).
Note that if V(oo) <1 the result holds trivially so we will assume V(o0) =1
where V is defined in (3. 3) with T, = mln(T,, s T(« )= T,, ,s=1,..., k (see Re-
mark 3.2); also we will set T to be the maximum of the uncensored observatlons
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We have
A= V0) = (1= O(0) = 87 [T [P0 = 1Ty, < 2]) TT af(e,)

_‘[)Tl /OTk(l - I[hk;, < t])(!_[) df(x,;) -1+ T1 ﬁ's(fvs)

(s, 1)
_ /OT' /oTk(l ~1I[hy,, < t])[ 1B ¢dF(x,) ~ T1 dF(x,,)
(5,0 (s,

s,1)
-1+ l_I ﬁ's( Ts)’
(s, 1)
where d = [Z*_,r,]7%. Thus, using the formula for the difference of products
given in the proof of Theorem 3.1 we get

B'(1 = V(t)) — (1 = Vy(t))
- /T'... /OT"(l —I[hy,, <t]) n*dﬁ‘sl(xs,j)

(s,i) "0
A8 - A
(48 xd [ B (x,.) - Fi(x.)]
+ integrals involving d [ 879F,(x,;) — F(x;)] in at least second order
+ terms of order (1 — F,(T.)).

But by Assumption 3.1 with M, =1, each of the terms in the sum on the
right-hand side of (A.8) will be either of the form

foﬂ ff"lﬂ‘dFsm ~ E(y)|01* dF, (x,,;)
or of the form
[ [HUBR) = B(T)] - [B~F(5) — A" dfy (=),

where y depends on x, ;, (s,, J) # (s, i) and on ¢. But Theorem A.1 and Theorem
3.2.1 in Gill (1980) imply that both forms of integrals above are positive with high
probability. Integrals involving d[ B8~ %F(x,;) — Is's(xsi)] in at least second order
may also be shown to be positive with a high probability. Finally there are
negative terms of order 1 — ﬁ;(Ts); these, however, converge to zero at least as
fast as the positive terms and thus 8 can be chosen so the whole expression is
positive with high probability.

REMARK A.l. The requirement that in Assumption 3.1 M, = 1 is somewhat
restrictive. It is clear from the proof of Theorem A.2 that without this require-
ment one would have to use linear bounds for the Kaplan-Meier estimator
indexed by intervals. In the general case such results are not available (and
indeed not true) even for the usual empirical distribution function. However,
Theorem A.2 may be proved if instead of M, = 1 one requires that there exists a
& > 0 such that all the intervals in each of the partitions described in Assumption
3.1 are of length greater than § almost surely [P,], s = 1,..., k.
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