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function ¢(i) proportional to 1/i(logi)%. The true probability mass function is
taken to be 6* which differs from ¢ for small i and is equal to ¢ for all large i.
The posterior has the unfortunate property of concentrating at ¢ rather than in
neighborhoods of 6*. From this inconsistency, we conclude that the Dirichlet
prior does not locally match 6*. Moreover, the Dirichlet prior assigns zero
mass to the relative entropy neighborhood {6:¥,0*(i)log 8*(i)/6(i) < ¢} for
sufficiently small.

Freedman and Diaconis have pointed out that ¢ and §* have infinite entropy
H(6*) = ¥,6*(i)log1/6*(i). One might think that the inconsistency is a result of
the infinite entropy; however, even if certain finite entropy mass functions are
used in the construction, inconsistency will still result. It is enough that 6* and ¢
have tails proportional to 1/i* where 1 < a < 4. (The verification of incon-
sistency closely parallels Sections 2 and 3 of Freedman and Diaconis, 1983). In
Freedman (1963), finite entropy appears as part of a condition for consistency.
We now know that the finite entropy assumption is extraneous. It is the relative
entropy that matters for Bayes consistency.

In summary we have discussed some inadequacies of the Dirichlet prior as
revealed by the analysis of Diaconis and Freedman and we have pointed toward
stronger consistency and merging results obtainable for other priors.
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The very lucid paper of Diaconis and Freedman is full of stimulating ideas and
discussion. The ideas fall roughly into three categories: (i) inconsistency of Bayes
rule, (ii) frequentist-Bayesian interrelationships including the “what if”’ method,
and (iii) new Bayesian devices and techniques. My comments will be grouped by
these categories, and will be restricted (because of space considerations) solely to
a Bayesian view of the situation.

e )
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to | .z

The Annals of Statistics. NIN@IN
www.jstor.org



CONSISTENCY OF BAYES ESTIMATES 31

1. Inconsistency of Bayes rules. The fact that parametric Bayesian anal-
ysis virtually always yields consistent estimators (Bayesian “stable estimation”)
may have, at one time, lulled Bayesians into believing that consistency was not a
concern. Freedman (1963, 1965) disabused Bayesians of this notion (or at least
should have), and this and the following paper provide convincing further
evidence that Bayesians should be concerned with consistency in nonparametric
and infinite parametric problems.

It is important to emphasize the nature of the inconsistency that can arise in
these problems. Doob’s theorem (see Corollary A2 in the appendix of the paper),
shows that the posterior mean is consistent for 4 in a set, ©,, of prior probability
1. The Freedman and Freedman-Diaconis results show, however, that there are
very close to @, (indeed limit points of ®,) for which the posterior mean is not
consistent. Thus the Dirichlet process prior concentrates on 8, = {discrete distri-
butions}, and for § € 0, consistency problems are not to be expected (see also
the commentary of H. Doss), but for 8§ & ©, Diaconis and Freedman have
constructed problems where inconsistency can result.

I feel this shows that a Bayesian has to be especially careful in constructing
the prior for nonparametric or infinite parametric situations; in particular use of
“convenient” priors may be more dangerous in nonparametric than in parametric
Bayesian analysis. One could avoid the inconsistency problem by constructing
the prior, p, to concentrate on those § deemed reasonable a priori (rather than
settling for a convenient “dense” ©,,, as the Dirichlet process prior does), or one
could explicitly worry about consistency of the selected prior, but work is
involved in either approach. In this respect it should be realized that the
“tail-free” priors and “neutral-to-the-right” priors are positive steps in the latter
direction; they are priors for which consistency has been verified in nonmixed
problems. (Also, Freedman (1963) showed how such priors could be modified to
incorporate subjective information.) Very little Bayesian research has been done
on the alternate approach of developing priors which “live” on the right spaces,
partly because of the calculational allure of priors such as the Dirichlet process
priors; hopefully such development will now be forthcoming.

A general question I have for the authors is: How likely is it for one to
encounter a consistency problem in practice? There are at least two reasons for
asking this. The first is that many of the difficulties here seem to be caused by
the concentration of the Dirichlet process prior on the set of discrete probability
measures. From the beginning, many Bayesians (though certainly not all) have
been very leery of the Dirichlet process (when used as a prior for all or continuous
densities) because of this unnatural concentration. The weird occurrences in these
two papers (and also the commentary of H. Doss), reinforce the notion that it is
the Dirichlet process prior which is the main problem. There is, of course, the
Freedman (1965) result, which shows that consistency will only tend to occur on a
first category set, but the implication of this is unclear since (for instance) there
exist first category sets on the real line whose complements have Lebesgue
measure zero. Being consistent, except on a set of Lebesgue measure zero, would
be quite satisfactory to many.
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The second reason to wonder about the practical importance of these incon-
sistency results in nonparametric settings is that, often, the function or distribu-
tion being estimated is “nicer” than a typical element of the nonparametric class
being considered; a too large nonparametric class is often assumed for mathe-
matical convenience. Consistency may obtain at the realistic “nice” functions, as
it does at the “nice” strongly unimodal densities, A, in the major location
example of the paper.

I am not really trying to argue that the examples in these papers are artificial;
indeed, one of the major strengths of the papers is that they exhibit inconsistency
in relatively natural problems. Nevertheless, if the authors have developed any
feel for the chance of encountering inconsistency in practice, it would be nice to
hear.

Also, in this regard, the authors refer to analyses by Jeffreys, Fraser, Box and
Tiao, and Johns, at least some of which are entirely parametric. It is unclear from
the paper whether it is being claimed that these particular analyses can actually
be inconsistent, or whether it is merely the case that related analyses, using (say)
Dirichlet process priors, can be inconsistent. In the first case, there is obviously
“evidence” that Bayesians are likely to encounter consistency difficulties.

Before leaving this subject, I feel compelled to also mention the other side of
the coin. Although I do not think it was the intention of the paper to make any
“Bayesian versus frequentist” value judgements, some may interpret the paper as
an argument against Bayesian analysis. Such an interpretation must be tempered
by the realization that consistency can also be a problem for frequentist proce-
dures. Even more to the point from a practical perspective, the advantage in
most finite sample situations of Bayesian analysis, as opposed to frequentist
“large sample theory,” is often not appreciated. There is a massive frequentist
industry which derives large sample asymptotic results, and then “hopes” that
the results work okay for finite samples. What is not commonly appreciated is
that Bayes procedures will typically have the same large sample behavior, and
yet are also probably reasonable for small samples. If one has a variety of
“equivalent” large sample procedures, why not use one which is also constructed
to be good for small samples, instead of simply choosing one “at random”?

Another apect of this “other side of the coin” is that it is precisely in high
dimensional parametric and even nonparametric problems that it can be most
crucial to utilize subjective prior information. It will be rare to have enough data
to illuminate all dark corners of a high dimensional problem, and subjective input
(including model development) is often unavoidable. As one frequentist-type
example, consider Stein estimation in nonsymmetric multivariate settings. It is
fairly well established (cf. Berger and Berliner, 1984) that one cannot avoid
subjectively determining where and how one should “shrink” the least-squares
estimator. And in nonparametrics there are often compelling reasons to attempt
to subjectively specify the rough shape or at least the smoothness of the function
or distribution to be estimated. Thus, while Bayesians may encounter unexpected
difficulties (such as consistency) in these problems, the need and incentive for
Bayesian input is greatly enlarged.
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These last comments were not meant to prove anything. The point was merely
to emphasize that frequentist analysis is by no means clearly superior to Baye-
sian analysis when considering the broad area of utilization of large sample
theory.

2. Frequentist-Bayesian interrelationships. There are a large number of
coincidental and technical relationships between frequentist and Bayesian analy-
sis, many of which are mentioned in the paper and discussed extensively in the
references therein. Though interesting, these relationships are not as important
as the operational issue of when a Bayesian should make use of frequentist ideas.
The related issue, of when a frequentist must make use of Bayesian methods, is a
much lengthier topic, and will not be discussed here. (Some examples and
references to this issue are given in the paper: others can be found in Berger and
Wolpert (1984), Berger and Sellke (1984), and Berger (1985).)

The italicized words should and must, in the above paragraph, reflect my
beliefs that a Bayesian can sometimes utilize frequentist ideas to make life easier,
whereas a frequentist is often forced by reality to completely abandon ship. No
attempt will be made to support the latter part of this statement, but I will
digress to discuss the robust Bayesian motivation for the first part of the
statement. This digression is somewhat out of place here, but my subsequent
comments on the Bayesian uses of frequentist measures that are proposed in the
paper would be otherwise unintelligible.

The robust Bayesian position can be roughly stated as follows: An answer to
a statistical problem is a good answer only if there is substantial reason to
believe that the answer would approximately equal the posterior Bayes answer
for any reasonable sampling model and prior distribution (and loss function in a
decision problem) entertained. Thus, suppose it is roughly felt that X is N(6,1),
that 6 is N(0,1), and that the loss in estimating @ is increasing in |§ — a|.. Then
the Bayes estimate is a* = }x. If x = 1 is observed, it can be seen that a* = 1 is
a good answer, in that small reasonable variations in the model, prior, and loss do
not change the Bayes estimate much. For x = 5, however, the situation is very
different. Changing either of the distributions to, say, a similar Cauchy distribu-
tion will radically alter the Bayes estimate, so a* = 2.5 is not necessarily a good
estimate. No effort will be made to defend this robust Bayesian belief here; see
Good (1983), Berger (1984), and Berger (1985) for such defence.

The most natural way to investigate Bayesian robustness is through what
Leamer (1978) calls global sensitivity analysis: vary the model, prior, and loss
over reasonable ranges and see what happens to the posterior Bayesian answer.
(Recent works in this direction, which contain many other references, are Berger
and Berliner (1983) and Berger (1985).)

The point of this aside is that the robust Bayesian definition of a good answer
does not involve frequentist ideas in any way. The data, x, is always treated as
known; the “ variables” in the analysis are the model relating x and the unknown
0 of interest, the prior for 6, and any loss to be considered. (Actually, Bayesians
see little conceptual difference between models and priors. Also, we are consider-
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ing here only the final “inference about 6§ ” stage of the analysis. In topics such as
experimental design, the data are not yet known and at least partly frequentist
measures become necessary.) If robust Bayesians can be satisified that global
sensitivity obtains, they will look no further.

From this viewpoint, frequentism may come into play only when global
sensitivity is unattainable (due, say, to an inability to sufficiently refine the
usually subjective inputs of model, prior, and loss), or is unverifiable (due to
technical limitations in carrying out the global sensitivity study). In nonparamet-
ric or even high-dimensional parametric problems, both difficulties are present
with a vengeance. It can be hard to perform any sensible Bayesian analysis,
much less carry out an extensive sensitivity study. There are then various roles
that frequentist ideas can play.

The role that is concentrated on in this paper is the “negative” one that bad
frequency performance is often (but not always) an indicator of a definite lack of
Bayesian robustness. A lack of consistency, for seriously entertained 8, would be
perhaps the most drastic indication of such a lack of robustness. A number of
other such frequentist indicators are discussed in Berger (1985).

Another frequentist-based tool that is discussed in the paper, as bemg of
possible interest to Bayesians, is the “what if” method. Note, first of all, that the
robust Bayesian viewpoint could be called a “what if” approach; what if the
model, prior, and loss were changed in reasonable ways? The “what if” method
discussed in the paper is quite different, however; it asks ‘“What if we had
observed different data?” The relevance of this to a robust Bayesian is not clear,
since the robust Bayesian cares about sensitivity to assumptions only for the
observed data. Thus, in our earlier simple example, the robust Bayesian can feel
reasonably satisfied with his answer of a* = ; when x = 1 is observed, and will
not care that he might have been unhappy with his model or prior had he
happened to observe x = 5. The changes that would be entertained in the model
or prior, upon observing x = 5, will have little effect for x = 1. The general
principle is that the Bayesian will not try to protect against features of the model
or prior that are irrelevant for the data at hand. Note that this is part of the
fundamental distinction between conditional and unconditional statistical analy-
sis, a distinction which, to many, is much more crucial than use of a prior
distribution.

We do not here defend the robust Bayesian version of “what if” as opposed to
the frequentist version discussed in the paper; the goal has been simply to
indicate that there is a crucial difference. Also, we would not state that the
frequentist “what if”” method is without value; it is just not clear when it can
provide insight not available by a prior sensitivity study. In the example of
inconsistency in estimating the location parameter, I would guess that, for a
given large sample, the conclusion would be quite sensitive to the choice of the
prior, so that a prior sensitivity study would reveal the problem. Even if this
were not the case, one would probably not have to leave the given data to see a
potential problem; calculating the posterior for subsets of the data would
presumably reveal the oscillatory behavior of the posterior. (Of course, looking at
such subsets is somewhat “frequentist what-iffish” in nature.)
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The two situations in which it is clear that frequentist measures can be useful
to a Bayesian are (i) when Bayesian calculations are very difficult compared to
frequentist calculations, and (ii) when developing “automated” Bayesian proce-
dures for use in (say) computer packages. Even then, interest (to a Bayesian) in a
frequentist measure occurs primarily when it can be interpreted in a Bayesian
fashion; the following is a standard example.

ExaMPLE. Let X denote the random observation in an experiment with
unknown 6, and suppose that C(x) (a subset of ©® for each x) is a 100(1 — a)%
confidence procedure; thus, for all 4,

(1) Py(C(X) contains §) =1 — a.
If p is a prior on 0, it follows that
(2) E"Py(C(X) contains §) =1 — a.

Now, a Bayesian would be interested in the posterior probability that 6 is in
C(x) (for the observed x, of course); denote this by §,(x). But it is easy to see
that

3) E™5(X) = E*Py(C(X) contains ) = 1 — a,

where m is the marginal distribution of X. But knowing that (3) holds, when a is
small, is useful information to a Bayesian who has difficulty in working with
8,(x) directly, in that it then seems very likely (with respect to m) that §,(x) is
near 1. And this holds for any p, so that Bayesian robustness seems likely to be
present. There is, of course, no guarantee that §,(x) is near 1 for the actual x
obtained, but there is certainly reason to be optimistic (when a is small).

For the two situations mentioned before the example, it is easy to see the value
of (3). Examples exist (see Berger and Wolpert, 1984) where §, is very difficult to
calculate for any reasonable y, and yet it is almost trivial to verify (1) (and hence
(3)). Such examples are somewhat rare, but they do exist. And the attraction of
(3) in “automated” statistics is that it can impart a feeling of Bayesian robust-
ness without the need for a sophisticated sensitivity study (which users of
automated procedures may not be able to perform). Note that (3) need not hold
for all priors; it need hold only for the class of “reasonable” priors (cf. Morris,
1983).

The important distinction in the above use of frequentist measures, by a
Bayesian, is that there is no desire to involve nonobserved x in the analysis. The
frequentist measure merely provides a convenient route to a possibly useful
Bayesian measure.

As a final comment on “automated procedures,” the development of inherently
robust Bayesian procedures is an important Bayesian research goal (see Berger,
1985). One major thrust of the Diaconis—Freedman program can be interpreted in
this light; namely, the development of priors that are guaranteed to be con-
sistent.
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3. New Bayesian devices and techniques. Bayesians are always excited
by new Bayesian tools, and at least two are discussed in the papers of Diaconis
and Freedman. One is the technique by which difficult Bayesian calculations can
be performed by a limiting argument. While related calculations have been
carried out before, the very general discussion here (cf. Section 4 in the second
paper) should prove very useful to Bayesians.

The second new tool is the derivative given in Theorem 4. For parametric
classes of priors, the study of the derivative of posterior features of interest, with
respect to the parameters of the prior, has come to be called local sensitivity (cf.
Leamer (1978) and Polasek (1984)) and can indicate features of the prior that are
particularly influential and which, hence, may require more careful consideration.
For the most part, previous work has concentrated on local sensitivity of the
posterior mean and covariance matrix in conjugate prior situations; the nonpara-
metric generalizations in this paper (see Appendix B for the relevant formula for
the posterior mean) are exciting developments. In line with the previous discus-
sion on “robust Bayesianism,” I am most excited about the use of these
derivatives to indicate “directions” in which the answer is particularly sensitive
to the prior input. In terms of the Gateaux derivative, this is somewhat more
intuitive; letting the prior be (1 — ¢)u + ev, sending ¢ to zero, and finding v for
which the directional derivative is largest, may well indicate where additional
prior elicitation efforts or sensitivity studies should be concentrated.

An additional attractive feature of using the Gateaux derivative is that it ties
in well with the most promising formal approach to global sensitivity, which is to
investigate the range of the Bayesian measure of interest as the prior ranges over
the “e-contamination” class {p = (1 — &)p, + e}, where p is an elicited prior, &
reflects the possible inaccuracy in this specification, and » is some class of
plausible contaminations. The attractiveness of global sensitivity studies for this
class is indicated by Huber (1973), Berger and Berliner (1983), and Berger (1985).
The tie-in with local sensitivity via the Gateaux derivative might lead to a nice
unification of Bayesian sensitivity theory.
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The two papers by Diaconis and Freedman which are under discussion contain
a series of interesting and nicely presented results. The philosophical issues which
they raise are thought-provoking and merit attention. Their papers also give a
useful review touching on a number of topics of interest to frequentists and
Bayesians.

For simplicity, in the ensuing comments I shall refer to Diaconis and Freed-
man (1986a) as DFa and Diaconis and Freedman (1986b) as DFb. My comments
touch on three topics: the technical aspects of DFa, the philosophical implica-
tions of the results in DFb, and the extension of the “what if” method in DFb to
Bayesian robustness.

The model (1.1) of DFa and the accompanying priors seem innocuous, and it is
somewhat disconcerting that they can lead to inconsistency. Theorem 1 of DFa
says that the posterior for § will fail to converge even though A has a global
maximum at 0. Theorem 3 states that using a symmetrized prior might not help;
we can even get the posterior law of the data wrong. On the other hand, perhaps
the consoling message from DFa is that if log a’ is convex, then in the setting of
Theorem 1 the posterior for § will converge. Less helpful is the fact that the
posterior will converge if the (unknowable) density A is strongly unimodal.

The discretization results of Section 4 of DFa can be used to approximate the
solutions to decision problems in the undominated case. In Clayton (1985), I used
a form of discretization with a Dirichlet process prior to approximate the worth
of optimal rules for a sequential problem. I conjectured in that paper that
discretization could be used to construct nearly optimal rules. (The construction
of optimal rules is practically impossible unless the Dirichlet parameter has a
finite support.) It seems possible to use the results of Section 4 of DFa to prove
that conjecture.

How important is this issue of inconsistency to a Bayesian? I think Diaconis
and Freedman are right in DFb to consider separately the classical and subjective
Bayesians, even though many Bayesians have the characteristics of both groups.



