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ESTIMATING A RATIO OF NORMAL PARAMETERS

By ANDREW RUKHIN!

Purdue University

The estimation problem of a function of normal parameters ¢/0%7 is
considered. We prove that a “natural” estimator of this ratio is admissible for
quadratic loss if and only if p is nonnegative.

1. Introduction and summary. Let x,...,x,, n > 2, be a random sample
from a normal distribution with mean ¢ and variance 2. We consider the
statistical estimation problem of a parametric function 6 = §/o 2P where p is a
given real number. The most interesting case is when p = }, so that 6 is a
dimensionless characteristic, which is a reciprocal of a commonly used coefficient
of variation. The case of general p presents certain interest from the point of
view of statistical decision theory. Since the admissibility proof for p = | is not
any easier, we consider the general situation. Notice also that if p =1, § is a
natural parameter in the corresponding exponential family. The tests of the
hypothesis about § with invariant power function have been studied by Linnik
(1968) (Theorem 3.3.1), in whose memory the author would like to dedicate this
work.

In this paper we use quadratic loss function of the form
L(¢,0;8) = (8 —8)°0%2

which is invariant under scale transformations. If X = Y7x /n and S =
Lix; - X )2, then (X, S) is a version of the complete sufficient statistic, and the
unblased estimator §,,(X, S) has the form

8y(X,8) = ¢, X/8P,

where ¢, = 2°T((n — 1)/2)/T((n — 1)/2 — p).

However, for p # 0 and sufficiently large n, this estimator can be improved
upon very easily. Indeed the risk function of any procedure c¢X/S? depends only
on /0 = 1, and because of the independence of X and S it has the form

E(cX/SP — )" = 12 [c®Ep,S 2P — 2¢E,S™P + 1] + c2n" 'E,, S~ 2P
Assuming that n > 4p + 1 (otherwise the risk is infinite), we put

EyS™®  2’T((n—1)/s —p)
EyS™* T((n-1)/2-2p—-p)’

(1.1) Co =
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If ¢ > c, then the estimator ¢X/SP has larger risk than 8,(X, S) = ¢, X/S”.
Since ¢, > c, the estimator §, is better than the unbiased estimator §;,. More-
over 8, is admissible within the class of procedures cX/S”, and it can be shown
to be minimax for properly rescaled quadratic loss function. Therefore we shall
investigate the admissibility of §,. We prove that &, is admissible if p > 0 and
inadmissible if p < 0. The admissibility part seems to be surprising in view of the
inadmissibility of c,/S” as an estimator of 6”7 [see Stein (1964), Brown (1968),
Brewster and Zidek (1974), and Strawderman (1974)]. In Section 2 we show that
8, is generalized Bayes procedure with respect to a prior which admits a good
approximation (in terms of posterior risk) by probability priors. Exactly this fact
is known to be responsible for admissibility [see Stein (1965)], and our admissibil-
ity proof in Section 3 is just a modification of the standard one (Blyth, 1951).
Similar admissibility phenomenon also happens in the estimation problem of
exponential parameters [see Rukhin (1983)] and other functions of normal
parameters (Rukhin, 1984a, 1985).

2. Generalized Bayes estimators of §. We assume in this section that p is
a positive number. We also use a convenient reparameterization: 7 =1 /(262).
Let A(¢, 7) be a density of a (generalized) prior distribution over {(, 7), 7 > 0}
with respect to invariant measure d¢ dr/7. Notice that the latter corresponds to
the right Haar measure for ¢ and o, which is traditionally used. The Bayes
estimator 84(x, s) has the form

2Pf_wwj;)w§7"/2‘Pexp{ —nr(x - £)° - ‘rs}}\(£, r)dédr
foo /wT”/2*2Pexp{ —nr(x —§)° - TS})\(&, t)dédr '
—00%0

dp(x,s) =

Denote
(2.1) R(x,y) = [ exp{=mx — £)JME ») dé.
Then (assuming the convergence of needed integrals)
[ gexp{—my(x = )")A(& 3) dE = 2R(x, ) + Rulx, )/ (2my),

where R (x, y) = (d/dx)R(x, y). Thus

8p(x,s) = cox/s?

(2°2) 21’/(; [xR + Rx/(2ny) - 27pcoxs_py‘PR] y"/2_Pe""ys dy

fooRyn/2—2pe—ys dy
0

Notice that the representation (2.2) holds also for some prior distributions
which are not absolutely continuous in which case A should be interpreted as a
generalized function.



1618 A. RUKHIN

According to (2.2), 8, is a generalized Bayes procedure with respect to prior
density A if and only if

(23) I= foo[xR + R./(2ny) — 2 Pcyxs Py PR| y"/2"Pe ¥ dy = 0.
0

(2.3) has a “trivial” solution R(x, y) = y~*2 which corresponds to the conjugate
(not uniform) generalized prior density A(£, 7) = 7~'. However, (2.3) admits
many other solutions. Let

[ee]

(2.4) R(x,y) = ¥ r(nx®y)"/k!,

k=0

where ry = 1 and for £ = 1,2,...,

k
(25) r= l;[1 [B(j+n/2-2p,p)/B((n-1)/2-2p, p)—1].

Term by term, differentiation and integration yields I = 0. In the appendix we
show that {(—1)*r,, k=0,1,...} is a moment sequence of a distribution
function G = G, over the interval [0,1], i.e,, for £ = 0,1,...,

j(;ltde(t) — (=1)*r,.

The distribution function G, is continuous for p < 1, and for p > 1 it is
continuous for 0 < ¢ < 1 and has a positive jump g = g, at ¢ = 1.
Now define the generalized prior distribution A, by the formula

(2.6) dAo= (1 — g)N(&, 1) deédr/T + gde,

where
Mg, T) = (n7/77)1/2f1exp{—n'r£2t/(1 —t)}(1 - ¢) " dG(¢).
0
In this case

R(x, y) = (ny/m)"* [~ exp{=mye?t/(1 = 1) = my(x — )"} at

xfol(l —t)7 2 dG(¢t)

(2.7) _ /Olexp{ —nyx?t} dG(t)

= 3 r(nxty) .
k=0

Therefore R solves (2.3) and §, is the Bayes estimator with respect to the prior
distribution A,,.
We have proven the following:

THEOREM 1. The generalized Bayes estimator 8y of 6 = ¢/0%P = £(271)P
under quadratic loss and prior density A has form (2.2) where the function R is
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defined by (2.1). The estimator §, is generalized Bayes for the prior distribution
(2.6).

Notice that the support of the measure A, is the whole parameter space
{(§, 7), 7 > 0}. Also although A, is not a finite measure, for all 7

[ Me ) dE < o,

so that A, is “less improper” than the uniform distribution.
In terms of parameters 7 = §/0 and o, dA (&, 7) = g(n) dndo/a, where

g(n) = ['exp(=nne/(1 = £))(1 = £)"* dG(e).

It can be shown that as n = o

g(n) ~ Cn2p—n/271,

Notice that 2p — n/2 — 1 < —3/2, so that g possesses the properties of gener-
alized prior densities for admissible scale equivariant estimators of normal
variance discussed in Brown [(1979) page 991]. Similar (but different from g)
prior densities have been also used by Brewster and Zidek (1974) and Strawder-
man (1974).

3. Admissibility result.

THEOREM 2. The procedure §,(X, S) = ¢, X/S? based on a random sample
of size n, n > 4p + 1, is admissible for estimating the ratio of normal parame-
ters, § = £ /a%P, under quadratic loss if p > 0.

Proor. If p = 0 the estimator §, coincides with X which is known to be an
admissible estimator of 8 = £. Therefore we assume p > 0.

Because of the continuity of the risk functions the admissibility of §, will be
proven if one finds a sequence &,,, m = 1,2,..., of positive measurable functions
h,, > lasm— oo, [[h, (T)dA (& 1)< o0, and

Pm = foo /0071_2P[E(80 - 0)2 - E(sm - 0)2] hm(T) dAO({:, 1') - 0.

—00v0

Here §,, is the Bayes estimator for the proper prior distribution A,,, dA,, =
h,, dA.
A straightforward calculation shows that

P = Cf_woo/(;w[b‘m(x, ) — 8y(x,s)]* dxds

.f°° fowy”/z‘%“exp{ —ny(x = £)" = ys)s 2 dA, (£, ).
N -

Here C denotes a generic positive constant which depends only on n and p.
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Calculation similar to that done in (2.4) and (2.7) shows that with
1
R(x, ) = Rp(x, ¥) = [(exp{ —mux’t) dG(1) hy (),

one has
" 2
© poo {/(; [R + R,./(2nxy) — 2_pcos_Py—pR] yp-n /g5y dy}
O = cf f L
-0’0 f yn/ PRe 'Sydy
0
x2dxs(3/2 ds.
Assume that
e ¢]
1) f ho(y)dy/y < .
0
Then

f_ifowhmh) dAo(€7) = ['/2dG(1) [ “ha(y)dy/y < .

A straightforward calculation shows that
00 2
[f [R+ R,/(2nxy) — 2Pc(sy) PR| y/2-Pe=*» dy]
0
= [fwflflvn/2—2p(1 _ D)p—le-nyxzzo[hm(y) _ h,,,(yv)]
o Yoo
2
0dG(0) y"/* % dy/B((n = 1)/2 - 25, )|
®© r1 rl — 2
< vn/2—2p 1 _ p-1 —nyx toh
[ [ [or72r = o) e, ()
(1 = kol 30) /R )](1 = vt) dodG(t) ey dy
[ o o) e e ()1 = ot)  dodGi(e)
0o Yoo

. e—syyn/2—2pdy‘

Because of Lemma 2
oo (o] o] 1 1 _ »
<C n/2-2p(1 _ P—1__nyx?te
s Cf [T [ e as e
’ [1 - hm(yv)/hm(y)]2dvdG(t) h,(y)e 2y 2dyx?dxs" /2 ds
=cf” ['on272p(1 = 0)" " hy(N[L = kol 30) /B )] dody/y.
- Jo Yo

Here we have used the fact that [}t~ %2dG(t) < .
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Now we define the sequence:

-1
Rn(¥) = (1 +(log y)’m~2)
so that (3.1) is satisfied. Also

fowhm(y)[l — k() /()] dy/dy
- [)w[h?"(y)/hm( yo )] dy/y - fowh,,,(y) dy/y

= (log 0)’'m~* [ “ho((y) dy/y = C(log v)’m !

and
P <Cm™ ' -0

as m - .
For completeness sake we formulate the following result proof of which can be
found in Rukhin (1984b).

THEOREM 3. The estimator 8, is inadmissible for estimating 6 under
quadratic loss if p < 0. In fact the estimator 8 of the form

d(x,8) =8y(x,s) — 28,(x, s)h(|x|(n/s)1/2),
where
h(z) = max{O,l -1+ 22)1_p2_2d,,},
d,= g}gng(n/2 +k-p,-p)/B((n-1)/2 - p,-p),

improves upon §,.
APPENDIX

We use here the following notation:
b=B(((n-1)/2-2p,p), b=>b"'B(j+n/2+1-2p,p).

LEMMmA 1. Foranyp,0 <p < (n — 1)/4, and n > 2, there exists a distribu-
tion function G(t) over the interval [0,1] such that for all k = 0,1,2, ...,

1 k k
(A1) fotde(t) = ,1:[1(1 - b)) =(-1)"r,.
Also
f't—3/2 dG(t) < .
0

For p < 1, the function G is continuous. For p > 1, this function is continuous
for 0 <t <1 and has a positive jump g at t = 1,

g= 11(1 -b).
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ProoOF. Let for complex z
(o]

®(z) = n (1- bj)(l -B(j+z+n/2+1-2p,p)b7").

J=0

It is easy to see that ®(z) is an analytic function of z in the region
Rez>2p—-1—n/2.
We show that ®(z) is a Mellin transform of a distribution G, i.e.,

foltsz(z) - (2).

Since ®(k) = (—1)*r,, k=0,1,..., the first part of Lemma 1 will then be
proven.
If distributions F;, j = 0,1,..., are such that

(A.2) folxzdﬁ}(x) =(1- bj)[l ~B(j+z+n/2+1-2p,p)b7"| "},

and if infinite multiplicative convolution of F, j=0,1,..., exists, then it
satisfies (A.1).
First let us demonstrate the existence of such distributions F,. Denote

¢m(u) = fA _[4’1(”/(”1 um—l))':=].__.[ll¢l(uj) duj/uj’

where integration is over the set
A, ={(uy,...,uy 1),0<u;<1,i=1,....m—-1,u, - u,_, > u}
and
o (u) =u"?2P1 - u)?”', O<u<l.
Thus

Llu2_1¢m(u) du = [foluz_lqbl(u) du]m

= [B(n/2 —2p + 2, p)]™.
Notice that since (1 — u)?/2 <1for0 < u < 1,

m-—1
o, (1) < un/2—2p/,..f 1:[ du,/u;
All

=u"/?"2P(—logu)™ ' /(m — 1)!.

(A.3)

Now let
¢(u) = X ¢a(u)d™
m=1
This series converges. Indeed because of (A.3)

o(u) < un?2 ¥ (~logu)"™ [6™(m — 1)!]

m=1

= u"/?"%Pexp{ —log u/b} /b.
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For positive z

folu“%(u)du - Y [Bz+ns2- 2p, p)b~1]"

m=1
=B(z+n/2-2p, p)b_l[l - B(z+n/2-2p,p)b7| -
Now if
dF(u) = (1- bj)(ujd)(u) du + dey(u)),

where the distribution ¢, puts unit mass at u = 1, then (A.2) is valid.

Notice that the infinite convolution of F}, F,,... converges since, as is easy to
check,

ZLllog udF; <
J
and

1 1 2
E'/O(logu—‘{)log\udﬁ}) dF; < o,

J

which in our case is a sufficient condition for the convolution’s convergence [see
Hennequin and Tortrat (1965), page 202].

Thus the distribution function G such that ®(z) is its Mellin transform exists.
Since ®(z) is analytic for Rez > —3/2, ({732 dG(t) < .

It is known [cf., Hennequin and Tortrat (1965), page 205] that G is continuous
if T172 f, where f; is the largest jump of F}, vanishes. Clearly

fi=1-b
and
log f;~ —=T((n-1)/2 = p)/[J°T((n - 1)/2 - 2p)].

Thus IT2,f; vanishes if and only if p < 1. If p > 1, the distribution function G
has a jump g =T1%,f; at ¢ = 1 and is continuous for £ > 1.

LEMMA 2. If the distribution function G is defined as in Lemma 1, then

(A4) [ 'e* dG(t) = I / 'or/2-2p(1 = )P e (1 — tv) ' dG(t) dob .
0 0Y0

This formula is proved by expanding both sides of (A.4) in powers of z.
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