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A BAYES PROCEDURE FOR THE IDENTIFICATION
OF UNIVARIATE TIME SERIES MODELS

By D. S. PoskITT

Australian National University

This paper is concerned with model selection in time series analysis. An
identification criterion is presented that is asymptotically equivalent to a
Bayes decision rule. The discussion is conducted in the context of a general
class of parametric time series models and consideration is given to the
special case of order determination in autoregressive moving-average repre-
sentations. Consistency of the criterion is proved.

1. Introduction. Recently, attention has been directed in the time series
literature to the problems associated with choosing a finite parameter model for
an observed process. Much of the discussion has been concerned with the
development of model selection criteria and although alternative principles and
methods have been employed in the derivations the criteria are usually expressed
as functions of the estimated innovation variance. See, for example, Akaike
(1969), Parzen (1974), Hannan and Quinn (1979), and Shibata (1980), where the
argument is conducted in the context of autoregressive processes, and Hannan
(1980), Taniguchi (1980), and Hannan and Rissanen (1982), where the analysis is
extended to autoregressive moving-average models. Alternatively Hosking (1980),
Poskitt and Tremayne (1981), and Pétsher (1983), amongst others, have investi-
gated conventional hypothesis testing procedures designed to test the adequacy
of a chosen fitted model. The diagnostic checking devices considered may be
represented as functions of the residual autocorrelations and are related to the
portmanteau statistic discussed by Box and Pierce (1970). In the present paper
results from decision theory are used to determine a Bayes decision rule for time
series model identification. A tenuous link between the two procedures previ-
ously mentioned is thereby obtained as the selection criterion so derived can be
expressed in terms of both the one-step ahead prediction error variance and the
autocorrelations of the residual process. For an alternative approach to modify-
ing existing model selection criteria see Rissanen (1983).

Autoregressive moving-average, ARMA( p, g), representations of the form

P q
(11) x(¢) + Yax(t—i) =&(t) + Lug(t—i), ¢t=0%1,...,

i=1 i=1
where {Z(¢)} is a white noise process, provide a general and widely applied class
of models for stationary time series but the availability of finite parameter
models where the power spectrum is not rational, as in Bloomfield (1973), leads
to a consideration of a more general problem.
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AssumpTION P. Let {X(¢)} be a discrete time nondeterministic zero mean
Gaussian stochastic process with power spectrum f(w) € L?, the class of func-
tions square integrable with respect to Lebesgue measure » on [ —, 7].

Suppose that a model for an observed process assumed to satisfy Assumption
P is characterised by a particular functional form for the power spectrum and is
specified by a parametric family M = {g(0, ) € L% 0 € O} satisfying the fol-
lowing assumptions.

ASsUMPTION M1. The parameter space ® is a nonempty open subset of R
where the posmve integer d is referred to as the model dimensionality. The
closure of 0, 0, is convex and bounded.

AssUMPTION M2. The function g is continuous on ® X [—=, 7], g > 0, and
if 8, # 0, then g(0,, w) # g(8,, w) on a set of positive Lebesgue measure.

AssUMPTION M3. The partial derivatives dg(8, w)/d6;, 3°g(8, w)/36, 36,,
and 3°g(0, w)/ 30, 06, 38,, i, j, k= 1,...,d, are continuous on ® X [—=, 7].

The above model requirements will be referred to as Assumptions M and,
together with Assumption P on the process, will be maintained throughout the
paper.

In order to quantify the adequacy of a model a suitable measure of the
consequences of employing a particular parametric specification is required. In
the following section of the paper a frequency domain utility function that
provides a measure appropriate for the observational decision problem of dis-
criminating among a given set of alternative models on the basis of a finite
realisation is discussed. The likelihood function and certain asymptotic proper-
ties of the likelihood and the Gaussian estimator of theta are also considered. In
Section 3 the principle of precise measurement, Savage (1962), is pursued.
Starting from a position of prior ignorance a Bayes decision rule, which for a
given realisation maximises the average utility with respect to the posterior
distribution of the model and its parameters, is derived and the results are
specialised to the ARMA case. Prior ignorance, that is, the notion that little is
known a priori relative to the information provided by the data, is represented
using an invariant prior distribution as suggested by Jeffreys (1961). Such a
choice is noninformative but does not result in an improper prior distribution
here due, essentially, to Assumptions M. To this extent the present formulation
may be thought unconventional, although it is related to the standard Bayesian
procedure for model discrimination, Pericchi (1984). This procedure has been
criticised in the literature as in some situations it is asymptotically inconsistent,
Pericchi op. cit., and therefore the large sample behaviour of the posterior
expected utility is investigated further in Section 4. Consistency of the model
selection criterion is established and the implications for the practical imple-
mentation of the identification procedure discussed. The proofs of the main
lemmas contained within the paper are assembled in the final section.
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2. Model utility and likelihood. In the present problem an action involves
choosing a model and selecting from within the parametric family a particular
member The action and state coincide with L2 Given a set of m models,

= {g(0,w)EL? 8,€0}, i , m, what constitutes a best action de-
pends upon the extent of avallable knowledge concerning the true state of
nature. For any 8 € © let m(0) denote the action of choosing the particular
member g(0, w) from the family M. For convenience, here and throughout the
paper, the model subscript i, i =1,..., m, is omitted and generic notation
employed where this raises no ambiguity. In the extreme but unrealistic situa-
tion that the true power spectrum f(w) is known, a natural measure of the
regret or loss involved in taking action m(9) is glven by the integrated squared
relative error

(2.1) n{m(8)) =/( o) de.
—a\ 8(0, w)

The associated utility may be taken as U{m(8)} = exp[ —n{m(0)}]. For theoret-
ical and practical purposes, however, it is necessary to consider a rather more
complicated specification of the utility function and in particular it is necessary
to allow it to depend on and be modified by the observations.

Given a realisation x, = (x(1),..., x(T))" of T observations on the process
{X(¢)} set the sample power spectrum, or periodogram,

Ip(w) = (2T) | Zp(w) [,

where
-
Zp(w) =) x(t)exp(—iwt).
=1
Evaluating I(w) at the frequencies w; = 27j/N, —(T - 1) <j < (T - 1), N =
2T — 1 the loss of action m(0) can be approximated using the numeraire

7 Ir(w; ?
(2.2) nr{m(8)} ZNZ{Q(J,—J)} ——Z (e w)) + 2.

LEMMA 1. The numeraire np{m(8)} converges to n{m(8)} with probability
one, unlformly for all 8 in ©.

The implication of Lemma 1 is that as the sample size increases any departure
of n,{m(8)} from zero reflects more a loss from using an inappropriate model
than a departure of the numeraire from the theoretical but unknown regret given
in (2.1). The utility associated with m(8) will therefore be taken as

Up{(m(8)} = exp[—np{m(0)}].
The likelihood of a model M and its associated parameter vector 0, denoted
pr(x,|M,0), is

(2.3) exp[ 5 Indet £,(0) + TIn27 + x;.2,(0) xp)]
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where the variance—covariance matrix of the vector x,
27(9)—[f g(0,w)er” s)dw] r,s=1,...,T.

In order to re-express pr(x,|M, 8) in the frequency domain consider the function
I ( wj)

g(ﬁ’wj) )

1
1r(0) = NZ ln27rg(0, wj) +
J

LEMMA 2. Forall®in ©

(1) ’T"‘lndetET(O) —In27 - N '} Ing(,w)|— 0
J

and

(ii) 'TIX,TET(O)'IXT - NﬁlZIT(‘*’,')/g(e, w)|—0

J

almost surely (a.s.) and uniformly.

An immediate corollary of Lemma 2 is that T '|ln pr(x,;|M,0) + T In27 +
1Tl;(8)] = 0 a.s. and the asymptotic behaviour of the likelihood can be investi-
gated via the limiting behaviour of 7,(0).

A second consequence of Lemma 2, and its proof, is that [,(8) converges
uniformly in 8 and with probability one to the corroborant function

() = (w)‘fl(mzwg(e,w) + gf(()w:) ) dw,

a continuous function of 8 on the compact set ©. Let 8, denote a value of theta
at which the infimum of /() is achieved, that is 1(8,) < /(0) for all 8 € 6. The
vector 8, yields the best fitting member of the family M for the process { X(¢)}.
However, since In y + d/y, d > 0, is minimised at y = d,

(2.4) 1(8) 21+ (27) " [ In2af(0) do,

with equality if and only if g(8,, @)= f(w) almost everywhere (a.e.). This
equality cannot be assumed to hold for any specification. For this reason 8, will
be referred to as the pseudo true parameter for the model. Now let 6, be a value
minimising /(0); such a value exists because /;(8) is a continuous function
defined on a compact set. Employing the nomenclature of Whittle (1962) 0 will
be called the Gaussian estimator. The relationship between the Gaussian estima-
tor and the pseudo true parameter and the properties of /.(0) described
immediately below are germane to the subsequent analysis of model expected
utility.

LEMMA 3. If 8, is unique and lies in the interior of O then b is a strongly
consistent estimator of 8.
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LEMMA 4. Let H(0) denote the hessian matrix 3*1;(0)/38 30’. Then H(8)
converges to

(a Ing(8, w) 9%g(0, w)

FTYTY + f(0)——— | dw

21(8) = _'n'/ 90 96’

-

almost surely and uniformly in 8 € 0.

The following addition to Lemma 4 supplementing Assumptions M proves to
be necessary in Section 3.

AssUMPTION M4. The information matrix I(8,) is positive definite.

By Assumption M3 I(0) and H(8) are continuous in 8 and it follows that for
T sufficiently large HT(éT) will also be positive definite a.s. in a neighbourhood
of 6, because the uniform convergence of sH(8) to I(8) and the convergence of
0, to 8, a.s. ensure that | HT(GT) is a strongly consistent estimator of I(,).

REMARK. If the model obtains then the pseudo true parameter point 8,
coincides with the true value of the parameter and f(w) = g(8,, w) a.e. In this
case I(0,) simplifies to

7 31n g(6),w) d1lng(8), w)
— dw
47 J_ 70 a0’

This corresponds to the usual expression given for the information matrlx See
Hannan (1973, page 137) and the references contained therein.

3. An asymptotic Bayes decision rule. In order to proceed a specification
for the prior distribution of the model and its associated parameters pr(M, 0) is
required. As indicated above, the prior distribution of 8 given M is chosen
noninformatively following Jeffreys (1961, Chapter 3) as

pr(0|M)a{detI(0)}l/2.

As it is common practice to espouse the principle of parsimony when modelling
time series, the model prior pr(M) is assumed to be proportional to (27)" /2,
This gives a prior odds ratio of approximately 2:5 and, reinterpreting Jeffreys
(1961, Appendix B), indicates an indecisive preference for every unit decrease in
model dimensionality. For some discussion of alternative model priors and their
interpretation see Poskitt and Tremayne (1983). By virtue of Assumptions M

0 < [ {det1(8)}'"*d0 < sup {det1(8)}"*s,(8) < o0,
(C) ®
and given that ¥,(27) %/? < co the prior distribution,

pr(M,0) = pr(M)pr(0|M)a{(277)Addetl(ﬂ)}1/2,

may be normalised to give a proper mixed mass-density function.
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The Bayes decision rule can now be constructed using the extensive method of
analysis, Raiffa and Schlaiffer (1961, Chapter 1). The action m(0) is sought
which, for a given data set, maximises the posterior expected utility

E[U{m(8)}] = /(:)U{m(ﬁ)}pr(M,0)pr(xT|M,0)dﬂ/pr(xT),
where
pr(xr) = 3 pr(M,) [ pr(8|M,Jpr(x1M,,0) do.

This provides a principle for determining the best action in relation to the
current realisation. Let .

E'1‘[U7‘{m(9)}]

P LK el (m(0))] {(27) et 1(0)) expl ~ 170y (0)] an,

where the constant K is the reciprocal of
m _ /2
pr(x;) ¥ fo {(2m) “det1,(8)} " do.
i=1 J

Employing the approach of Lindley (1960) and letting T' — o0, Lemmas 1 and 2
and the Arzela—Ascoli theorem imply that |E;[U;{m(0)}] — E[U{m(0)}]| = 0
a.s. and the limiting behaviour of the posterior expected utility can therefore be
ascertained from that of the integral in (3.1). Using Lemmas 3 and 4 it is possible
to establish the next lemma involving the second two factors of the integrand.

LEMMA 5. For all values of T and each 8§ € © set

67(8) = {(T/27)%det 1(0)) “exp[ = 1T{1:(8) — L-(67)}].

Then {$1(0)} forms a sequence of regular generalised functions, translated to
0., converging to a Dirac delta function.

Lemma 5.is based on the result that asymptotically the likelihood, which is of
order T, behaves like the kernel of a d variate Gaussian density function with
mean vector 6, and variance—covariance matrix 2HT(6T)_‘ /T. Consequently, as
the sample size increases ¢(8), which is proportional to exp[%TlT(éT )] times the
posterior density, approximates an impulse function centred at GT. Therefore
when the expectation

E;[Up{m(8)}] = Kexp[—%TZT(()\T)]T"’ﬂj(:)exp[—nT{m(O)}]¢T(6)d0

is evaluated any values outside of an arbitrarily small neighbourhood of f, make
a negligible contribution to the integral. Taking logarithms and neglecting
common factors then gives rise to the following theorem.
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THEOREM 1. The posterior expected utility is maximised asymptotically by
selecting the model which minimises the criterion function

A{m(8;)) = 1 T0(6;) + Sd InT + np{m(8;)).

It is, perhaps, worth pointing out that the first two terms of A coincide with
the BIC criterion function associated with Rissanen (1978) and Schwarz (1978).
These terms may be thought of as determining the posterior probability of a
model, Poskitt and Tremayne (1983), and the final model selection is based upon
a trade-off between the estimated posterior odds of the models and their relative
utilities as represented by the last term.

Consider now the ARMA( p, q) model of (1.1). In order to satisfy Assumptions
M the structural parameters «a,,..., @, and p,,..., p, are assumed to belong to
the subset of #P*9 defined by the requirements that the roots of a(z) and p(z)
lie outside the unit circle, a(z) and p(z) have no common factors and «, and p,,
are not both zero. For this model

0'2 B 2
8(0,0) = —|K(e )],
T
where K(z) = Zk; 2/ = u(z)/a(z), and the scale parameter ¢ is assumed to lie
in the interval (8 1/8) for arbitrarily small § > 0. Substituting in 1,(0), 6 =
(6% ay,...,ap,, iy,..., ,) and concentrating with respect to o* it is easily
shown that

1;(8) >Ins® + N*'Zln|K(e““")|2 + 1,
J

where

. )
l 2
B |K ~zw)|

Of course, K and s? are functions of § and although for convenience this is not
shown explicitly in the notation the evaluation of these quantities at the point
corresponding to the Gaussian estimator will be indicated by the use of a
circumflex. The following result now follows from the above theorem after some
straightforward manipulations.

COROLLARY. The Bayes decision rule is asymptotically equivalent to choos-
ing the ARMA( p, q) model that minimises the criterion function

(p+qg)nT

A(p,q)=§T[ln§2+NIZln]I§' "“‘)]
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To provide a heuristic interpretation of this corollary assume that an
ARMA( p,, q,) model obtains so that, employing an obvious notation,

%G e
f(w) =848, w) = 5;|K0(e )| a.e.

and the pseudo true parameter value 8, now corresponds to the true parameter
point in the usual sense. It is then well known that {Z(¢)} is the innovation
process associated with Wold’s decomposition theorem and that

o2 = exp[(Zw)l/WWIHZWf(w) dw],

the variance of the minimum mean squared error one-step ahead prediction
error. This implies that

(27) "' [ n|Ky(e) [ de = 0.

Furthermore, (1.1) defines for any p and ¢ a residual process which may not be
white noise unless the model is correct, that is p = p, and q = q,, and the true
parameter point 6, is employed. Estimating the uth autocovariance of the
residual process in the frequency domain by

N 27 _ Ip(w;)etr

Crlu) = 7 E 2,
SN TR )

it follows from Parseval’s theorem that the last term of A( p, ¢) may be written
as

T-1 ,

2m Y. {Fp(u)}’,

u=0
where Fr(u) = C’T(u)/ C’T(O) = (:‘T(u) /8% is the uth residual autocorrelation.
The components of A( p, ¢) may therefore be regarded as assessing the extent to
which the theoretical relationships of the true data generating mechanism are
satisfied by the best fitting member in the family, or model, under consideration.

REMARK. The last term of A( p, q) is equivalent to the portmanteau statistic
of Box and Pierce (1970) except that multiplication by T in the usual statistic is
replaced by multiplication by the constant 27 and the range of summation is
extended to include autocorrelations at high lags. The statistical properties of
this statistic and some evidence on its performance relative to portmanteau tests
are presented in Milhgj (1981).

To summarise, in the context of ARMA models, the criterion function leads to
the selection of the model that appears to provide the best compromise between
predictive characteristics, the autocorrelation structure of the residuals and
model dimensionality.
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4. Consistency of the delta criterion. The analysis of the previous section
indicates that, given a set or range of models {M,, i = 1,..., m}, the adoption of
Bayes rule leads to the selection of the 2th model M, if

A{mk(ékT)} = ‘e mm [A i(éiT)}]'

Should the minimum not be unique the practltloner is thought to be indifferent
between those models M k) Jj=1,...,1 < m that yield the minimising value.
Taking this decision rule as given its performance can be analysed by examining
the sampling behaviour of the expected utility ratio

R.(i, ])—exp[ A t t’I‘ }]/exP[ A 61 }]

,j=1,....m,i#j,as T — o0.

Following the previous discussion a model is said to be true, or to obtain, if
the pseudo true parameter 8, associated with the model is such that g(8,, w) =
f(w) a.e. and a range of models is said to encompass the data generating
mechanism if there exists a specification M, € {M,, i = 1,..., m} that is true.
By virtue of transitivity, the behaviour of the decision rule when comparing a
range of models is characterised by the following theorem, in which the notation
a; ~ by is used to mean that (a;/b;) > 1as T — .

THEOREM 2. Let R;(2,1) denote the expected utility ratio between two
models M; = {g(0,, w) € L% 8, € ©,), i = 1,2, with pseudo true parameter val-
ues 0,, and 0,,, respectively. If

(i) M, and M, do not encompass the data generating mechanism and

o) ||
&0, ) gz(ezor‘*’)

for & < 1, uniformly in w, or

(ii) M, is true and g,(0,, w) # f(w) on a set of nonzero v measure with
relative error bounded above as in (i),
then there exists a constant C > 0 and a decreasing sequence C \ C such that

R.(2,1) ~ exp[ - C;T] ~ {exp[-C]}"

0< 1| <6,

If
(iii) both M, and M, obtain,
then

{RT(2 nyr~ (‘/T)(dl 21 as.

To prove Theorem 2 observe from Lemmas 1, 2, 3, and 6 that
20{m(0;)} = TU(8,)) + d InT + 29{m(8,)} + o(T) as.
Assuming that condition (i) or (ii) holds, substituting the expansion
(fo) ( f(w) ) ( f(w) )2
= 1| - -1 +
8(8,0) 8(8,0) g(8,0)

In
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in the definition of the corroborant function and simplifying the resulting
expression for the difference 2[A{m,(0,7)} — A{m(8,7)} gives the equation

2In R,(2,1) 2\ 1 o f(w) 2 f(w) ?
T - (1 " ?)E'[w (81(010"*’) - 1) - (82(020"0) - 1) de

+0(8%) +o(1) as.

for the logarithm of the expected utility ratio. From the properties of the regrets
n{m(0,,)} and n{my(8,,)} implied by statements (i) and (ii) the first term above
is negative definite and, since 8 is arbitrary, there therefore exists a constant
C > 0 and a decreasing sequence Cr N\ C such that

|T'In R;(2,1) + Cz| - 0 as.

as T — o0, giving the required result. Similar arguments applied under condition
(iii) show that

|T7(2In R7(2,1) — (d, — dy)InT)| > 0 as,

which is equivalent to the statement of the theorem as lim% is unity.

The structure of Theorem 2 shows that if { X(¢)} emanates from an unknown
specification within {M;, i = 1,..., m} then, as the sample size increases, A will
select the true model with probability one. Furthermore, since for any a, b > 0,
T = o{exp(bT)}, the theorem also lends support to the intuitively appealing
notion that it is possible to distinguish a model that is true from one that is not
more readily than it is to reconcile alternative parametric families both of which
obtain. In the latter situation the decision rule will, for large finite T, resolve the
dilemma posed by having to select one model by choosing the most parsimoni-
ous, although any preference may be blurred. Taking dimensionality d as an
index of model complexity this amounts to an implementation of the principle of
simplicity, Rosenkrantz (1983, Chapter 5). See also Rissanen (1983) and, for some
discussion of the philosophical point that consistency is to be equated with
choosing the most parsimonious true model, Atkinson (1980).

The existence of a definitive true model of finite dimensionality can of course
be called into question. Shibata (1980), for example, who is concerned with mean
squared prediction error and whose results have been generalised by Taniguchi
(1980), explicitly assumes infinite true order, and Stone (1979) has stressed the
need to consider more complex, profligate parameterisations as T' = 0. Recogni-
tion of this motivates consideration of the behaviour of R,(2,1) when the model
set does not encompass the data generating mechanism as in Theorem 2(i). When
8 is small both M, and M, provide reasonable guides to the data generating
mechanism but the first model gives a more accurate approximation to the
distribution of power induced by f(w) and, hence, to the actual structure of the
process. Asymptotically, the magnitude of R, (2,1) will reflect the relative
proximity of the two models and will lead to the identification of the best fitting
parametric family M,.

The implication of the foregoing discussion is that model posterior expected
utilities provide a potentially useful basis for making comparisons between
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alternative parametric specifications. If, when considering a range of models, the
numerical value of the criterion A for one model is small in relation to that of
another then this will indicate that the model is more appropriate for the process
in hand and is to be preferred. There may be circumstances, however, where a
mechanistic application of the decision rule to select a single preferred model will
be undesirable as little consideration will thereby be given to the relative merits
of other specifications. If the expected utility ratio is close to one for two or more
models then any preference between them may be indistinct. This raises the
possibility of the practitioner simultaneously entertaining a few parametric
families between which she/he is essentially indifferent or employing an average
model, as suggested by Akaike (1978) for example, in order to better understand
the process. The question of the possible efficacy of using the criterion A to
identify univariate time series models can only really be answered by reference to
experience and experimentation however.

5. Proofs. In the sequel ||A| will be used to denote the operator norm
Sup |, -1llAz|| of a matrix A where, for any vector z, ||z|| is the Euclidean norm.
The letter C denotes a universal constant. Consider first the following pre-
liminary result. '

LEMMA 6. Let

T-1
‘P1,T(9) = (27/N) ‘——ZT IT(wj)h(o’wj)
and
T-1 )
\1/2,T(9) = (27/N) N _ZT {IT(wj)h(O, “’j)} )

where h(8, w) is a continuous real valued function on © X [—m, 7] with continu-
ous partial derivatives dh(8, w)/d0;,, i1 =1,...,d.
Then

¥, 7(0) > flf(w)h(e,w)dw a.s.
and
4or(0) > 2 (f(0)h(8,0)) du as.

uniformly for all § in ©.

ProoF. The limiting behaviour of smoothed periodogram values has been
discussed elsewhere in the literature under weaker regularity conditions than
those assumed at present. See Anderson (1971, Chapters 8 and 9) and Brillinger
(1975, Chapters 4 and 5). The methods employed by these authors can be applied
here to show that for any § € ©

i r(0) - fjﬂf(w)h(o,w)dw a.s.
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as T — o0. To prove that the convergence is uniform, note that for any 6 > 0
and 0,, 0, € © such that ||6; — 8,]| < §é

h(8,, ©) — h(8,,0) = (8, — 02)'3}1(6, w)/ 30,
where § = 0, + A(8, — 8,), 0 < A < 1, by the mean value theorem. Hence

d
|h(8,, w) — h(8,,w)| <8 ) sup dh(8,w)/dd,,
i=1
where the supremum is taken over [ -7, 7] and 6 € Ny(0,) = {0: ||6, — 0] < 8}, 6
being chosen so that N;(8,) C ©. Consequently there exists a constant C such
that

T-1
‘Pl,T(el) - t11’1,7'(62) <8-C-(27/N) Z IT("’/‘)
J=—T+1
and (27/N )L ;I;(w;) converges to [f(w) dw a.s. Thus, ¢, 1(0) is equicontinuous
and converges uniformly to [f(w)A(8, w) dw.
The proof that Y, (8) converges as indicated proceeds along almost identical
lines, c.f. Milhgj (1981, Lemma 1).

Proor oF LEMMA 1. This is obtained at once from Lemma 6 on setting
h(8, w) = 1/8(8, w).

ProoF oF LEMMA 2. Part (i) of the lemma follows almost immediately from
a theorem due to Grenander and Szego6 (1958, Chapter 5) that concludes that

lim T~ 'Indet 2,(0) = (27) ' [ In27g(0, o) do

T—-oc

it is only necessary to observe that

T-1 oc

N Y Ing(6e)= Y p(e,kN)e(2w)*‘/j’wlng(e,w)dw,

J=-T+1 k=-ox

as the coefficients
0(8,n) = f” In g(8, ©)e” do

decline at a geometric rate, to show convergence for a given 0. The fact that the
limit is uniform in 8 is not stated explicitly in Grenander and Szeg6 although it
follows directly from the uniformity of the order relations used in their proof.
The proof depends upon the approximation of g(6, w) by trigonometric poly-
nomials. However, g(0, ) is a continuous function of 8 and w on © X [~7, 7]
and is, by assumption, bounded away from zero. Hence g(0, w) may be ap-
proximated by a polynomial uniformly in 8 and & on ® X [—, 7] and this
completes the proof of (i).

Part (ii) may be derived similarly from the preliminary lemma, see also
Hannan (1973, Lemma 4).
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Proor oF LEMMA 3. By a direct application of Lemma 6 lr(8) converges
uniformly to /(0) a.s. Let 8 be a limit point of the sequence OT By uniform
convergence and continuity, for any § > 0, |lT(0+) —1(0%)| < 8/2 and |lT(0T)
1(87)] < 8/2 as. for T > Ty and hence lT(GT) - [(6%) a.s. By definition, /(8,) <
l(@1 ) and lT(OT) < 1(8, )for all T, which implies that /(8") = I(6,). Since / has a
unique minimum at 8, it follows that 6" = 8,.

Proor or LEMMA 4. The proof of this lemma involves arguments similar to
those already employed in proving Lemmas 1 and 2. The details are omitted.

Proor or LEMMA 5. Consider

Jor(8)db = [m )¢T(0)d0+f ¢r(8) db

ONE(8)
=1 +1,

where, for &> 0 arbitrary, E (OT) is the elliptical neighbourhood {6: (8 —

(Y HT(OT )8 — 6,) < ¢}. By Lemma 3 there exists a T5, such that for arbitrary
8,, 6, lies in the spherical neighbourhood N; (6) for all T > Ta and for
8 € O \ N;(8,) there exists a positive constant_ C such that 17(8) — I7(8,) > C.
Set 8, = e/(2||HT(6T)||) Then N;(6,) € N28(6T) c E(QT) which implies that
(AN E(OT) C O \ Nj;(6,) and hence

1/2 _
IQ<{Sli)pdetI(0)} T/ %xp| - LTC]»,(8) > 0 as.

as T — oo.
Since I(8) is a uniformly continuous function of 8, for any { > 0 there exists a
8, > 0 such that

det I(6,)(1 — ¢) < det1(8) < detI(6,)(1 + ¢)
for all 6§ € Nj( 6,) and by Taylor’s theorem
Qr(8)(1 = §) < 1(8) - 1r(6;) < Q(8)(1 + %),
where
Qr(8) = (0 - éT),HT(éT)(e - éT)

If & = 8,/|H(6;)""|| then E(8;) C N;(6). Substituting in ¢,(8) and employ-
ing Lemmas 3 and 4 in conjunction with the properties of the multivariate
normal density function and the incomplete gamma ratio yields

-d
= (L2 8) "1 = yp(e(1 £ £)/2)},
where, using conventional notation,

n—1

vr(y) = exp(—Ty/2) ¥ (Ty/2)"/T(j + 1)

Jj=0
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when d = 2n and

2

ve(y) = exp(=Ty/2) ¥ (Ty/2)" " V2/r(j + 8/2) + 2{1 - ®(VTy)}

J=0

when d=2n-1, n<(d+1)/2<n+ 1. As { is arbitrary it follows that
I, » 1 as. as T — . The proof is completed using standard results from the
theory of generalised functions, Zemanian (1965, Theorem 2.3.2) and Gel’fand
and Shilov, (1964, pages 34-39).
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