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ON BOSCOVICH’S ESTIMATOR!

BY ROGER KOENKER AND GILBERT BASSETT

Unaiversity of Illinois, Urbana and University of Illinois, Chicago

Boscovich’s (1757) proposal to estimate the parameters of a linear model
by minimizing the sum of absolute deviations subject to the constraint that
the mean residual be zero is considered. The asymptotic theory of the
estimator confirms a remark of Edgeworth who called it a “remarkable
hybrid” between ¢, and 4, methods.

1. Introduction. When Gauss discovered least squares in the twilight of the
eighteenth century there were already several well-established proposals for
estimating the bivariate linear models. See Plackett (1972) and Stigler (1981) for
discussions of the least-squares priority debate between Gauss and Legendre.
Perhaps the best known of these “ precursors of least squares” is the proposal of
Roger Boscovich in 1757 to minimize the sum of absolute residuals subject to the
constraint that the mean residual is zero.

Boscovich’s proposal attracted the attention of Thomas Simpsen, a leading
English eighteenth century analyst, who provided a partial solution to the
problem of computing the Boscovich estimate. Stigler (1984) offers a fascinating
glimpse of the Boscovich-Simpson interchange and describes an unpublished
(1760) fragment in which Simpson develops his approach to the Boscovich
problem. See Harter (1974) and Stigler (1973) for further background. Subse-
quently, in 1799 Laplace completely characterized the solution of the bivariate
computational problem as a weighted median with weights |x, — X| of the
pairwise slopes s, = (y,—¥)/(x;— %), i=1,2,...,n. The term “weighted
median” is apparently due to Edgeworth. Given an ordered sample Sireves Sps
and associated weights, w,, ..., w,, the weighted median is simply s,, such that
m = min{j[Z/_,|w,| > LI_,|w;|/2}.

After a long hiatus, Edgeworth (1887) revived the idea of the Boscovich
estimator calling it a “remarkable hybrid between the Method of Least Squares
and the Method of Situation,” the latter being Laplace’s rather vague term for ¢,
methods. In the next section, we develop an asymptotic theory of the Boscovich
estimator for the general linear model and compare its asymptotic behavior with
that of some of its better known but less venerable competitors.

2. Asymptotic theory of the Boscovich estimator. We will consider the
classical linear model:

P
(2.1) Y= X x;Bi+u;=x8+u,
J=1
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where u;: i =1,...,n,... are independent with common distribution function
F(-), satisfying F(1/2) = 0, Eu = p, and having density f which is continuous
and strictly positive at 0 and p. We also need to assume that

02=E(u—p)’ < .

The design will be assumed to have an intercept (explicitly x,; = 1 for all j) and
to satisfy the usual condition:

1
(2.2) lim —X'X - D

n—oo N

for a positive definite matrix D. The objective function of the Boscovich estima-
tor may be expressed in Lagrangian form as

(2.3) Z[lyi — x|+ My — xib)] .
Reparameterizing, set
| 8= V(X = Ay),
8, =Vn(b— B — pe,),
where e = (1,0,...,0) € R” and A, = 2F(p) — 1. Then (2.3) becomes
(24) R(8)=X|u;— x8,/Vn — u| + (X + 8/Vn )(u; — x,8,/Vn — ),

which we study employing the methods of Ruppert and Carroll (1980) and
Jureckova (1977). The gradient of R is

Y [u; — x.8,/vn — ]
g(8) = vR(8) = JE( [Sgn(ui_x,.al/f—u)+>\o+3o/\/5]xi)
and
- Y x.8,/Vn
Eg(8) ‘/_ [1—2Fx81/\/—+ﬂ)+)\ +80/‘/_] )

Using the methods of Ruppert and Carroll (1980) or Bickel (1975, Lemma 4.1), we
have for fixed M > 0

sup ||g(8) — g(0) — Eg(8) + Eg(0)|| = 0,(1).
18ll<M

It is then easily shown under our conditions on F' that Eg(8) has a unique root
at 8 = 0 which, following Jureckova (1977), implies that 6 solving (2.3) is O,(1)
and hence B — P8 — pe, and A - PX,- Now expanding F around 8 = 0 and
setting w = 2f(p), yields

Eo() 0 -x\ (6,

8(8) = -x wD]/\§,;

and since g(3‘) = 0,(1) and Eg(0) = 0 we have that
IEg(8,) + &(0)]| = 0,(1).

+ o(1)
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Now

V(g(0)) =V

L 2 (u;—p)
n | - X [sen(u, — p) + 2F(p) - 1]x,

_ [ o>  G(p)x ]

G(wx H(wD)
where G(p) = E|lu — p|and H(p) = 4(1 — F(p))F(p). Condition (2.2) and the iid
assumption on the errors imply that the summands of g(0) satisfy the Lindeberg

condition, and thus & converges in distribution to a p + 1 variate normal
distribution with mean vector 0 and covariance matrix

o -x\'[e* Gx\[o0 -x\'
-x' wD Gx' HD|\ -x' wD
| H +20G + %® (G + wo?)e]
(G + wo?)e, w ?H(D™' - E,)+o%E, |

where E, denotes a p X p matrix with 1 in the (1, 1) element and zeros elsewhere.
To interpret the result, consider first the symmetric case p = 0, so that

w = (00 = 2f(0)7
H(p) = 4(1 - F(0))F(0) = 1,
and we have
Vn(B - B) - N(O’ “~’0_2(D_1 - El) + °2E1)'

Recall that the unconstrained ¢, estimator under those conditions is asymp-
totically normal with covariance matrix w; 2D~ !. See Bassett and Koenker (1978)
for details. Thus, the asymptotic theory of the Boscovich estimator, 8, in the
symmetric case, is identical to that of the usual ¢, estimator except that the
asymptotic variance of the intercept is 2, the variance of F, instead of w~2, the
asymptotic variance of the normalized sample median from F. This seems to
vindicate Edgeworth’s remark about the Boscovich estimator as a “remarkable
hybrid” between ¢, and 7, methods.

In asymmetric cases, 8 — 28 — pe; so that the regression surface is shifted to
the conditional expectation of y rather than its conditional median as for the
unconstrained ¢, estimator. Secondly, the mean of the Lagrangian is nonzero in
the asymmetric case; thus a diagnostic test for symmetry based on the Lagrange
multiplier is possible. The covariance matrix of Vn (8 — B — pe,) is fundamen-
tally the same as in the simple ¢, case except that the scale parameter on the
covariance matrix of the slope parameters is (2 f(r))~24(1 — F(p))F(p) instead of
2f(0)~2

A second, and perhaps more promising application of the Boscovich estimator,
is to prediction problems for linear models. A possible objection to #; methods
for prediction is their failure to predict the conditional expectation of the
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response variable in asymmetric error situations. While a reasonable argument
might be made for conditional median predictions, strict adherence to quadratic
loss, for example, dictates prediction of conditional expectations. Nevertheless, to
protect one’s self against the consequences of heavy-tailed errors, one might
prefer an estimation method which achieved median precision for the slope
parameters, while sacrificing this precision for the intercept ta remove the
median bias effect. This is, in effect, what the Boscovich estimator achieves. It is
easy to construct examples for which it is preferred to both its ¢, and ¢,
competitors. Take D = I,, x’ = (1,1) so that x’D~'x = 2. We need F(p)(1 —
F(p))/f(p?) < o?(F). This is satisfied for the Pareto distribution with parameter
a =3, for which F(p)=1—-p *=19/27, f(p)=3u *=16/27, p=3/2, o2
= 1.

Finally, we might add that nothing we have done depends crucially on the
form of the Boscovich estimator and could with appropriate modifications of
regularity conditions be extended to problems of the general form

bnelglp Yoy —xb) = M(y — x;b)

for p and y corresponding to any plausible M estimators.
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